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Abstrad. We consider the ril.dially vibrating spherical quantum billiard as a rep­
resentative example or vibrating quantum billiuds. We derive n�ry wnditions 
for quantum chaos in a·term superposition StMes. These umditions arc symmetry 
relatious corresponding to the relative quantum numbers of eigenStates considered 
pairwise. In this discussion, we give special atlcntion to ('igcMtate� with null an· 
gular momentum (for whkh the aforementioned I:onditions arc automatically satis· 
fied). \Vhen these necessary I:ondjtions are met, we observe numcl'il:ally thM there 
always exist parameter values (or wbich the billiard behavelJ I:haotically. We (ocus 
our numerica1 studiea on the ground iLIld first excited states of the radiaJly vibrating 
spherical Quantum billiard with null angular momentum eige.nnates. We observe 
I:baotic behavior ill this configuratIon and then=by dispel the common belie( that on6 
must pass to the semiclassical (11 --+ 0) or high quantum number limits in order to 
meaningfully discuss quantum chaos. The results in the present paper arc also or 
pra.<:tical import, iI.'l the ril.dially vibrating spherical quantum billiard may be used 
as a model for the quantum dot nanostrUl:ture, the Fermi a.<:celerating sphere, and 
imra·nudear pATtide behavior, 

L introduction. There has been considerable research in the last twenty years 
that seeks to marry quantum mechanics and dynamical systems theory into a coher­
ent whole.[4, 6J In par�icular, the concept of quantum chaos extends tbe notions of 
classical Hamiltonian chaos to the quantum regime. There are three types of quan­
tum chaotic behavior: <Cquantized chaos" ("quantum chaology"), "semiquantum 
chaos," and genuine "quantum chaos,n Quantum chaology concerns the quantum 
structure of c1assica1ly chaotic systems, semiquantum chaos refers to the chaotic 
dynamics of coupled classical and quantum systems, and genuine quantum chaos 
refers to chaotic dynamics of fully quantum systems.[3J No example of the third 
type of quantum chaos has been established, so the existence of such systems is an 
open question. 

III the present paper, we discuss semiquantum chaos in Ule context of vibrating 
billiard systems, We review the recent results of Liboff' and Porter[9J and discuss 
them in further detail. We treat a tw�term Gal&ki n projection (supel'position 
state) of the radially vibrating sphere and prove that only 2·tcrm superpositions 
whose normal modes have common rotational symmetry behave chaotica.Jly, We 
extend this theorem to arbitrary superposition states by applying it pairwise. In 
the proof of this theorem, we establish integrable (non-chaotic) behavior by showing 
that the evolution equations reduce to a tw�dimensional autonomous dynamical 
system, whose non-chaotic properties are knowD.{12] We then discuss two examples: 
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one integrable superposition and one chaotic onc. We compute Poincare maps and 
thereby reveal chaotic characteristics such as regions of ergodicity and KAM islands. 

We also discuss the present results with respect to the phenomenology of quan­
tum chaos. The chaotic behavior in the radius a and conjugate momentum P 
corresponds to classical Hamiltonian chaos. The normal modes Wnlm depend on 
the radius, so they exhibi� Quantum-mechanical wave chaos. We also observe chaos 
in the Bloch variables (x,y, z), which correspond to quantum-mechanical probabil­
ities. The dynamical equations describing the present system correspond to a two 
degree-of-freedom (do/) Hamiltonian system, where one degree-of-freedom is classi­
cal (corresponding to the so-called one "degree-of-vibration" (dov) radial motion) 
and one is quantum-mechanical (corresponding to the coupling coefficient p.). By 
coupling a single classical do! (which is necessarily integrable) with a single quan­
tum do! (which must also be integrable), we obtain a genuinely chaotic system that 
provides an example of semiquantum chaos since it consists of a classical system 
coupled to a quantum one. We remark that we do not need to pass to the semi­
classical (Ii --+ O) or high quantum number limits in order to observe chaos, as is 
commonly considered requisite for a meaningful analysis of quantum chaos.[6] 

The radially vibrating spherical quantum billiard has several practical applica.­
tions that complement its theoretical import. The most important one is that it 
may be used as a model for the quantum dot nanostructure.[lO} At low tempera­
tures, this microdevice component experiences vibrations due to zero-point motions, 
and at higher temperatures, it exhibits vibrations due to natural fluctuations. An­
other application is t.hat the radially vibrating spherical quant.um billiard generalizes 
Fermi's "bounCing-ball model" of cosmic ray acceleration.[l] Additionally, the radi­
ally vibrating spherical quantum billiard models the intradynamics of the nucleus, 
as the 'liquid drop' and 'collective' models of the nucleus include boundary vibra­
tions. Consequently, the importance of the radially vibrating spherical quantum 
billiard lies not only in its e.xpansion of tbe theory of quantum chaos but also in its 
applicability to problems in nuclear, atomic, and mesoscopic physics. 

2. Statement o f  the Problem. The spherical quantum billiard addresses the 
quantum dynamics of a particle of mass rno confined to the interior of a spherical 
cavity of mass M » rno with smooth walJs of radius a. The radius vibrates in an a 
priori unspecified manner, 50 that a == a(t). A tv."O-component superposition state 
(Galerkin projection) of this quantum billiard is given using Dirac notation by 

1,,(,, 8, ¢,t; art))) = A,(t)lnlm, ,) + A,(t)ln'I'm', ,), ( 1) 

where At(t) and A2(t) are complex amplitudes. The numbers {n,l,m} are, re­
spectively, the principal, orbital, and azimuthal quantum numbers. The eigen­
states of the present system are products of spherical Bessel functions and spherical 
harmonics.18] In coordinate representation, 

where :tIn is the ntb zero o[ jl, the spherical Bessel [unction of order l. 
For the system at hand, the time-dependent Schrooinger equation is given by 

ilia1/; = Kt/J, r :5 a(t), 8t (3) 
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where the quantum-mechanical Hamiltonian K, the kinetic energy of t.he particle, 
is 

The total Hamiltonian of the system is 
p' 

H = 2M + V + [" 

(4) 

(5) 

where P is the momentum of the billiard boundary, and V :: V(a) is the potential 
of lhe billiard surface. The potential energy V and kinetic energy p2/2M of the bil­
liard waUs arc classical quantities, and the confined particle is quantum·mcchanical. 
For this semiquantUln system, we utilize the Born-Oppenheimer npproximation[2j, 
so that only the particle kinetic ellergy J( is inserted into the Schrooinger equa.­
tion (3). In this adiabatic approximation, which is commonly used ill mesoscopic 
physics, we arc ignoring the effects of Berry phase.ll3] 

Taking the expectation of (3) using the superposition state (1) gives 

( I h' , ) 1 [ , 'J 'I/J - 2rno \l 1/J  ::: 02 fllAd + l':2IA21- :=: K(A1, A:z,a), 

i1� \ VI I �� ) ::: iii [AlAi + A2A; + v_I I IAd:Z + V,2Al Ai + V21 A2Ai + VJ2 IA:z12) , 
(6) 

where the energies of the two terms are given by 

(7) 

3. lntegrable Configuration. Examining the superposition of 1 100) and 1110) 
using (6) and orthogonality of spherical harmonics shows that V,I = £112 = "21 = 
1122 ::: O. (Note that VII and £In vanish no mattcr which cigenstates one conSiders.) 
Equating the inner products (6) of both sides of the Schrodinger equation gives 
equations of motion for the complex amplit.udes: 

. 1 .;:AI ::: lia2 flAI ' 
which are integrated to yield 

Al (t) = Cl exp [_ i�1 / a-2{t)dtJ , 

(8) 

(9) 

From (9) , OIlC obt.ains a Hamilt.onian in the radius a and conjusate momentum P: 
p2 p2 1 

11 = 
2M + [( A" A" a) + F(a) = 

2M + a' ['dCd' + "IC,I'J + V(o). (10) 

A. Hamiltonian with no explicit t.ime-depende.llce and one dol corresponds to a twO­
dimensional autonomous system, which is known to be non-chaotic.[5, 12) When 
thcre are no coupling terms, the degree-of-freedom of the resulting Hamiltonian 
corresponds to the degree-of-vibration of the quantum billiard, which is a measure 
or the number of distance dimensions that undergo oscillations. When a two-term 
superposition has a non-vanishing (;oupling (;ocfficient. the number of degrees-of­

freedom of the resulting Hamiltonian system is equal to the number of dOl) of the 
billiard plus one. In parLicwar, this means that a superposition state of a quantum 
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billiard with more than one dov (such as the two dotJ rectangular quantum billiard) is 
e.'Cpected to behave chaotically even if every one of its coupling coefficients vanishes. 

Hamilton's equations for the present integrable configuration are 

. P 8H . 8V ,\ 8H 
( ) a = M == 8P' P = 

- ()a + a3 == - 80. I 

11 

where the energy parameter ). is given by 

(12) 

The bifurcation structure of (11)  has been studied for quartic potent.ials \I(a).[I1] 

4. Necessary Conditions for Chaos in k Coupled States. Consider the su­
perposition 

(13) 

where qi == (nj, l" mil is a vector of Quantum uumbers. If there does not exist a pair 
of normal modes in the k-state superposition (13) with common angular moment.um 
quantum numbers (i.e., there is no pair {i,i'} such that li = li' and tn; = m.,), then 
inserting ( 13) into the Schrodinger equation (3) returns a diagonal quadratic form 

. .
• 2 2 AlAi + . . .  + AkA,t = /lldAd + . . . + /lUIAkl , (14) 

as all the cross terms /I;jAiAj have vanishing coupling coefficients /lij by orthogo­
nality of spherical harmonics with different angular momenta. The diagonal terms 
in (14) stem from the Laplacian. As above, we obtain the Hamiltonian 

p2 1 /0 
Jl(a, P)  = 2M + 0.2 ·�::>;ICd2 + V(a), 

.=1 

(15) 

where the C; are const.ants. The superposition (l3) is non-chaotic, because the 
Hamiltonian (15) is autonomous with one dol 

We thus conclude that a necessary condition for chaotic behavior in an arbitrary 
finite superposition state of the radially vibrating spherical quantum billiard is that 
at least one pair of normal modes in  the eigenfunction expansion have common 
angular momentum quantum numbers. In particular, by considering small n; and 
ni', we obtain a chaotic superposition for eigenstatcs with small energies. This even 
holds for some superpositions that include the ground state! In most studies of 
quantum chaos, one must take the semiclassical (fl ----+ 0) or high quantum-number 
limits in order to meaningfully study quantum chaos.[3, 6] In such studies, termed 
"quantum chaology," one considers the quantum signatures of classically chaotic 
systems in these regimes. In the present system, on the other hand, we obtain 
genuinely chaotic behavior in a. semiquantum system. This phenomenon is often 
called "semiquantum chaos." [3J 

5. Chaotic Configuration. As an example of a chaotic configuration of the radi­
ally vibrating spherical quantum billiard, consider the superposition state consisting 
of the ground and first excited states with null angular momentum 

I",(n, l,m)) = AdIOO) + A,1200), (16) 

which gives the wavefullction 

Ij;(T, t) = A I (t)ctlV;1 (T, t)e-i ¥ + A2 (t)02'¢'2 (r, t)e -.¥ , (17) 
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where 

I ( ) . (n") Ill" r,t = JQ a(t) , . ( ) 
"�nix) 

.10 x = --, x 
The superposition (16) has a coupling coefficient 1.1 :=: JJl2 = 4/3. 

Equating coefficients in t,he quadratic form (6) gives the matrix equatioll 
2 

iAn = L D,dAb 
.1:=1 

where D == (Dij) is the Hermitian matrix 

D =  (;I;. 
iJl� 

and the energy coefficient t.j is given by 

_ 
(j�h)2 

', - -­- 2mo ' 

. '
) -11-'4 

-8 ' ,. 

j E ( 1 , 2).  

(18) 

(19) 

(20) 

(21) 

Defining the density matrix[8] by pqn = Aq.'\�, introducing (dimensionless) Bloch 
variables x ;; Pl2 + P'll, y == i(P':!t - P12), and z == P22 - PIl, and using (19), we 
obtain the following t.hree differential equations: 

. WoY 2pPz . wax . 211Px x = -� - Ma ' y = (l'l ' Z = Ma ' 
(22) 

In these equations, Wo == (t.2 - tl)/Ii. Rewriting the kinetic energy K(AhA2,a) in 
terms of the Bloch variable .z gives 

1 
[((:,a) = 2{t.+ + u_), a 

Inserting K(z, a) int.o the Hamiltonian (5) gives Hamilton's equations: 

(23) 

. p . av 2 a = ,,4' P = - aa + a, {4 + '-(X - "x)j . (24) 

Equations (22) and (24) constitute a set of five coupled nonlinear ordinary differ­
ential equations, which can be shown to be equivalent to a two degree-of-freedom 
Hamiltonian system. The constants of motion of the present system are the radius 
of tbe Bloch sphere 

x:l + y2 + z2 := IAl12 + IAzl2 = 1 

and the energy (total Hamiltonian) 
p2 

H = 2M + Via) + K(.,.). 

(25) 

(26) 

The equilibria of equations (22, 24) satis£y x = II = 0, Z = ±1, P = 0, and a = Q:b 
where Q± satisfies the equation 

av 2 

-a 
= ,« + ± .-

) , (27) a a 
where the subscript of Q± corresponds to the sign of z = ± l .  Assuming that 
V(a) + K(z, a) has a. single minimum ill n, t.hese equilibria are elliptic.{!), 1 1] (That 
is, every eigenvalue of the Jacobian of the linearh.cd system is purely imaginary.) 
For the harmonic potential 

(28) 
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the total energy of the billiard's boundary is given by 

Vo 2 f+ + U V(a) + K(a) � ,(a - ao) + , (29) ao a 
With this choice of potential, equation (27) becomes 

a�f± a - ao = -v. , .  
oa (30) 

The solutions of (30) for the equilibrium radii a± correspond to the f± values. Qne 
computes that a+ 2: a_ � Cia, from which it follows that a_ � a{O) $ C4, so a{t) 
remains bounded in the interval [a_,a+J.[9] 

Now consider the superposition of the first k null angular momentum eigenstates, 

, 
,p1'I(r) � I >.(t)".".(r, t). (31) 

.. =1 

In order to analyze this configuration, one first examines the 2-term superposition 

(32) 

and then superposes the couplings one obtains from each 1/;"Q as n and q run from 1 
to k in order to obtain dynamical equations for the amplitudes Ai. One computes 
the coupling coefficients Jl .. , to be 

2 
qn " (33) �". � a(t)(n + q)(q n) ' n q. 

The dynamical equations for Ai are described by a k x k matrix and are a straight­
forward generalization of (19, 20). 

5.1. Numerical simulations. The analysis for 2-terrn superpositions of null an­
gular momentum eigenstates follows that for the general case.(9] In the present case, 
the necessary conditions for chaotic behavior are satisfied automatically, because the 
quantum numbers m and I vanish for every normal mode under consideration. Can· 
sequently, any k·term superposition (k � 2) of null angular momentum eigenstates 
exhibits chaotic behavior. We consider numerical simulations for the coupling of the 
ground state and first excited state of a billiard residing in a harmonic potential. 

--

FICURE 1.  Poincare Section (x = 0) in the (el! F)-plane illustrating 
that not all invariant tori are destroyed in the present configruation. 

Figure 1 shows a Poincare map in the (a, P)-plane corresponding to x = 0, and 
Figure 2 shows a Poincare section projected onto the (.,y)-plane for P = O. For 
each of these two plots, we used the parameter values Ii = 1 ,  M = 10, m = 1, 
Vo/a� = 5, and ao = 1.25. The initial conditions for the two figures are x(O) = 
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.-.-

FIGURE 2 .  PoincareSe<;tion (P = 0) of the Bloch sphere projected 
onto the (x,y)-plane. The structure in this diagram likewise iIIus­
trut.cs the survival of some inv<lriant tori. 

sin(O.95r.) � 0.1564341 y(O) = 0, z(O) = cos(0.9571") R;: -0.987688, 0(0) ::::: 1.6, and 
P{O) � 9.45. 

--

.!---==----o,� 
FIGURE 3. Poincare Section (x = 0) in the (at P)-plane for slightly 
different initial conditions in which fewer invariant tori persist. 
This is in accord with «AM theory. 

The chaotic behavior of this configuration i� c.vident in both plots, aJt,hough t.here 
is clearly still some DOll-chaotic structure present. rn the language of KAM theory, 
some of the nonresonant tori persist for the present choice of initial conditions!5, 
12J. One may also choose initial conditions concsponding to a different level of 
persistence of the resonant. tori. For example, Figure 3 shows an z = 0 Poincare 
map in the (0, P)-plane with the same initial conditions and paramct.er values as 
above, except a(O) = 3 And P(O) = 10. Figure 4 shows a P = 0 Poincare map in the 
(xty)-planc for these conditions. There are fcwer invariant tori in these t.wo figures 
tha.n there are in Figures 1-2. 

6. Phenomenology. III contrast to the present quantum-mechanical context, we 
note t.hat for the classical radially vibrat. ing spherical billiard, every orbit with 
lIull angulal' moment,um is well-defined and invariant under radial oscillat.ions of 
the boundary.[7! Due to conservation of angular momentum, one finds that for 
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--

FIGURE 4. Poincare Section (P = 0) of t.he Bloch sphere projected 
onto t.he (x, y)-plane. The initial condit.ions in this plot are the 
same as those in Figure 3. 

the stationary spherical classical billiard, the enclosed particle sweeps out an an­
nular domain of const.ant inner radius.(9] Vibration of the wall of the sphere de­
stroys t.his constant, and chaotic motion is expected to develop. In the present 
quantum-mechanical context, we note that null angular momentum wavcfunctions 
are composed only of spherical waves. The nodal surfaces of these wavefunctions are 
likewise sphericaL Accordingly, the chaotic signature of this configuration in real 
space is the 5e(luence of intersections wit.h a fixed radius that nodal surfaces make 
at any instant subsequent to a number of transversal times.19J This latter condition 
is consistent with the standard long-time behavior of chaotic dynamical systems.[6] 

ill the language of Blumel and Reinhardt[3], vibra.ting quantum billiards are an 
example of semiquantum chaos. One has a classical system (the walls of the bil­
liard) coupled to a quantum-mechanical one (the enclosed particle). Considered 
individually, each of these subsystems is integrable, as each contributes a single 
dol When they are coupled, however, one observes chaotic behavior in both of 
them. The classical variables (11, P) e..'\:hibit Hamiltonian chaos, whereas the quan­
tum subsystem (x,y,z) is truly quantum chaotic. Chaos on the Bloch sphere is 
an example of quantum chaos because the Bloch variables (x, V, z) correspond to 
the quantum probabilities of the wavefunctiOll. Additionally, each individual nor­
mal mode 1/11'1 depends on the radius a(t), so each eigenfunction is an example of 
quantum-mechanical wave chaos for cl1aotic configurations of the billiard. More­
over, because the evolution of the probabilities IAd2 is chaotic, the wavefullction 
1/J in the present configuration is a chaotic combination of chaotic normal modes. 
Finally, we note that if we quantize the motion of the billiard walls, we would ob­
tain a higher-dimensional, fully-quantized system that exhibits so-caJled quantized 
chaos.[3} In particular, the fully quantized version of the present system would re­
quire passage to the semiclassical limit in order to observe quantum signatures of 
classical chaos. 

7. Conclusions. We considered the radially vibrating spherical quantum billiard 
as a representative example of vibrating quantum billiards. We derived necessary 
conditions for quantum chaos in k-term superposition states. We gave special at­
tention to cigenstatcs with null angular momentum, for which these conditions are 
automatically satisfied. We examined a numerical simulation of the superposition 
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of the ground and first null angular momentum excited states. We observed chaotic 
behavior in this configuration, thereby dispelling the common belief that one is 
required to pass to the semiclassical (n � 0) or high quantum number limits in 
order to meaningfully study quantum chaos. 
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