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Bose-Einstein Condensates in Superlattices∗

Mason A. Porter† and P. G. Kevrekidis‡

Abstract. We consider the Gross–Pitaevskii (GP) equation in the presence of periodic and quasi-periodic su-
perlattices to study cigar-shaped Bose–Einstein condensates (BECs) in such potentials. We examine
spatially extended wavefunctions in the form of modulated amplitude waves (MAWs). With a coher-
ent structure ansatz, we derive amplitude equations describing the evolution of spatially modulated
states of the BEC. We then apply second-order multiple scale perturbation theory to study harmonic
resonances with respect to a single lattice substructure as well as ultrasubharmonic resonances that
result from interactions of both substructures of the superlattice. In each case, we determine the
resulting system’s equilibria, which represent spatially periodic solutions, and subsequently examine
the stability of the corresponding wavefunctions by direct simulations of the GP equation, identify-
ing them as typically stable solutions of the model. We then study subharmonic resonances using
Hamiltonian perturbation theory, tracing robust spatio-temporally periodic patterns.
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1. Introduction. At very low temperatures, trapped particles of a dilute Bose gas can
occupy the same quantum (ground) state, forming a Bose–Einstein condensate (BEC) [48, 21,
30, 17], which appears as a localized peak (over a broader distribution) in both coordinate
and momentum space. As the gas is cooled, condensation (of a large fraction of the atoms
in the gas) occurs via a quantum phase transition, emerging when the wavelengths of indi-
vidual atoms overlap and behave identically. Atoms of mass m and temperature T constitute
quantum wavepackets whose spatial extent is given by the de Broglie wavelength

λdb =

√
2π�2

mkBT
,(1)

which represents the uncertainty in position associated with the momentum distribution [30]
(where � is Planck’s constant and kB is Boltzmann’s constant). The atomic wavepackets
overlap once atoms are cooled sufficiently so that λdb is comparable to the separation between
atoms, as bosonic atoms then undergo a quantum phase transition to form a BEC (a coherent
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cloud of atoms). Although condensation constitutes a quantum phenomenon, such “matter
waves” can often be observed macroscopically, with the number of condensed atoms N ranging
from several thousand (or less) to several million (or more) [21].

BECs were first observed experimentally in 1995 in dilute alkali gases such as vapors
of rubidium and sodium [4, 22]. In these experiments, atoms were confined in magnetic
traps, evaporatively cooled to a fraction of a microkelvin, left to expand by switching off
the confining trap, and subsequently imaged with optical methods. A sharp peak in the
velocity distribution was observed below a critical temperature, indicating that condensation
had occured (as the alkali atoms were now condensed in the same (ground) state). Under the
typical confining conditions of experimental settings, BECs are inhomogeneous, so condensates
arise as a localized object not only in momentum space but also in coordinate space.

The macroscopic observability of the condensates in coordinate and momentum space has
led to novel methods of investigating quantities such as energy and density distributions,
interference phenomena, the frequencies of collective excitations, and the temperature depen-
dence of BECs, among others [21] (for comprehensive reviews, the interested reader should
consult [48, 57]). Another consequence of this inhomogeneity is that the effects of two-body
interactions are greatly enhanced, despite the fact that Bose gases are extremely dilute (with
the average distance between atoms typically more than ten times the range of interatomic
forces). For example, these interactions reduce the condensate’s central density and enlarge
the size of the condensate cloud, which becomes macroscopic and can be measured directly
with optical imaging methods.

BECs have two characteristic length scales. The condensate density varies on the scale
of the harmonic oscillator length aho =

√
�/(mωho) (which is typically on the order of a few

microns), where ωho = (ωxωyωz)
1/3 is the geometric mean of the trapping frequencies. The

“coherence length” (or “healing length”), determined by balancing the quantum pressure and
the condensate’s interaction energy, is χ = 1/

√
8π|a|n̄ (and is also typically on the order of a

few microns), where n̄ is the mean particle density and a, the (two-body) s-wave scattering
length, is determined by the atomic species of the condensate. Interactions between atoms
are repulsive when a > 0 and attractive when a < 0. For a dilute ideal gas, a ≈ 0. The length
scales in BECs should be contrasted with those in systems like superfluid helium, in which the
effects of inhomogeneity occur on a microscopic scale fixed by the interatomic distance [21].

If considering only two-body mean-field interactions, a dilute Bose–Einstein gas near zero
temperature can be modeled using a cubic nonlinear Schrödinger equation (NLS) with an
external potential, which is also known as the Gross–Pitaevskii (GP) equation. This is written
[21] as

i�Ψt =

(
−�

2∇2

2m
+ g0|Ψ|2 + V(�r)

)
Ψ ,(2)

where Ψ = Ψ(�r, t) is the condensate wave function normalized to the number of atoms, V(�r)
is the external potential, and the effective interaction constant is g0 = [4π�

2a/m][1 + O(ζ2)],
where ζ ≡

√
|Ψ|2|a|3 is the dilute-gas parameter [21, 35, 7].

BECs are modeled in the quasi-one-dimensional (quasi-1D) regime when the transverse
dimensions of the condensate are on the order of its healing length and its longitudinal dimen-
sion is much larger than its transverse ones [13, 14, 12, 21]. In this regime, one employs the



BOSE-EINSTEIN CONDENSATES IN SUPERLATTICES 785

1D limit of a 3D mean-field theory (generated by averaging in the transverse plane) rather
than a true 1D mean-field theory, which would be appropriate were the transverse dimension
on the order of the atomic interaction length or the atomic size [13, 55, 8]. The resulting 1D
equation is [55, 21]

i�ut = −
[

�
2

2m

]
uxx + g|u|2u + V (x)u ,(3)

where u, g, and V are, respectively, the rescaled 1D wave function (“order parameter”),
interaction constant, and external trapping potential. The quantity |u|2 gives the atomic
number density. The self-interaction parameter g is tunable (even its sign), because the
scattering length a can be adjusted using magnetic fields in the vicinity of a Feshbach resonance
[24, 34]. The manipulation of Feshbach resonances has become one of the most active areas in
the study of ultracold atoms, as (for example) numerous research groups are investigating the
intermediate regime between molecular condensates and degenerate Fermi gases (the so-called
BEC-BCS crossover regime). Theoretical algorithms for manipulating a, such as alternating
it periodically between positive and negative values, have been developed by analogy with
“dispersion management” in nonlinear optics.

In forming a BEC, the atoms are trapped using a confining magnetic or optical potential
V (x), which is then turned off so that the gas can expand and be imaged. In early experiments,
only parabolic (“harmonic”) potentials were employed, but a wide variety of potentials can now
be constructed experimentally. In addition to harmonic traps, these include double-well traps
(see, e.g., [5] and references therein), periodic lattices (see, e.g., [11] for a review), superlattices
[47, 54] (which can be either periodic or quasi-periodic), and superpositions of lattices or
superlattices with harmonic traps. Optical lattices and superlattices are created using counter-
propagating laser beams, and higher-dimensional versions of many of the aforementioned
potentials have also been achieved experimentally.

The existence of quasi-1D (“cigar-shaped”) BECs motivates the study of lower-dimensional
models such as (3). The case of periodic and quasi-periodic potentials without a confining
trap along the longitudinal dimension of the lattice is of particular theoretical and experi-
mental interest. Such potentials have been used, for example, to study Josephson effects [3],
squeezed states [45], Landau–Zener tunneling and Bloch oscillations [42], and the transition
between superfluidity and Mott insulation at both the classical [56, 19] and quantum [28]
levels. Moreover, with each lattice site occupied by one alkali atom in its ground state, BECs
in optical lattices show promise as registers in quantum computers [52, 58].

In experiments, a weak harmonic trap is typically used on top of the optical lattice (OL) or
optical superlattice (OSL) to prevent the particles from escaping. The lattice is also generally
turned on after the trap. If one wishes to include the trap in theoretical analyses, then V (x)
is modeled by

V (x) = V1 cos(κ1x) + V2 cos(κ2x) + Vhx
2 ,(4)

where κ1 is the primary lattice wavenumber, κ2 > κ1 is the secondary lattice wavenumber, V1

and V2 are the associated lattice amplitudes, and Vh represents the magnitude of the harmonic
trap. Note that V1, V2, Vh, κ1, and κ2 can all be tuned experimentally, so that the external
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potential’s length scales are easily manipulated. The sinusoidal terms in (4) dominate for
small x, but the harmonic trap otherwise becomes quickly dominant. When Vh � V1 , V2,
the potential is dominated by its periodic (or quasi-periodic) contributions for many periods
[18, 50]. BECs in OLs with up to 200 wells have been created experimentally [46].

In this work, we let Vh = 0 and focus on OL and OSL potentials. Spatially periodic
potentials have been employed in experimental studies of BECs [29, 3, 45, 42, 28, 52] and
have also been studied theoretically [13, 10, 20, 41, 2, 39, 40, 43, 49, 56, 38, 33]; see also
the recent reviews [32, 31]. In experiments reported in 2003, BECs were loaded into OSLs
with κ2 = 3κ1 [47]. However, there has thus far been very little theoretical research on BECs
in superlattice potentials [54, 23, 37, 25]. In this work, we consider both periodic (rational
κ2/κ1) and quasi-periodic (irrational κ2/κ1) OSLs.

We focus here on spatially extended solutions rather than on localized waves (solitons). For
BECs loaded into OSLs, the interest in such extended wavefunctions is twofold. First, BECs
were successfully loaded into OSL potentials in recent experiments [47] (in which extended
solutions were observed). Second, modified amplitude waves (MAWs) in BECs in OSLs can
be used to study period-multiplied states and generalizations thereof [49, 50, 51].

On the first front, 87Rb atoms were loaded into an OSL by the sequential creation of two
lattice structures. The atoms were initially loaded into every third site of an OL. A second
periodic structure was subsequently added so that the atoms could be transferred from long-
period lattice sites to corresponding short-period lattice sites in a patterned loading.

On the second front, Machholm et al. [39] studied period-doubled states (in |u|2), inter-
preting them as soliton trains in an attempt to explain experimental studies by Cataliotti
et al. [19], who observed superfluid current disruption in chains of weakly coupled BECs in
OL potentials. More recently, experimental observations of period-doubled wavefunctions in
BECs in OL potentials have now been reported [26]. From a dynamical systems perspec-
tive, period-multiplied states arise at the center of Kolmogorov–Arnold–Moser (KAM) islands
in phase space; the location and size of such islands has been estimated using Hamiltonian
perturbation theory and multiple scale analysis [49, 50, 51].

In this study, we investigate spatially extended solutions of BECs in periodic and quasi-
periodic OSLs. We apply a coherent structure ansatz to (3), yielding a parametrically forced
Duffing equation describing the spatial evolution of the field. We employ second-order mul-
tiple scale perturbation theory to study its periodic orbits (the MAWs) and illustrate their
dynamical stability with numerical simulations of the GP equation. We consider harmonic
(1 :1) resonances and two types of ultrasubharmonic resonances—resulting from, respectively,
“additive” (2:1 + 1) and “subtractive” (2:1− 1) interactions—all of which arise at the O(ε2)
level of analysis. Because ultrasubharmonic resonances result from the interaction of multiple
substructures of the superlattice, they cannot occur in BECs loaded into regular OLs. We
then explore subharmonic resonances using Hamiltonian perturbation theory, identifying var-
ious relevant patterns including quasi-stationary ones (with weak amplitude oscillations) and
spatio-temporally breathing ones (see the details below).

We structure the rest of our presentation as follows: We first introduce MAWs and use
multiple scale perturbation theory to derive “slow flow” dynamical equations that describe the
resonance phenomena under consideration. We analyze these equations and construct MAW
solutions, whose stability we test with direct numerical simulations of the GP equations. We
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then examine subharmonic resonances using Hamiltonian perturbation theory and additional
numerics. Finally, we summarize our findings and present our conclusions.

2. Modulated amplitude waves. To study MAWs, we employ the ansatz

u(x, t) = R(x) exp (i [θ(x) − μt]) .(5)

When such (temporally periodic) coherent structures (5) are also spatially periodic, they are
called MAWs [16, 15]. The orbital stability of MAWs for the cubic NLS with elliptic potentials
has been studied by Bronski and colleagues [13, 12, 14]. To obtain stability information
about sinusoidal potentials, one takes the limit as the elliptic modulus k approaches zero [36].
When V (x) is periodic, the resulting MAWs generalize the Bloch modes that occur in the
theory of linear systems with periodic potentials [53, 6, 38, 10, 20]. In this work, we extend
recent studies [49, 50] of the dynamical behavior of MAWs for BECs in lattice potentials to
superlattice potentials.

Inserting (5) into (3), equating the real and imaginary components of the resulting equa-
tion, and defining S := R′ yields the following 2D system of nonlinear ordinary differential
equations:

R′ = S ,

S′ =
c2

R3
− 2mμR

�
+

2mg

�2
R3 +

2m

�2
V (x)R .

The parameter c is given by the relation

θ′(x) =
c

R2
,(6)

which indicates conservation of “angular momentum” [13]. Constant phase solutions (i.e.,
standing waves), which constitute an important special case, satisfy c = 0. In the rest of the
paper, we restrict ourselves to this class of solutions, so that

R′ = S ,

S′ = −2mμR

�
+

2mg

�2
R3 +

2m

�2
V (x)R .(7)

We consider the case with Vh = 0 (which implies, in practice, that the harmonic trap is
negligible with respect to the OSL potential for the domain of interest) and define

δ̃ :=
2mμ

�
, εα̃ := −2mg

�2
, Ṽ (x) := −2m

�2
V (x) ,(8)

where

Ṽ (x) = ε[Ṽ1 cos(κ1x) + Ṽ2 cos(κ2x)] ;(9)

the parameters δ̃, α̃, and Ṽj are O(1) quantities; and the lattice wavenumbers κj can either
be commensurate (rational multiples of each other) or incommensurate, so that the OSL can
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be, respectively, either periodic or quasi-periodic. We let κ2 > κ1 without loss of generality,
so that κ1 is the primary lattice wavenumber. In our numerical simulations, we focus on the
case κ2 = 3κ1, which has been achieved experimentally [47].

For notational convenience, we drop the tildes from δ̃, α̃, and Ṽj , so that (7) is written in
the form of a forced second-order ODE as

R′′ + δR + εαR3 + εR[V1 cos(κ1x) + V2 cos(κ2x)] = 0 .(10)

In this paper, we consider the case δ > 0 corresponding to a positive chemical potential.

3. Multiple scale perturbation theory and spatial resonances. To employ multiple scale
perturbation theory [9, 53], we define “slow space” η := εx and “stretched space”

ξ := bx = [1 + εb1 + ε2b2 + O(ε3)]x .(11)

We then expand the wavefunction amplitude R in a power series,

R = R0 + εR1 + ε2R2 + O(ε3) ,(12)

and stretch the spatial dependence in the OSL potential, which is then written

V̄ (ξ) = V1 cos(κ1ξ) + V2 cos(κ2ξ) .(13)

Inserting these expansions, (10) becomes

[
1 + b1ε + b2ε

2 + O(ε3)
]2 [∂2R0

∂ξ2
+ ε

∂2R1

∂ξ2
+ ε2∂

2R2

∂ξ2
+ O(ε3)

]

+ 2ε
[
1 + b1ε + b2ε

2 + O(ε3)
] [∂2R0

∂ξ∂η
+ ε

∂2R1

∂ξ∂η
+ ε2∂

2R2

∂ξ∂η
+ O(ε3)

]

+ ε2

[
∂2R0

∂η2
+ ε

∂2R1

∂η2
+ ε2∂

2R2

∂η2
+ O(ε3)

]

+ δ
[
R0 + εR1 + ε2R2 + O(ε3)

]
+ εα

[
R0 + εR1 + ε2R2 + O(ε3)

]3
+ ε

[
R0 + εR1 + ε2R2 + O(ε3)

]
[V1 cos(κ1ξ) + V2 cos(κ2ξ)] = 0 .(14)

To perform multiple scale analysis, we equate the coefficients of terms of different order
(in ε) in turn. At O(1) = O(ε0), we obtain

∂2R0

∂ξ2
+ δR0 = 0 ,

which has the solution

R0(ξ, η) = A(η) cos(
√
δξ) + B(η) sin(

√
δξ) ,(15)

for slowly varying amplitudes A(η), B(η), equations of motion for which arise at O(ε).



BOSE-EINSTEIN CONDENSATES IN SUPERLATTICES 789

Equating coefficients at O(ε) yields

∂2R1

∂ξ2
+ δR1 =

[
2b1δA− 2

√
δB′ − 3

4
αA(A2 + B2)

]
cos(

√
δξ)

+

[
2b1δB + 2

√
δA′ − 3

4
αB(A2 + B2)

]
sin(

√
δξ)

+
αA

4
[−A2 + 3B2] cos(3

√
δξ) +

αB

4
[−3A2 + B2] sin(3

√
δξ)

+
V1A

2
cos([κ1 −

√
δ]ξ) +

V1A

2
cos([κ1 +

√
δ]ξ)

− V1B

2
sin([κ1 −

√
δ]ξ) +

V1B

2
sin([κ1 +

√
δ]ξ)

+
V2A

2
cos([κ2 −

√
δ]ξ) +

V2A

2
cos([κ2 +

√
δ]ξ)

− V2B

2
sin([κ2 −

√
δ]ξ) +

V2B

2
sin([κ2 +

√
δ]ξ) .(16)

For R1(ξ, η) to be bounded, the coefficients of the secular terms in (16) must vanish [53, 9].
The harmonics cos(

√
δξ) and sin(

√
δξ) are always secular, whereas cos(3

√
δξ) and sin(3

√
δξ)

are never secular. The other harmonics are secular only in the case of 2 : 1 subharmonic
resonances [49, 50], which can occur with respect to either the primary (κ1 = 2

√
δ) or sec-

ondary (κ2 = 2
√
δ) sublattice. We will consider the situation in which (16) is nonresonant and

turn our attention to other resonant situations at O(ε2) that arise from interactions between
the two lattice substructures. Our O(ε2) analysis below can be repeated in the presence of
2 : 1 resonances. At O(ε), one obtains either no resonance, a long-wavelength subharmonic
resonance, or a short-wavelength subharmonic resonance.

Equating the coefficients of the secular terms to zero in (16) yields the following equations
of motion describing the slow dynamics:

A′ = −b1
√
δB +

3α

8
√
δ
B(A2 + B2) ,

B′ = b1
√
δA− 3α

8
√
δ
A(A2 + B2) .(17)

We convert (17) to polar coordinates with A(η) = C cos[ϕ(η)] and B(η) = C sin[ϕ(η)] and see
immediately that each circle of constant C is invariant. The dynamics on each circle is given
by

ϕ(η) = ϕ(0) +

[
b1
√
δ − 3α

8
√
δ
C2

]
η .(18)

We examine the special circle of equilibria, corresponding to periodic orbits of (3), which
satisfies

C2 = A2 + B2 =
8b1δ

3α
.(19)
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We are interested in the O(ε2) effects, which we now analyze. At this second order of
perturbation theory, BECs in OSL potentials exhibit dynamical behavior that cannot occur in
BECs in simpler OL potentials (where, for example, solutions of type of (19) straightforwardly
arise [51]).

Equating coefficients at O(ε2) yields

∂2R2

∂ξ2
+ δR2 = −(b21 + 2b2)

∂2R0

∂ξ2
− ∂2R0

∂η2
− 2b1

∂2R0

∂ξ∂η
− 3αR2

0R1 − 2b1
∂2R1

∂ξ2
− 2

∂2R1

∂ξ∂η

−R1V1 cos(κ1ξ) −R2V2 cos(κ2ξ) ,(20)

where one inserts the expressions for R0, R1 and their derivatives into the right-hand side of
(20).

To find the secular terms in (20), we compute

R1(ξ, η) = C(η) cos(
√
δξ) + D(η) sin(

√
δξ) + R1p(ξ, η) ,

R1p(ξ, η) = c1 cos(3
√
δξ) + c2 sin(3

√
δξ)

+

2∑
j=1

[
cj3 cos([κj −

√
δ]ξ) + cj4 cos([κj +

√
δ]ξ)(21)

+cj5 sin([κj −
√
δ]ξ) + cj6 sin([κj +

√
δ]ξ)

]
,

where j ∈ {1 , 2} and

c1 =
α

32δ
A(A2 − 3B2) , c2 =

α

32δ
B(3A2 −B2) ,

cj3 =
VjA

2κj(κj − 2
√
δ)

, cj4 =
VjA

2κj(κj + 2
√
δ)

,

cj5 =
VjB

2κj(κj − 2
√
δ)

, cj6 =
VjB

2κj(κj + 2
√
δ)

.(22)

Inserting (15) and (21) into (20) and expanding the resulting equation trigonometrically
yields 19 harmonics (that are also present for sines), which we list in Table 1. We indicate
which of these harmonics are always secular, sometimes secular, or never secular.

At this order of perturbation theory, one finds 2:1 (primary subharmonic), 4 :1 (secondary
subharmonic), 1 : 1 (harmonic), 2 : 1+1 (additive ultrasubharmonic), and 2 :1−1 (subtractive
ultrasubharmonic) resonances. The first three types of resonances can occur with respect to
either κ1 or κ2, whereas the latter two require the interaction of both sublattices. Harmonic
and ultrasubharmonic spatial resonances have not been analyzed previously for BECs, and
subharmonic resonances have only been analyzed in the case of regular OL potentials. At
O(ε), we considered the case without 2 : 1 resonances, so the associated resonance conditions
(κj = ±2

√
δ) are necessarily not satisfied at the present [O(ε2)] stage, as indicated in Table

1. Second-order subharmonic (4 : 1) resonances have been studied in BECs in regular OL
potentials [49, 50]. Their associated resonance conditions are κj = ±4

√
δ. (We return to

subharmonic resonances in the case of OSLs later when we apply Hamiltonian perturbation
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Table 1
The harmonics in the right-hand side of (20) after the formulas for R0 (15) and R1 (21) are inserted. We

list only the cosines in this table, but the sines of these harmonics are present as well. We designate which
harmonics are always secular, sometimes secular (under an appropriate resonance condition, as detailed in the
text), and never secular.

Label Harmonic Secular? Resonance when secular

1 cos(
√
δξ) Yes N/A

2 cos(3
√
δξ) No N/A

3 cos(5
√
δξ) No N/A

4 cos([κ1 −
√
δ]ξ) Assumed not in resonance at O(ε) 2 :1

5 cos([κ1 +
√
δ]ξ) Assumed not in resonance at O(ε) 2 :1

6 cos([κ2 −
√
δ]ξ) Assumed not in resonance at O(ε) 2 :1

7 cos([κ2 +
√
δ]ξ) Assumed not in resonance at O(ε) 2 :1

8 cos([κ1 − 3
√
δ]ξ) Sometimes 4:1

9 cos([κ1 + 3
√
δ]ξ) Sometimes 4:1

10 cos([κ2 − 3
√
δ]ξ) Sometimes 4:1

11 cos([κ2 + 3
√
δ]ξ) Sometimes 4:1

12 cos([2κ1 −
√
δ]ξ) Sometimes 1:1

13 cos([2κ1 +
√
δ]ξ) Sometimes 1:1

14 cos([2κ2 −
√
δ]ξ) Sometimes 1:1

15 cos([2κ2 +
√
δ]ξ) Sometimes 1:1

16 cos([κ1 + κ2 −
√
δ]ξ) Sometimes 2:1+1

17 cos([κ1 + κ2 +
√
δ]ξ) Sometimes 2:1+1

18 cos([κ1 − κ2 −
√
δ]ξ) Sometimes 2:1−1

19 cos([κ1 − κ2 +
√
δ]ξ) Sometimes 2:1−1

theory.) The resonance relations for harmonic resonances are κj = ±
√
δ. We will consider

solutions that have harmonic resonance with respect to the primary sublattice (i.e., κ1 =
±
√
δ). The resonance relation for additive ultrasubharmonic resonances is κ2 + κ1 = ±2

√
δ,

and that for subtractive ultrasubharmonic resonances is κ2 − κ1 = ±2
√
δ. In the remainder

of this section, we consider in turn, nonresonant, harmonically resonant, and both types of
ultrasubharmonic resonant states.

It is also important to remark that with the slow spatial variable η = εx, the approximate
solutions R(x) obtained perturbatively are valid for |x| � O(ε−1) despite the fact that we
employ a second-order multiple scale expansion. By incorporating a third (“super slow”)
scale ε2x, which is more technically demanding, one can obtain approximate solutions that
are valid for |x| � O(ε−2) [9].

Before proceeding, we also remark that in light of KAM theory, one expects different
dynamical behavior (at least mathematically) depending on whether κ2/κ1 is an integer, a
rational number, or an irrational number. Only the situation κ2 = 3κ1 has been prepared
experimentally, so we concentrate on that case in our numerical simulations.

We note additionally that we simulated the dynamics and examined the stability of MAWs
using a numerical domain with periodic boundary conditions. This allows us to handle inte-
ger or rational values of κ2/κ1 with appropriate selection of the domain parameters (so that
the box size is an integer multiple of both spatial periods). However, quasi-periodic poten-
tials cannot be tackled numerically within this framework for the extended wave solutions



792 M. A. PORTER AND P. G. KEVREKIDIS

considered in this section. Our analytical work on MAWs is valid for all real ratios κ2/κ1.

3.1. The nonresonant case. In the nonresonant case, effective equations governing the
O(ε2) slow evolution are

C ′ =
1

Δ(δ, κ1, κ2)

[(
f1(α, δ, κ1, κ2)B

2 + f2(α, δ, κ1, κ2)A
2 + f3(α, δ, κ1, κ2, b1)

)
D

+ f4(α, δ, κ1, κ2)ABC + f5(α, δ, κ1, κ2)B
5 + f6(α, δ, κ1, κ2)A

2B3

+ f7(α, δ, κ1, κ2)A
4B + f8(α, δ, κ1, κ2, b2)B

]
,

D′ = − 1

Δ(δ, κ1, κ2)

[(
f1(α, δ, κ1, κ2)A

2 + f2(α, δ, κ1, κ2)B
2 + f3(α, δ, κ1, κ2, b1)

)
C

+ f4(α, δ, κ1, κ2)ABD + f5(α, δ, κ1, κ2)A
5 + f6(α, δ, κ1, κ2)A

3B2

+f7(α, δ, κ1, κ2)AB
4 + f8(α, δ, κ1, κ2)A

]
,(23)

where

Δ(δ, κ1, κ2) = 256δ3/2
(
16δ2 − 4δκ2

1 − 4δκ2
2 + κ2

1κ
2
2

)
(24)

and

f1(α, δ, κ1, κ2) = 3f2(α, δ, κ1, κ2) ,

(25)

f2(α, δ, κ1, κ2) = 96αδ[16δ2 − 4δ(κ2
1 + κ2

2) + κ2
1κ

2
2] ,

f3(α, δ, κ1, κ2, b1) = 256δ2b1[−κ2
1κ

2
2 + 4δ(κ2

1 + κ2
2) − 16δ2] ,

f4(α, δ, κ1, κ2) = 2f2(α, δ, κ1, κ2) ,

f5(α, δ, κ1, κ2) = 15α2[−16δ2 + 4δ(κ2
1 + κ2

2) − κ2
1κ

2
2] ,

f6(α, δ, κ1, κ2) = 2f5(α, δ, κ1, κ2) ,

f7(α, δ, κ1, κ2) = f5(α, δ, κ1, κ2) ,

f8(α, δ, κ1, κ2, b2) = 64δ[V 2
1 κ

2
2 + V 2

2 κ
2
1 − 4δ(V 2

1 + V 2
2 + κ2

1κ
2
2b2) + 16δ2b2(κ

2
1 + κ2

2) − 64δ3b2] .

In this case, the OSL does not contribute to the O(ε2) terms.
Equilibrium solutions of (23) satisfy

(26)

C =
(f1B

2 + f2A
2 + f3)(f5A

5 + f6A
3B2 + f7AB4 + f8A) − (f4AB)(f5B

5 + f6A
2B3 + f7A

4B + f8B)

f2
4A

2B2 − (f1B2 + f2A2 + f3)(f1A2 + f2B2 + f3)

D =
(f1A

2 + f2B
2 + f3)(f5B

5 + f6A
2B3 + f7A

4B + f8B) − (f4AB)(f5A
5 + f6A

3B2 + f7AB4 + f8A)

f2
4A

2B2 − (f1B2 + f2A2 + f3)(f1A2 + f2B2 + f3)

where one inserts an equilibrium value of A and B from (19). One then inserts equilibrium
values of A, B, C, and D into (15) and (21) to obtain the spatial profile R = R0 +εR1 +O(ε2)
used as the initial wavefunction in the numerical simulations of the full GP given by (3).
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Figure 1. Evolution of the nonresonant spatially extended solution (12) with C and D in (21) given by (23)
(see text for parameter details) for an OSL potential with V2 = 2V1 = 2 and κ2 = 3κ1 = 3. The left panel shows
the spatio-temporal evolution of |u(x, t)|2 by means of a colored contour plot. The right panel shows spatial
profiles of |u|2 at four values of time (t = 100, 200, 300, and 400).

A typical example of the nonresonant case is shown in Figure 1, with V2 = 2V1 = 2
and κ2 = 3κ1 = 12

√
δ = 3π/(2b), where b is the stretching factor given by (11). In this

simulation, we used b1 = b2 = 1 and ε = 0.1. It can be clearly seen that the relevant solution
is dynamically stable, which we found to be robust in our numerical experiments. Simulations
with rational κ2/κ1 reveal similar phenomena.

3.2. Resonances. In this subsection, we consider harmonic resonances, additive ultrasub-
harmonic resonances, and subtractive ultrasubharmonic resonances. In the evolution equa-
tions for the slow dynamics, one inserts the appropriate resonance relation into Δ and f1–f7.
The function f8 has both the nonresonant contributions discussed above and additional reso-
nant terms due to the OSL. Note additionally that there is symmetry-breaking in the resulting
equations because the functional form of the lattice contains only cosine terms.

3.2.1. Harmonic resonances. When κj = ±
√
δ, there is a harmonic resonance. The

effective equations governing the O(ε2) slow evolution in the presence of a harmonic resonance
with respect to the primary sublattice (i.e., κ1 = ±

√
δ) are

C ′ =
1

Δ(κ1, κ2)

[(
f1(α, κ1, κ2)B

2 + f2(α, κ1, κ2)A
2 + f3(α, κ1, κ2, b1)

)
D + f4(α, κ1, κ2)ABC

(27)

+ f5(α, κ1, κ2)B
5 + f6(α, κ1, κ2)A

2B3 + f7(α, κ1, κ2)A
4B + f8s(α, κ1, κ2, b2)B

]
,

D′ =
1

Δ(κ1, κ2)

[(
f1(α, κ1, κ2)A

2 + f2(α, κ1, κ2)B
2 + f3(α, κ1, κ2, b1)

)
C + f4(α, κ1, κ2)ABD

+ f5(α, κ1, κ2)A
5 + f6(α, κ1, κ2)A

3B2 + f7(α, κ1, κ2)AB
4 + f8c(α, κ1, κ2)A

]
,

where

Δ(κ1, κ2) = 768κ3
1(4κ

2
1 − κ2

2)(28)
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Figure 2. Same as Figure 1, but for the harmonic resonant case with respect to the primary lattice wave-
length. The solution given by (12) is used as an initial condition, with C and D in (21) given by (27) with the
functions (28), (29) (see text for parameter details).

and

f1(α, κ1, κ2) = 3f2(α, κ1, κ2) ,

f2(α, κ1, κ2) = 288ακ2
1(κ

2
2 − 4κ2

1) ,

f3(α, κ1, κ2, b1) = 768κ4
1b1(−κ2

2 + 4κ2
1) ,

f4(α, κ1, κ2) = 2f2(α, κ1, κ2) ,

f5(α, κ1, κ2) = 45α2(−κ2
2 + 4κ2

1) ,

f6(α, κ1, κ2) = 2f5(α, δ, κ1, κ2) ,

f7(α, κ1, κ2) = f5(α, δ, κ1, κ2) ,

f8s(α, κ1, κ2, b2) = fnon(α, κ1, κ2) + 32V 2
1 (κ2

2 − 4κ2
1) ,

f8c(α, κ1, κ2) = fnon(α, κ1, κ2) − 160V 2
1 (κ2

2 − 4κ2
1) ,

fnon(α, κ1, κ2) = 192κ2
1(V

2
2 − 4κ2

1κ
2
2b2 + 16κ4

1b2) .(29)

If considering a harmonic resonance with respect to the secondary sublattice (i.e., κ2 = ±
√
δ),

one obtains the appropriate equations for the O(ε2) slow evolution by switching the roles of κ1

and κ2. Note that the form of equations (29) corresponds to (25) except for the extra terms
in f8c and f8s that arise from the superlattice.

The equilibria of (27) are given by (26) except that one inserts the functions from (29).
Additionally, the expressions for C and D have f8s rather than f8 as a prefactor for B, and
f8c rather than f8 as a prefactor for A. One also inserts an equilibrium value of A and B
from (19). One then inserts equilibrium values of A, B, C, and D into (15) and (21) to obtain
the spatial profile R = R0 + εR1 + O(ε2) to use as an initial condition in direct numerical
simulations of (3).

A typical example of the single-wavelength resonant case is shown in Figure 2, with V2 =
2V1 = 2 and κ2 = 4κ1 = 4

√
δ = π/b, where b is the stretching factor of (11); we used
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b1 = b2 = 1 and ε = 0.1. The resulting (spatial) quasi-periodic patterns were robustly found
to persist in the dynamics of the system as stable (temporally oscillating) solutions.

3.2.2. Ultrasubharmonic resonances. Studying BECs in an OSL rather than in a regular
OL allows one to examine the ultrasubharmonic spatial resonances resulting from interactions
between the two lattice wavelengths [44]. As with harmonic resonances, an O(ε2) calculation
is required to perform the analysis.

When κ2 + κ1 = ±2
√
δ, one has an additive ultrasubharmonic resonance. The effective

equations governing the O(ε2) slow evolution in this case are (27) with

Δ(κ1, κ2) = 32κ1κ2(κ1 + 2κ2)(2κ1 + κ2)(κ1 + κ2)
3(30)

and

f1(α, κ1, κ2) = 3f2(α, κ1, κ2) ,

f2(α, κ1, κ2) = −24ακ1κ2[2(κ4
1 + κ4

2) + 9(κ3
1 + κ3

2) + 14κ2
1κ

2
2] ,

f3(α, κ1, κ2, b1) = 16κ1κ2b1[2(κ6
1 + κ6

2) + 13κ1κ2(κ
4
1 + κ4

2) + 34κ2
1κ

2
2(κ

2
1 + κ2

2) + 46κ3
1κ

3
2] ,

f4(α, κ1, κ2) = 2f2(α, κ1, κ2) ,

f5(α, κ1, κ2) = 15α2κ1κ2[5κ1κ2 + 2(κ2
1 + κ2

2)] ,

f6(α, κ1, κ2) = 2f5(α, δ, κ1, κ2) ,

f7(α, κ1, κ2) = f5(α, δ, κ1, κ2) ,

f8s(α, κ1, κ2, b2) = fnon(α, κ1, κ2) − fres(α, κ1, κ2) ,

f8c(α, κ1, κ2, b2) = fnon(α, κ1, κ2) + fres(α, κ1, κ2) ,

fnon(α, κ1, κ2) = 16[13κ2
1κ

2
2b2(κ

4
1 + κ4

2) + 46κ4
1κ

4
2b2 + 5κ2

1κ
2
2(V

2
1 + V 2

2 )

+ 2κ1κ2(V
2
2 κ

2
1 + V 2

1 κ
2
2 + κ6

1b2 + κ6
2b2) + 34κ3

1κ
3
2b2(κ

2
1 + κ2

2)

+ 4κ1κ2(V
2
1 κ

2
1 + V 2

2 κ
2
2) + V 2

1 κ
4
1 + V 2

2 κ
4
2] ,

fres(α, κ1, κ2) = 32V1V2[7κ
2
1κ

2
2 + (κ4

1 + κ4
2) + 4κ1κ2(κ

2
1 + κ2

2)] .(31)

Note that all the terms in fres are proportional to V1V2, as they arise from the effects of
interacting lattice wavelengths.

Equilibria in this situation again satisfy (26) except that one now inserts functions from
(30), (31). Again, the expressions for C and D have f8s rather than f8 as a prefactor for B,
and f8c rather than f8 as a prefactor for A. One again inserts an equilibrium value of A and
B from (19). One then inserts equilibrium values of A, B, C, and D into (15) and (21) to
obtain the initial spatial profile R = R0 + εR1 + O(ε2).

A typical simulation of an ultrasubharmonic resonance is shown in Figure 3, with V2 =
2V1 = 2 and κ2 = 3κ1 = 3

√
δ/2 = 3π/(8b), where b is again given by (11) with b1 = b2 = 1 and

ε = 0.1. The resulting complex patterns were found to persist as stable dynamical structures
(with periodic time dynamics).

When κ2 − κ1 = ±2
√
δ, one has a subtractive ultrasubharmonic resonance. The effective

equations governing the O(ε2) slow evolution in this case are again (27), with

Δ(κ1, κ2) = 32κ1κ2(κ1 − 2κ2)(2κ1 − κ2)(κ1 − κ2)
3(32)
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Figure 3. Same as Figure 1, but for an additive ultrasubharmonic resonance, which arises from the inter-
action of the BEC’s two wavelengths. The solution (12) is used as an initial condition, with C and D in (21)
given by (27) with the functions (30), (31) (see text for parameter details).

and

f1(α, κ1, κ2) = 3f2(α, κ1, κ2) ,

f2(α, κ1, κ2) = 24ακ1κ2[−2(κ4
1 + κ4

2) + 9(κ3
1 + κ3

2) − 14κ2
1κ

2
2] ,

f3(α, κ1, κ2, b1) = 16κ1κ2b1[2(κ6
1 + κ6

2) − 13κ1κ2(κ
4
1 + κ4

2) + 34κ2
1κ

2
2(κ

2
1 + κ2

2) − 46κ3
1κ

3
2] ,

f4(α, κ1, κ2) = 2f2(α, κ1, κ2) ,

f5(α, κ1, κ2) = 15α2κ1κ2[−5κ1κ2 + 2(κ2
1 + κ2

2)] ,

f6(α, κ1, κ2) = 2f5(α, δ, κ1, κ2) ,

f7(α, κ1, κ2) = f5(α, δ, κ1, κ2) ,

f8s(α, κ1, κ2, b2) = fnon(α, κ1, κ2) − fres(α, κ1, κ2) ,

f8c(α, κ1, κ2, b2) = fnon(α, κ1, κ2) + fres(α, κ1, κ2) ,

fnon(α, κ1, κ2) = 16[−13κ2
1κ

2
2b2(κ

4
1 + κ4

2) − 46κ4
1κ

4
2b2 − 5κ2

1κ
2
2(V

2
1 + V 2

2 )

+ 2κ1κ2(V
2
2 κ

2
1 + V 2

1 κ
2
2 + κ6

1b2 + κ6
2b2) + 34κ3

1κ
3
2b2(κ

2
1 + κ2

2)

+ 4κ1κ2(V
2
1 κ

2
1 + V 2

2 κ
2
2) − V 2

1 κ
4
1 − V 2

2 κ
4
2] ,

fres(α, κ1, κ2) = 32V1V2[−7κ2
1κ

2
2 − (κ4

1 + κ4
2) + 4κ1κ2(κ

2
1 + κ2

2)] .(33)

As with the additive ultrasubharmonic resonance, all the terms in fres are proportional to
V1V2.

Equilibria in this case again satisfy (26) except that one inserts the functions from (32),
(33). Recall once more that the expressions for C and D have f8s rather than f8 as a prefactor
for B, and f8c rather than f8 as a prefactor for A. One also inserts an equilibrium value of
A and B from (19). One then inserts equilibrium values of A, B, C, and D into (15) and
(21) to obtain a spatial profile R = R0 + εR1 + O(ε2) to utilize as an initial wavefunction in
numerical simulations of (3). In this case, the numerical simulations yielded similar (stable)
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temporal dynamics as for additive ultrasubharmonic resonances.

4. Hamiltonian perturbation theory and subharmonic resonances. In this section, we
build on recent work [49, 50] and apply Hamiltonian perturbation theory to (10) to examine
period-multiplied wavefunctions and spatial subharmonic resonances in repulsive BECs loaded
into OSL potentials. (For expository reasons, we repeat some details of the derivation from
those works in the present one.) We perturb from elliptic function solutions of the underly-
ing integrable system and study 2n : 1 spatial resonances with a leading-order perturbation
method. Perturbing from simple harmonic functions, by contrast, requires a perturbative
method of order n to study 2n : 1 resonances. At the center of KAM islands lie “period-
multiplied” states. When n = 1, one obtains period-doubled states in u corresponding to 2:1
subharmonic resonances. Our analysis reveals period-multiplied solutions of the GP (3) with
respect to both the primary and secondary sublattice.

The dynamical systems perspective on period-doubled states and their generalizations for
BECs in OSL potentials given here complements theoretical and experimental work by other
authors for the case of regular OL potentials. In recent experiments, Gemelke et al. [26] con-
structed period-doubled wavefunctions, which have received increased attention (for regular
lattices) during the past two years. In earlier work, Smerzi et al. [56] reported theoretical
studies of spatial period-doubling in the context of modulational (“dynamical”) instabilities
of Bloch states (see also [39] for a detailed discussion of the relevant connections), and Catal-
iotti et al. [19] reported experimental observations of superfluid current disruption in chains
of weakly coupled BECs. Period-doubled states, interpreted as soliton trains, then arise from
dynamical instabilities of the energy bands associated with Bloch states [39].

4.1. Unforced duffing oscillator. We employ exact elliptic function solutions of Duffing’s
equation ((10) with V1 = V2 = 0), so we no longer need to assume that the coefficient of the
nonlinearity is small. Therefore, we use the ODE

R′′ + δR + αR3 + εR[V1 cos(κ1x) + V2 cos(κ2x)] = 0 ,(34)

which is just like (10) except that α no longer has the prefactor ε.
When ε = 0, solutions of (34) are expressed exactly in terms of elliptic functions (see, e.g.,

[62, 50] and references therein):

R = σρ cn(u, k) ,(35)

where

u = u1x + u0 , u2
1 = δ + αρ2 ,

k2 =
αρ2

2(δ + αρ2)
,

u1 ≥ 0, ρ ≥ 0 , k2 ∈ R , σ ∈ {−1, 1} ,(36)

and u0 is obtained from an initial condition (and can be set to 0 without loss of generality).
When u1 ∈ R, the solutions given by (36) are periodic. When k2 < 0, which is the case
for repulsive BECs with positive chemical potentials, (36) is interpreted using the reciprocal
complementary modulus transformation (as discussed in [50]).
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Equation (34) is integrated when ε = 0 to yield the Hamiltonian

1

2
R′2 +

1

2
δR2 +

1

4
αR4 = h ,(37)

with given energy

h =
1

4
ρ2(2δ + αρ2) =

δ2

α

k2k′2

(1 − 2k2)2
,(38)

where k′2 := 1 − k2.
The center at (0, 0) satisfies h = ρ2 = k2 = 0. The saddles at (±

√
−δ/α, 0) and their

adjoining separatrix (consisting of two heteroclinic orbits) satisfy

h = − δ2

4α
, ρ2 =

δ

|α| , k2 = −∞ .(39)

The sign σ = +1 is used for the right-hand saddle and σ = −1 is used for the left-hand one.
Within the separatrix, all orbits are periodic and the value of σ is immaterial.

4.2. Action-angle variable description and transformations. For the sake of exposition,
we construct an action-angle description in steps. First, we rescale (34) using the coordinate
transformation

χ =
√
δx , r =

√
−α

δ
R(40)

to obtain

r′′ + r − r3 = 0(41)

when V1 = V2 = 0. In terms of the original coordinates,

R(x) =

√
− δ

α
r
(√

δx
)
.(42)

The Hamiltonian corresponding to (41) is

H0(r, s) =
1

2
s2 +

1

2
r2 − 1

4
r4 = h , h ∈

[
0,

1

4

]
,(43)

where s := r′ = dr/dχ. Additionally, ρ2 ∈ [0, 1) and

k2 =
ρ2

2(ρ2 − 1)
.(44)

With the initial condition r(0) = ρ, s(0) = 0 (which implies that u0 = 0), solutions to (41)
are given by

r(χ) = ρ cn
([

1 − ρ2
]1/2

χ, k
)
,

s(χ) = −ρ
[
1 − ρ2

]1/2
sn

([
1 − ρ2

]1/2
χ, k

)
dn

([
1 − ρ2

]1/2
χ, k

)
.(45)
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The period of a given periodic orbit Γ is

T (k) =

∮
Γ
dχ =

4K(k)√
1 − ρ2

,(46)

where 4K(k) is the period in u of cn(u, k) and K(k) is the complete elliptic integral of the
first kind [59]. The frequency of this orbit is

Ω(k) =
π
√

1 − ρ2

2K(k)
.(47)

Let Γh denote the periodic orbit with energy h = H0(r, s). The area of phase space
enclosed by this orbit is constant with respect to χ, so we define the action [27]

J :=
1

2π

∮
Γh

sdr =
1

2π

∫ T (k)

0
[s(χ)]2dχ ,(48)

which is evaluated to obtain

J =
4
√

1 − ρ2

3π

[
E(k) −

(
1 − ρ2

2

)
K(k)

]
,(49)

where E(k) is the complete elliptic integral of the second kind. The associated angle in the
canonical transformation (r, s) −→ (J,Φ) is

Φ := Φ(0) + Ω(k)χ .(50)

The frequency Ω(k) decreases monotonically as k2 goes from −∞ to 0 (that is, as one goes
from the separatrix to the center at (r, s) = (0, 0)). With this transformation, (45) becomes

r(J,Φ) = ρ(J) cn

(
2K(k)Φ

π
, k

)
,

s(χ) = −ρ(J)
√

1 − ρ(J)2 sn

(
2K(k)Φ

π
, k

)
dn

(
2K(k)Φ

π
, k

)
,(51)

where k = k(J).
After rescaling, the equations of motion for the forced system (34) take the form

r′′ + r − r3 +
ε

δ

[
V1 cos

(
κ1√
δ
χ

)
+ V2 cos

(
κ2√
δ
χ

)]
r = 0(52)

with the corresponding Hamiltonian

H(r, s, χ) = H0(r, s) + εH1(r, s, χ)

=
1

2
s2 +

1

2
r2 − 1

4
r4 +

ε

2δ
r2

[
V1 cos

(
κ1√
δ
χ

)
+ V2 cos

(
κ2√
δ
χ

)]
.(53)
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In action-angle coordinates, this becomes

H(Φ, J, χ) =
1

2
ρ(J)2 − 1

4
ρ(J)4 +

ε

2δ
ρ(J)2 cn2

(
2K(k)Φ

π
, k

)[
V1 cos

(
κ1√
δ
χ

)
+ V2 cos

(
κ2√
δ
χ

)]
.

(54)

A more convenient action-angle pair (φ, j) is obtained using the canonical transformation
(Φ, J) −→ (φ, j), defined by the relations

j(J) =
1

2
ρ(J)2 , Φ(φ, j) =

φ

J ′(j)
,(55)

where

k2 =
j

2j − 1
,

J(j) =
2

3

√
1 − 2j

[
Ẽ(j) − (1 − j)K̃(j)

]
,

K̃(j) =
2

π
K[k(j)] , Ẽ(j) =

2

π
E[k(j)] .(56)

Additionally,

J ′(j) :=
dJ

dj
=

√
1 − 2jK̃(j) =

1 − 2j

Ω(j)
.(57)

Note that J ∼ j for small-amplitude motion. Furthermore, j = 0 at the origin, and j = 1/2
on the separatrix. The Hamiltonian (54) becomes

H(φ, j, χ) = j − j2 +
ε

δ
j cn2

(
K̃(j)

J ′(j)
φ, k

)[
V1 cos

(
κ1√
δ
χ

)
+ V2 cos

(
κ2√
δ
χ

)]
.(58)

4.3. Perturbative analysis. A subsequent O(ε) analysis at this stage allows us to study
2n :1 subharmonic resonances for all n ∈ Z. Fourier expanding the cn function yields

cn2

(
K̃(j)

J ′(j)
φ, k

)
= B0(j) +

∞∑
l=1

Bl cos

(
2lφ

J ′(j)

)
,(59)

where the coefficients Bl(j) are obtained by convolving the Fourier coefficients [62, 50],

Bn(j) =
4

k(j)K̃(j)
bn[k(j)] ,

bn(k) =
1

2
sech

[(
n +

1

2

)
πK ′(k)

K(k)

]
,(60)

of the cn function in (58), where K ′(k) := K(
√

1 − k2) is the complementary complete elliptic
integral of the first kind [59, 1].
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The resulting O(ε) term in the Hamiltonian (58) is

εH1(φ, j, χ) =
ε

δ
jB0(j)

[
V1 cos

(
κ1√
δ
χ

)
+ V2 cos

(
κ2√
δ
χ

)]

+
ε

2δ
jV1

∞∑
l=1

Bl(j)

[
cos

(
2lφ

J ′(j)
+

κ1√
δ
χ

)
+ cos

(
2lφ

J ′(j)
− κ1√

δ
χ

)]

+
ε

2δ
jV2

∞∑
l′=1

Bl′(j)

[
cos

(
2l′φ

J ′(j)
+

κ2√
δ
χ

)
+ cos

(
2l′φ

J ′(j)
− κ2√

δ
χ

)]
.(61)

The Hamiltonian (61) is an expansion over infinitely many subharmonic resonance bands
for each of the primary and secondary sublattices. Each resonance corresponds to a single
harmonic in (61). To isolate individual resonances, we apply the canonical, near-identity
transformation [62, 50]

φ = Qi + ε
∂W1

∂P
+ O(ε2) ,

j = P − ε
∂W1

∂Qi
+ O(ε2)(62)

to (61) with an appropriate generating function W1 that removes all the resonances except
the one of interest. The subscript i in Qi specifies whether one is considering a resonance
with respect to the primary or secondary sublattice. The transformation (62) is valid in
a neighborhood of this 2n : 1 resonance and yields an autonomous one-degree-of-freedom
resonance Hamiltonian that determines its local dynamics,

K(Q,P, χ;n) = P − P 2 +
ε

2δ
ViPBn(P ) cos

(
2nQi

J ′(P )
− κi√

δ
χ

)
+ O(ε2) .(63)

In focusing on a single resonance band in phase space, one restricts P to a neighborhood of
Pn, which denotes the location of the nth resonant torus associated with periodic orbits in
2n : 1 spatial resonance with the primary (i = 1) or secondary (i = 2) sublattice (recall that
κ1 < κ2).

The resonance relation associated with 2n :1 resonances with respect to the ith sublattice
is [50]

κi√
δ

= ±2nΩ(Pn) .(64)

Because Ω ≤ 1 is a decreasing function of P ∈ [0, 1/2), the associated resonance band is
present when

κi√
δ
≤ 2n .(65)

For example, when κi = 2.5 and δ = 1, there are resonances of order 4 :1, 6 : 1, 8 : 1, etc., but
there are no resonances of order 2 : 1. Analytical expressions for the sizes of the resonance
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bands and the locations of their saddles and centers are the same as those obtained for BECs
loaded into OLs; they are derived in [50].

To examine the time-evolution of period-multiplied solutions, we need only the locations
of centers, which are obtained by applying one more canonical transformation. We use the
generating function

Fi(Qi, Y, χ;n) = QiY − κi

2n
√
δ
J(Y )χ ,(66)

which yields

P =
∂Fi

∂Qi
(Qi, Y, χ) = Y ,

ξ =
∂Fi

∂Y
(Qi, Y, χ) = Qi −

κi

2n
√
δ
J ′(Y )χ .(67)

The resonance Hamiltonian (63) becomes

Kn(ξ, Y ) = K(Qi, P, χ;n) +
∂Fi

∂χ
(Qi, Y, χ)

= Y − Y 2 − κi

2n
√
δ
J(Y ) +

ε

2δ
ViY Bn(Y ) cos

(
2nξ

J ′(Y )

)
,(68)

which is integrable in the (Y, ξ) coordinate system.
The centers of the KAM islands associated with this resonance occur at [50]

Yc = Yn + εΔY + O(ε2) ,(69)

where

ΔY = ∓ 1

2δ

[
Bn(Yn) + Yn

dBn
dY (Yn)

Ω(Yn)
√

1 − 2YnK̃ ′(Yn) − 1

]
,(70)

and the sign is − when n is even and + when n is odd. One then converts the value Yc
back to the original coordinates to obtain an estimate (Rc, Sc) of the location of the center
in phase space. (One obtains the locations of the other centers associated with the same
resonance band using iterates of (Rc, Sc) under a Poincaré map, but we need only one of these
centers for a given resonance to examine the time-evolution under the GP equation (3) of
these solutions, which provide the initial wavefunctions for the PDE simulations.)

In our numerical computations, we use the parameter values � = 2m = 1, δ = 1, α = −1,
ε = 0.01, and V1 = 1 in (3) and (34). With κ = 1.5, there is a center for the 2:1 resonance with
respect to the primary sublattice at Rc ≈ 0.753 and Sc = 0, so one uses R = 0.753 cos(κ1x/2)
as an initial wavefunction in simulations of (3) for any height V2 and wavenumber κ2 of the
secondary sublattice. Such a solution is shown in Figure 4 for V2 = 2 and κ2 = 3κ1. It is
dynamically stable and sustains only small amplitude variations (but is otherwise essentially
stationary). One can similarly examine initial wavefunctions corresponding to 2:1 resonances
with respect to the secondary sublattice.
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Figure 4. Same as Figure 1, but for a 2 : 1 resonance with respect to the primary sublattice. The solution
described in the text (R = 0.753 cos(κ1x/2) with κ1 = 1.5 = κ2/3) is used as the initial condition (see the text for
further parameter details). The solution appears to be dynamically stable and sustains only a small-amplitude
oscillation.
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Figure 5. Same as Figure 1, but for a 4 : 1 resonance with respect to the primary sublattice. The solution
described in the text (R = 0.691 cos(κ1x/4) + 0.518 sin(κ1x/4) with κ1 = 2.5 = κ2/3) is used as the initial
condition (see the text for further parameter details). While structurally stable, the solution pattern appears to
be a wriggling one, indicating a spatio-temporal breathing.

With κ1 = 2.5, there is a center for the 4:1 resonance with respect to the primary sublattice
at (Rc, Sc) ≈ (0.691, 0.324), so (recalling the chain rule) one uses R = 0.691 cos(κ1x/4) +
0.518 sin(κ1x/4) as an initial wavefunction in simulations of (3). The results with κ2 = 3κ1

and V2 = 2 are shown in Figure 5. We observe a wriggling pattern in the contour plot (in the
left panel), which indicates (structurally stable) spatio-temporally oscillatory behavior of the
condensate.

With κ1 = 3.8, there is a center for the 6:1 resonance with respect to the primary sublattice
at Rc ≈ 0.859 and Sc = 0, so one uses R = 0.859 cos(κ1x/6) as an initial wavefunction in
simulations of (3). We observe that this period-multiplied state is stable with small-amplitude
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oscillations, as was the case for 2 :1 resonances. At the same value of κ1, there is a center for
the 8 :1 resonance with respect to the primary sublattice at Rc ≈ 0.9354 and Sc ≈ 0.0718, so
one uses R = 0.9354 cos(κ1x/8)+0.151 sin(κ1x/8) as an initial wavefunction. As was the case
for 4 : 1 resonances, PDE simulations reveal structurally stable spatio-temporally oscillatory
behavior of the condensate (shown for 4:1 resonances as a wriggling pattern in the left panel of
Figure 5). This difference between “odd” and “even” subharmonic resonances arises from the
fact that the former contain centers on the R-axis, whereas the latter do not. The resulting
initial conditions in the even case hence require both sine and cosine harmonics, resulting in
the observed spatio-temporal breathing.

From a more general standpoint, resonance bands emerge from resonant KAM tori at
action values P∗ that satisfy a (three-term) resonance relation with respect to both sublattices
[60, 61],

n1
κ1√
δ

+ n2
κ2√
δ

= 2nΩ(P∗) ,(71)

where n, n1, and n2 all take integer values. The single-sublattice resonance relation (64) is a
special case of (71).

5. Conclusions. In this work, we analyzed spatially extended coherent structure solutions
of the Gross–Pitaevskii (GP) equation in optical superlattices describing the dynamics of
cigar-shaped Bose–Einstein condensates (BECs) in such potentials. To do this, we derived
amplitude equations governing the evolution of spatially modulated states of the BEC. We used
second-order multiple scale perturbation theory to study spatial harmonic resonances with
respect to a single sublattice, as well as additive and subtractive ultrasubharmonic resonances.
Harmonic resonances are a second-order effect that can occur in regular periodic lattices, but
ultrasubharmonic resonances can occur only in superlattice potentials, as they arise from the
interaction of multiple lattice substructures. In each situation, we determined the resulting
dynamical equilibria, which represent spatially periodic solutions, and examined the stability
of these corresponding solutions via direct simulations of the GP equation. In every case
considered, the solutions (nonresonant, resonant with a single sublattice, and resonant due
to interactions with both sublattices) were found numerically to be dynamically stable under
time-evolution of the GP equation. Finally, we used Hamiltonian perturbation theory to
construct subharmonically resonant solutions, whose spatio-temporal dynamics we illustrated
numerically in a number of prototypical cases.
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