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Abstract

Network science is an interdisciplinary academic field that has applications in many
disciplines including sociology, biology, economics, operations research, and com-
puter science. ‘Multilayer’ networks allow multiple types of relationships to be repre-
sented in modelling. Recently, there have been some efforts to generalise ‘centrality’
measures—indicators that quantify the importance of nodes in a network—in order
that they are also applicable in multilayer networks.

In this report, we put forward a proposition that enables existing tools for central-
ity measures defined by random walks in undirected multilayer networks with edge
weights to be directly applicable to undirected multilayer networks with both non-
negative edge weights and nonnegative node weights. We then give detailed deriva-
tions and proofs for two approaches to calculating random-walk occupation centrality,
PageRank centrality, random-walk betweenness centrality and random-walk closeness
centrality in multilayer networks with edge weights. One approach exploits the multi-
layer structure and the other generalises centrality measures directly from monoplex
(i.e. single-layer) networks. We compare the two methods by ranking economies in
the international trade system and through general numerical simulations.
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1 Introduction

A network is a set of items (called nodes or vertices) with connections (called edges
or links) between them. Many scientifically interesting systems consist of individual
components joined together in some way, and networks are an abstract means of rep-
resenting patterns of connections between components [28]. One of the most famous
and best studied examples of a network is the Internet, a net in which the nodes
are computers and the edges are wires between them [12]. Understanding the pat-
tern of connections between components is essential to studying and controlling the
behaviour of a system [28]. For example, the structure of the Internet affects how
data is transmitted between computers over the Internet and the efficiency of such
process [28].

The study of networks uses ideas from graph theory, and network theory has
become an important vehicle for studying the pattern of connections between compo-
nents in social, biological, physical, information, and engineering sciences [3, 5, 24, 28].
The earliest studies of networks generally simplified systems as ordinary graphs in
which edges are static and unweighted and a pair of nodes are usually linked by at
most one edge [28]. Such simplification may fail to capture some important features
of real-world networks and possibily lead to misleading results [4]. The last decade
has witnessed an increasing amount of papers studying networks whose structures
are irregular, complex and dynamically dependent on time with attention shifting
from research on small networks to that on large-scale networks [5]. In particular,
multilayer networks have recently attracted rapidly growing interest and research
because they allow multiple types of interactions between each pair of nodes to be
considered [24]. One natural context for the application of multilayer networks is in
social sciences. For example, two Oxford students may have several different types
of relationships: friendship, being from the same College, studying the same degree,
membership of the same sports club, and so on. More examples of using multilayer
networks to describe real-life phenomena can be found in the review article [24].

Centrality, a measure of the importance of nodes in a network, comes from the
discipline of social network analysis and has become a fundamental concept in net-
work science with applications in a range of disciplines [6, 28]. One of the best
known examples of centrality is PageRank proposed by Page et al. [30], which uses
the hyperlink structure of the World Wide Web to rank web pages by their over-
all relative importance. Centrality has also been applied to understand employment
opportunities [17], status in monkey-grooming networks [33, 34], differential growth
rates among medieval cities [31], political integration in the context of the diver-
sity of Indian social life [7], and much more. Several methods have been adopted in
the development of various centrality measures, including degree centrality, random-
walk occupation centrality, betweenness, closeness, eigenvector centrality, PageRank,
information centrality, Katz centrality, hyperlink-induced topic search (HITS) cen-
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7

trality, and the rush index, with some defined according to the topological structure
of a network and some using dynamical processes. In particular, random walks have
often been a popular vehicle to define centrality measures in monoplex networks (i.e.
networks that have only one type of edges) because it is a simple dynamical process
that abstracts numerous real-world phenomena and can be used to approximate other
diffusion processes [11]. We give the definitions of random-walk occupation centrality,
PageRank, random-walk betweenness centrality and random-walk closeness centrality
in monoplex networks in Chapter 2 and study these centrality measures in weighted
undirected multilayer networks in Chapter 3.

There has been considerable effort to generalise familiar tools from monoplex
networks to multilayer networks; this includes studying centrality measures in the
context of multilayer networks [4, 8, 10, 11, 13, 18, 24, 36]. Multilayer structures can
have important effects on centrality measures, and ignoring multilayer structures can
lead to different ranking results than what one obtains for multilayer networks [11].
For example, Figure 1.1 illustrates that the inter-layer edges of a multilayer network
can have significant effect on random walks and thus on centrality measures defined
using random-walk processes [10]. Generalising centrality measures from monoplex
networks to multilayer networks is not trivial [11]. When ranking nodes in a multilayer
network, the key question to be addressed is how one should take into consideration
all the different types of edges, not all of which have the same importance [36].

Figure 1.1: Schematic of a random walk (the red dotted path) in a multilayer network.
At each step, a random walker can either follow an intra-layer edge (a solid line) or
an inter-layer edge (a grey dashed line). The multilayer structure allows a random
walker to move between nodes that are adjacent in one layer but not in another. The
figure is inspired by [11].

To the best of our knowledge, the vast majority of existing papers that study
centrality measures concern only the cases where the diversity of edge properties is
described by assigning different edge weights, whereas possible heterogeneity of node
properties is often neglected. Particularly, in the context of multilayer networks,
all of the research so far has been limited to multilayer networks whose nodes are
indistinguishable except by the properties of their incident edges.

Real-world networks often possess properties that are natural to be represented
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through their nodes instead of edges. For example, one straightforward way to rank
economies in the world by their economic influence is to view the international trade
system as a monoplex network in which economies are represented as nodes and
trading values between pairs of economies give the edge weights. However, a country
that is important in international trade for one commodity may be insignificant for
another. Hence, it is natural to analyse the international trade system as a multilayer
network where commodity categories are taken as layers. Another important index for
ranking economies is Gross Domestic Product (GDP) per capita, which is natural to
be incorporated as a property of the nodes instead of that of the edges. Reference [19]
ranked economies by fitting the international trade system to an undirected monoplex
network with GDP as node weights and acknowledged that adding edge weights would
be a much more realistic model. We propose to model the international trade system
as an undirected multilayer network as just described and, in addition, incorporate
GDP per capita as node weights. We discuss the details and results of this example
in Chapter 4.

The remainder of the report is organised as follows. Chapter 2 introduces some
important definitions and methods for studying multilayer networks. Chapter 3 first
proposes a method that enables existing tools for centrality measures defined by
random walks in undirected multilayer networks with edge weights to be directly
applicable to undirected multilayer networks with both nonnegative edge weights and
nonnegative node weights. We then use two methods [11, 29] to study random-walk
occupation centrality, PageRank, random-walk betweenness centrality and random-
walk closeness centrality in undirected multilayer networks with edge weights, and give
detailed derivations and proofs that are only partially included in the original papers.
In Chapter 4, we use the two methods discussed in Chapter 3 to rank economies
in the international trade system in 2000, and compare the ranking results with the
ones obtained by modelling the trade system as a monoplex network. In Chapter 5,
we perform computer simulations for multiplex networks, and compare the ranking
results.



2 Preliminary information

2.1 Definitions

We introduce the following concepts, following [24].

Definition 1. A graph G is an ordered pair of sets (V,E), where V is a set of
nodes and E ⊆ V × V is a set of edges that connect pairs of nodes. A single-layer
network (also called a monoplex network) is a graph.

Definition 2. Two nodes are adjacent if there exists an edge between them. We
say that these two nodes are neighbours of each other and the edge is incident to each
of the nodes. The degree of a node is defined as the number of its neighbours.

Definition 3. Let V be a set of nodes as defined in a graph, and let layer L
be the set of the types of relationships between pairs of nodes. Define VM ⊆ V × L
as the subset that contains only the node-layer combinations such that a node-layer
tuple (v, l) ∈ VM if and only if v is present in layer l. Let EM ⊆ VM × VM be
the subset of edges between node-layers. A multilayer network M is a quadruplet
M = (VM , EM , V, L).

Definition 4. A multilayer network is a multiplex network if all layers contain
all nodes and all of the inter-layer edges are between nodes and their counterparts in
other layers. A multiplex network has categorical couplings if each node is adjacent
to all of its counterparts in all layers.

Remark. Definitions 3 and 4 are simplified versions that are commonly used in
research; more general definitions are given in [24]. We consider undirected multilayer
networks in this report.

Figures 2.1, 2.2, and 2.3 give examples of a multilayer network, a multiplex net-
work and a monoplex network respectively. In Figure 2.1, the multilayer network
M = (VM , EM , V, L) has the set of nodes V = {1, 2, 3, 4, 5}; three layers (A, B, and
C); and the set of node-layer tuples VM = {(1, A), (2, A), (3, A), (4, A), (1, B), (2, B),
(3, B), (4, B), (2, C), (3, C), (4, C), (5, C)} ⊆ V × L.

2.1.1 Tensor representations

The main benefits of studying multilayer networks using tensor algebra are two-fold:
it gives concise mathematical representation, and it leads to natural generalisations of
numerous network diagonostics from monoplex networks to multilayer networks [9].

For a finite n-dimensional space, we give the definition of tensors from [32]:
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10 CHAPTER 2. PRELIMINARY INFORMATION

Figure 2.1: An example of the most general type of multilayer network. Intra-layer
edges are represented by solid lines, and inter-layer edges by dashed lines. Note that
any pair of node-layer tuples can be connected by an intra-layer edge if they exist on
the same layer or by an inter-layer edge if they exist on different layers. The figure is
inspired by [24].

Figure 2.2: An example of a multiplex network. Intra-layer edges are represented by
solid lines, and inter-layer edges by dashed lines. Note that inter-layer edges can only
possibly exist between a node and its counterpart in a different layer. The figure is
inspired by [24].

Figure 2.3: An example of a monoplex network, which is the underlying graph of the
multilayer network in Figure 2.1. Intra-layer edges are represented by solid lines, and
inter-layer edges by dashed lines. The figure is inspired by [24].
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Definition 5. Suppose thatX is a mathematical or physical entity, which, when
it is associated with a basis, can be represented by a set of scalars X i1···ir

j1···js (called scalar
components). We call X as a tensor of type (r, s) if the scalar components of X obey
the tensor transformation law:

X i1···ir
j1···js = Si1h1 · · ·S

ir
hr
T k1j1 · · ·T

ks
js
X̃h1···hr
k1···ks , (2.1)

under a change of basis, where S
ip
hp

and T
iq
hq

are matrices for p ∈ {1 . . . r} and

q ∈ {1 . . . s}. The rank (or order) of X is r + s.

Scalars are 0th-order tensors. Vectors are 1st-order tensors. Linear maps are
2nd-order tensors.

Equation 2.1 adopts the Einstein notation: when an index is repeated in an ex-
pression, it implies summation of that expression over all the values of the index.
Thus, Equation 2.1 is equivalent to

X i1···ir
j1···js =

n∑
h1=1

· · ·
n∑

hr=1

n∑
k1=1

· · ·
n∑

ks=1

Si1h1 · · ·S
ir
hr
T k1j1 · · ·T

ks
js
X̃h1···hr
k1···ks . (2.2)

In the rest of the report, we do not specify bases for tensors because tensors exist
independently of any basis [22].

Consider a monoplex network with a set of N nodes V = {n1, . . . , nN}. For
k, l ∈ {1, . . . , N}, let wkl denote the intensity of the relationship (called the edge
weight) between node nk and node nl and let the set of 2nd-order tensors Ei

j(k, l)
represent the canonical basis for the space RN×N (i.e. all of the scalar components
of Ei

j(k, l) are 0 except for the (k, l) scalar component, which is 1). The adjacency
tensor of the monoplex network can then be written as

W i
j =

N∑
k,l=1

wklE
i
j(k, l). (2.3)

Adopting the convention proposed in [11], we denote nodes with Latin letters
and layers with Greek letters for clarity. Let Ci

j(γ, δ) be the inter-layer adjacency
tensor for edges between layers γ and δ, and let wkl(γ, δ) be the edge weight between
node-layers (k, γ) and (l, δ). We then have

Ci
j(γ, δ) =

N∑
k,l=1

wkl(γ, δ)E
i
j(k, l). (2.4)

Note that Ci
j(γ, γ) is the adjacency matrix for the layer γ. Let Eα

β (γ, δ) be the
canonical basis for the space RK×K , and let εiαjβ(k, l, γ, δ) ≡ Ei

j(k, l)E
α
β (γ, δ). Now we
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can derive the 4th-order tensor representation of a multilayer network of any type by

M iα
jβ =

K∑
γ,δ=1

Ci
j(γ, δ)E

α
β (γ, δ)

=
K∑

γ,δ=1

[
N∑

k,l=1

wkl(γ, δ)E
i
j(k, l)

]
Eα
β (γ, δ)

=
K∑

γ,δ=1

N∑
k,l=1

wkl(γ, δ)ε
iα
jβ(k, l, γ, δ),

(2.5)

In an undirected multilayer network, we have wkl(γ, δ) = wlk(δ, γ).

2.1.2 Supra-adjacency representations

A supra-adjacency matrix for a multilayer network M = (VM , EM , V, L) is the ad-
jacency matrix for the underlying graph GM = (VM , EM) of M [24]. Figure 2.4
gives an illustration of the supra-adjacency matrix for the the multilayer network in
Figure 2.1.

Figure 2.4: An illustration of the supra-adjacency matrix for the multilayer network
in Figure 2.1, which is also the adjacency matrix for the underlying graph in Figure
2.3. The three blocks on the main diagonal of the matrix correspond to intra-layer
adjacency matrices, and the off-diagonal blocks correspond to inter-layer adjacency
matrices. Suppose that the multilayer network in Figure 2.1 is unweighted, then
thered and green elements are 1, and the others are 0. The figure is inspired by [24].

Supra-adjacency matrices are better studied than tensors, and they are natural
for representing multilayer networks that do not contain all nodes in all layers [24].
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On the other side, supra-adjacency matrices can only be obtained by ‘flattening’
adjacency tensors of multilayer networks, which requires a lot of labelling to record
the order of layers if the multilayer network is large and we do not want to lose
this information after flattening [24]. We use adjacency tensors to study centrality
measures in multilayer networks in Chapter 3, and, we use supra-adjacency matrices
for doing computations in Chapters 4 and 5.

2.2 Random walks in multilayer networks

In this report, we consider discrete-time, finite-state random walks in multilayer net-
works without self-loops (that is, there is no edge that connects a node-layer to itself).
Let us first define some notation that we will need later.

Consider a multilayer network M = (VM , EM , V, L). Denote node i in layer α by
node-layer (i, α) and the edge weight between (i, α) and (j, β) by wij(α, β). Define
the node strength siα of (i, α) as the sum of the weights of all edges, including both
intra-layer and inter-layer edges, that are incident to (i, α) [9]. Let niα be the node
weight of (i, α), and let T iαjβ ∈ [0, 1] be the transition probability from (i, α) to (j, β).

2.2.1 Multilayer networks with edge weights

For multilayer networks with edge weights, Reference [11] uses random walks defined
by

T iαjβ =
wij(α, β)

max(siα, ε)
, (2.6)

where ε > 0 is a small constant, for example, ε ≡ min {wij(α, β) : (i, α), (j, β) ∈ VM}.
In other words, the transition probability is proportional to the edge weight between
the current node and its neighbour. Note that T iαjβ = 0 if (i, α) is isolated (that is,
wij(α, β) = 0 for all (j, β)). Let piα(t) ∈ [0, 1] be the probability of finding a random
walker at (i, α) at time t. Conditioning on the position of the random walker at time t,
we have

pjβ(t+ 1) =
∑

(i,α)∈VM

T iαjβ piα(t). (2.7)

Let πiα ≡ limt→∞ piα(t) be the asymptotic probability of finding a random walker
at (i, α) in the limit t → ∞. Note that the random walk that we just defined is
a time-homogeneous Markov chain. In other words, the transition matrix T is the
same after each step, so the k-step transition probability is the kth power T k of
T . Recall the following theorem from Part A Probability (Theorem 6.1 of lecture
notes by J. Martin, version of 23 December 2014): an irreducible Markov chain has
a unique stationary distribution if and only if the chain is positive recurrent. Thus,
πiα is well-defined if the random walk is irreducible and possitive recurrent. In this
case, we have πiα ∝ siα [28].
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We expect it to be true that the value of πiα tends to increase when (i, α) has
more incident edge weights, and/or more neighbours, and/or fewer second neighbours
(i.e. neighbours of neighbours).

2.2.2 Multilayer networks with node weights

For random walks in multilayer networks with node weights, we introduce the defini-
tion

T iαjβ =
niα + njβ

max(Niα, ε)
, (2.8)

where ε > 0 is a small constant and Niα =
∑

((i,α),(k,γ))∈EM (niα + nkγ). We expect it

to be true that the value of πiα tends to increase when (i, α) has higher node weight,
and/or more neighbours, and/or higher adjacent node weights, and/or fewer second
neighbours, and/or second neighbours with lower node weights.

2.2.3 Multilayer networks with both edge weights and node
weights

Let M be a multilayer network with both nonnegative edge weights and nonnegative
node weights. We want to define a random walk in M such that the transition
probability is proportional to some function fM : VM×VM → R≥0, where the subscript
M of fM indicates the dependence of the function on the multilayer structure, edge
weights, and node weights of M . We also want the value of πiα to tend to increase
when (i, α) has higher node weight, and/or more neighbours, and/or larger incident
edge weights, and/or higher adjacent node weights, and/or fewer second neighbours,
and/or second neighbours with lower node weights, .

In addition to the above conditions, we also require the function f to satisfy two
extra conditions: (i) ∂f

∂niα
≥ 0 and ∂f

∂wij(α,β)
≥ 0 for all (i, α),(j, β) ∈ VM ; and (ii)

f((i, α), (j, β)) = f((j, β), (i, α)).

Among all of the functions that satisfy these conditions, the simplest one is

f((i, α), (j, β)) = (niα + njβ)wij(α, β). (2.9)

We observe two additional benefits of using Equation 2.9 as detailed below.

First, the transition probability from (i, α) to (j, β) is

T iαjβ =
f((i, α), (j, β))

max(Fiα, ε)
, (2.10)

where ε is a small constant and Fiα =
∑

(k,γ)∈VM f((i, α), (k, γ)). Note addition-

ally that wik(α, γ) = 0 if (i, α) and (k, γ) are not adjacent to each other. Thus,
Equation 2.10 can be expanded to

T iαjβ =
(niα + njβ)wij(α, β)

max
{∑

(k,γ)∈VM (niα + nkγ)wik(α, γ), ε
} . (2.11)
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Equation 2.11 reduces to Equation 2.6 in multilayer networks without node weights
(i.e. when niα = njβ for all (i, α), (j, β) ∈ VM). Equation 2.11 is also consistent
with Equation 2.8 in multilayer networks without edge weights (i.e. when wij(α, β) =
wkl(γ, δ) for all (i, α), (j, β), (k, γ), (l, δ) ∈ VM).

Second, node weights and edge weights might differ considerably in magnitude,
and Equation 2.9 is the simplest form that allows node weights and edge weights to
have equal effect on ranking results.



3 Centralities in weighted multilayer net-
works

Having defined relevant concepts and random walks, we now propose and prove the
following proposition, which is an original contribution of the report that enables tools
for centrality measures defined by random walks in undirected multilayer networks
with edge weights to be directly applicable to undirected multilayer networks with
both nonnegative edge weights and nonnegative node weights.

Proposition 6. Consider a problem P: Let M = (VM , EM , V, L) be an undi-
rected multilayer network with both nonnegative edge weights and nonnegative node
weights; find a centrality measure defined by random walks in M , in which the tran-
sition probability is a function of both the edge weights and the node weights of
M . For every problem P, there exists an equivalent problem P′ that concerns only
undirected multilayer networks with edge weights and no node weights.

Proof. Consider an undirected multilayer network M = (VM , EM , V, L) with
nonnegative edge weights wij(α, β) and nonnegative node weights niα. Let M̂ =
(VM , EM , V, L) be an undirected multilayer network with edge weights defined by

ŵij(α, β) = fM((i, α), (j, β)), (3.1)

where fM : VM × VM → R≥0 is an appropriate function. By ‘appropriate’, we mean
that function f and the corresponding asymptotic probability πiα satisfy all of the
conditions discussed in Subsection 2.2.3.

Let ŝiα denote the strength of node-layer (i, α) in the multilayer network M̂ . The
transition probability of a random walker going from (i, α) to (j, β) in M̂ is then
given by

T̂ iαjβ =
ŵij(α, β)

max(ŝiα, ε)
. (3.2)

We have discussed in Subsection 2.2.3 that Equation 2.9 is consistent with the cases in
which multilayer networks have only edge weights or node weights, and that random
walks in M̂ are equivalent to those in M by the definition of function f . Hence
centrality measures defined by random walks in M̂ are equivalent to those defined
by random walks in M . �

This allows us to study centrality measures in undirected multilayer networks
that have edge weights but no node weights. We can then use Proposition 6 to study
undirected multilayer networks with both nonnegative edge weights and nonnegative
node weights.

In the rest of Chapter 3, we consider undirected multilayer networks M = (VM ,
EM , V, L) that have edge weights wij(α, β) and no self-loops. Suppose that the mul-
tilayer network M has K layers and that the maximum number of nodes on one

16



3.1. RANDOM-WALK OCCUPATION CENTRALITY 17

layer of M is N . Let M iα
jβ be a scalar component of the adjacency tensor of M (see

Equation 2.5). We adopt the Einstein notation in the rest of the chapter. Sections
3.1–3.4 are based on a 2013 paper by De Domenico et al. [11] unless stated otherwise.

3.1 Random-walk occupation centrality

Consider a classical random walker in a multilayer networkM such that, at each step,
the random walker only can move from one node to one of its neighbours via either
an intra-layer edge or an inter-layer edge. Additionally, the transition probability is
proportional to the edge weight between the current node and its neighbour.

Let T be the transition tensor with scalar components T iαjβ ∈ [0, 1] given in Equa-
tion 2.6, and let piα(t) ∈ [0, 1] be a scalar component of the time-dependent tensor that
gives the probability to find a random walker at (i, α). Define Πiα ≡ limt→∞ piα(t) as
the random-walk occupation centrality of (i, α).

Random-walk occupation centrality measures the asymptotic probability of find-
ing a random walker at a particular node-layer as time goes to infinity. The more
likely that we find a random walker at a node-layer, the more important the node-
layer is. Conditioning on the walker’s location at the previous time step t gives the
master equation

pjβ(t+ 1) = T iαjβ piα(t). (3.3)

The steady-state solution of Equation (3.3), Πiα, can be obtained by taking the
limit t→∞ first and then solving for Πiα in the equation

T iαjβΠiα = Πjβ. (3.4)

For the computations in Chapters 4 and 5, we adopted the tensor-flattening
method proposed by [11] to solve Equation 3.4. See Appendix A for details.

In order to write an explicit expression for T iαjβ , we need some more definitions.
Let uα and ujβ be scalar components of the 1-vector and the 1-matrix, respectively.

We then have siα = M jβ
iα ujβ. Define strength tensor as the 4th-order tensor with

scalar components given by

Diα
kγ =

{
siα, if i = k and α = γ,

0, otherwise.
(3.5)

Then the explicit expression for T iαjβ in tensor notation is

T iαjβ = Mkγ
jβ D̃

iα
kγ, (3.6)

where

D̃iα
kγ =

{
1/Diα

kγ, if Diα
kγ 6= 0,

0, if Diα
kγ = 0,

(3.7)

is a scalar component of the normalising tensor.

We claim that the flattened square rank-2 tensor (see Appendix A) of T is almost
a left-stochastic matrix and give the proof in Appendix B.
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As in Subsection 2.2.1, we have Πiα ∝ siα, when Πiα is well defined [28].

By aggregating the random-walk occupation centralities Πiα of node i across all
layers α, we get the aggregate random-walk occupation centrality of the node. Ref-
erence [11] claims that πi = Πiαu

α can be considered as the random-walk occupation
centrality for node i in M because each Πiα accounts for the whole multilayer struc-
ture.

3.2 PageRank centrality

Now consider a random walker that has probability r ∈ [0, 1) to behave like a classical
random walker as defined by Equation 2.6 and probability 1−r to ‘fly’ to any node in
the network randomly. The second action is called teleporting, and 1− r is known as
the teleportation rate. The teleportation rate often takes the value of 0.15 in research
for several reasons: iterative algorithms that approximate PageRank converge quickly
at this value; if the teleportation rate is too close to 0, the ranking of the important
nodes will be distored; and PageRank is more robust at larger teleportation rate [2].
More empirical results regarding the teleportation rate can be found in [16].

For the purpose of search ranking, the random teleportation process usually has a
uniform distribution; in other words, the probability for a random walker to teleport
to any node in the network is the same [2]. The corresponding transition tensor has
scalar components given by

Riα
jβ =

{
rT iαjβ + (1− r)/(NK), if (i, α) is not isolated,

1/(NK), if (i, α) is isolated.
(3.8)

Similar to random-walk occupation centrality, PageRank is the steady-state prob-
ability of the above random-walk process. Let Ωiα be the PageRank for (i, α), and it
then is a scalar component of the eigentensor of the transition tensor:

Riα
jβΩiα = Ωjβ (3.9)

Let Ω be the tensor with scalar components Ωiα, and let R be the tensor with
scalar components Riα

jβ. One way to solve for Ω is to flatten R to a rank-2 tensor
Rf with NK ×NK scalar components and then use the power iteration (see Part A
Numerical Analysis lecture notes by C. B. Macdonald, version of 9 February 2015) for
Rf . We discuss here the details that are not included in the lecture notes and [11].
Suppose that a nonnegative matrix A ∈ Rn×n is primitive; that is, there exists some
positive integer k such that the scalar components of Ak are all positive. By the
Perron-Frobenius Theorem [26], there exists a positive real eigenvalue λmax of A such
that all other eigenvalues of A satisfy |λ| ≤ λmax. Moreover, λmax has algebraic
(and hence geometric) multiplicity of 1, and has a strictly positive eigenvector. The
theorem also ensures that the largest absolute value of the eigenvalues of a stochastic
matrix is 1. We observe that Rf is a left-stochastic matrix. Thus, power iteration
for Rf guarantees an eigenvector Ωf of Rf , which corresponds to the eigenvalue 1.
Note that Ωf is the flattened 1st-order tensor of Ω.

Similar to the random-walk occupation centrality, the PageRank for i is ωi = Ωiαu
α.
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3.3 Random-walk betweenness centrality

Betweenness centrality measures the extent to which a node lies in paths between
other nodes [28]. Recall the classical random walker defined by Equation 2.6. Let
T[d] be the transition tensor with absorbing node d in all layers; in other words, a
random walker stops as soon as it hits node d in any layer. Tensor T[d] then has scalar
components1

(T[d])
iα
jβ =

{
0, if i = d,

T iαjβ , if i 6= d.
(3.10)

Given M random walks that start at node-layer (o, σ) and stop as soon as they
hit node [d], the expected number of times a random walk hits node-layer (j, β) is

(τ[d])
oσ
jβ = lim

M→∞

1

M

M∑
m=1

∞∑
t=0

zoσjβ (t,m), (3.11)

where zoσjβ (t,m) = 1 if walk m is at (j, β) at time t, and zoσjβ (t,m) = 0 otherwise.

The probability of being at (j, β) at time t, given that the walk starts at (o, σ), is

poσjβ(t) = lim
M→∞

1

M

M∑
m=1

zoσjβ (t,m). (3.12)

Let T[d] be the transition tensor with scalar components defined in Equation 3.10,
and let δ be the tensor with scalar components

δoσjβ =

{
1, if j = o = β = σ,
0, otherwise.

(3.13)

Substituting Equation 3.12 into Equation 3.11 gives the mean number of times the
random walker hits (j, β) regardless of the time step:

(τ[d])
oσ
jβ =

∞∑
t=0

poσjβ(t) =
∞∑
t=0

(T t
[d])

oσ
jβ =

[
(δ − T[d])

−1]oσ
jβ
, (3.14)

Averaging over all possible starting layers σ and aggregating the walks that pass
through node j in any layer gives

(τ[d])
o
j =

1

K
(τ[d])

oσ
jβu

βuσ. (3.15)

Finally, we obtain the random-walk betweenness centrality for j by averaging over
all possible origin nodes and absorbing nodes:

τj =
1

N(N − 1)

N∑
d=1

(τ[d])
o
juo. (3.16)

1The idea comes from [11], but we corrected a typographical error. Some papers define an
absorbing state as a state such that a random walker vanishes as soon as it hits the state. By
this definition, the corresponding transition tensor is not stochastic. Reference [11] proposes that
(T[d])

iα
jβ = 0 if j = d. However, we prove in Appendix B that (Tf )ij , the element in the jth row and

ith column of Tf , gives the probability for a random walker to jump from state i to state j. This
implies that, if d is an absorbing node, then the dth column of Tf should be 0.
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3.4 Random-walk closeness centrality

Closeness centrality measures the mean distance from a node to other nodes [28].
Consider an absorbing random walk as defined by Equation 3.10. Let

(p[d])
oσ
jβ(t) =

(
T t[d]
)oσ
jβ

(3.17)

denote the probability of visiting node-layer (j, β) after exactly t time steps, given
that the walk started at (o, σ) and will stop as soon as it hits node [d]. Let h be the
first passage time for [d]. Then the probability that the walker is absorbed in [d] no
later than time t is (

q[d]
)oσ

(h ≥ t) = uoσ −
(
T t[d]
)oσ
jβ
ujβ. (3.18)

Thus, the probability that the first-passage time for [d] is exactly t is(
q[d]
)oσ

(h = t) =
(
q[d]
)oσ

(h ≥ t)−
(
q[d]
)oσ

(h ≥ t− 1)

=
[
(T t−1[d] )− (T t[d])

]oσ
jβ
ujβ.

(3.19)

Hence, the mean first-passage time for a random walk that originates at (o, σ) and
ends at [d] is

(
H[d]

)oσ
=
∞∑
t=0

t
(
q[d]
)oσ

(h = t) =
[(
δ − T[d]

)−1]oσ
jβ
ujβ, (3.20)

where

δoσjβ =

{
1, if j = o = β = σ,
0, otherwise.

(3.21)

Averaging over all possible starting node-layers gives the average mean first-
passage time

h[d] =
1

NK
uoσ
(
H[d]

)oσ
+

1

N
π−1[d] , (3.22)

where π[d] is the occupation probability of node [d]. Reference [11] includes the term
1
N
π−1[d] in Equation 3.22 to account for the mean return time that is not considered

when using absorbing random walks, and defines 1/h[d] as the random-walk closeness
centrality of node [d].

3.5 A direct generalisation from monoplex networks

There are several ways to generalise centrality measures from monoplex networks to
multilayer networks. One possible way is to calculate a weighted sum of centrality
measures in each layer. Such an approach can be naive in comparison to deriving
centrality measures directly in a multilayer framework.

For simplicity, we consider layer-coupled multiplex networks; that is,

w((i, α), (i, β)) = w((j, α), (j, β)), (3.23)
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for all nodes i and j in any layers α and β [24].

Suppose that M is a multiplex network with exactly two layers α and β. Let i be
a node of M and suppose that node i has centrality measures Ciα and Ciβ in layers
α and β respectively. We define the aggregate centrality measure of node i in the
multiplex network M to be

1

2
Ciα +

1

2
Ciβ, (3.24)

which is simply the mean of the centrality measures of node i in the two layers.

Now consider a multiplex network M with exactly K layers. Let i be a node of
M and suppose that node i has a centrality measure of Ciζ in layer ζ. We define the
aggregate centrality measure of node i in the multiplex network M to be

K∑
ζ=1

wζ
W
Ciζ =

1

W

K∑
ζ=1

K∑
η=1
η 6=ζ

wζηCiζ . (3.25)

That is, we weight the centrality measure of node i in layer ζ by wζ/W , where wζη is
the coupling strength (i.e. the weight of the inter-layer edges) between layers ζ and
η and W =

∑K
ζ=1wζ is a normalising constant.



4 Ranking economies in international trade

In this chapter, we model the international trade system in the year 2000 as an undi-
rected multiplex network with edge weights and node weights, and rank economies
using the two approaches that we discussed in Chapter 3. We also needed to conduct
data cleaning for the purpose of the calculations. Additionally, for comparison, we
model the international trade system as a monoplex network by aggregating all of
the layers of the multiplex network. We then compare the ranking results obtained
from the three methods with the ranking result according to gross domestic product
(GDP) per capita. The Python code for this chapter is our original work except that
we used Multilayer Networks Library developed by M. Kivelä [23] to construct the
international trade multiplex network.

4.1 Model

We modelled the international trade system in the year 2000 as a multiplex network
with 177 nodes, 10 layers, and categorical couplings. Each node corresponds to an
economy that participates in international trade, and each layer is a commodity cat-
egory, which is according to the first digit (that is, the classification of the highest
level) of the 4-digit Standard International Trade Classification (SITC4, revision 2)
[14]. In each layer, the edge weight between a pair of nodes is the trade value (in
thousands of US dollars) between the two nodes for the corresponding commodity
category in 2000. The data of international trade values are from [14], and Table 4.1
gives part of the original data, showing the columns that are relevant to our model.
We specify the coupling strength of the multiplex network to be 40000, which is a
speculative value that is lower than the mean intra-layer edge weight of 157188. Each
node has the same node weight across all layers; this weight is the GDP per capita
(in current international dollars1) based on purchasing power parity (PPP2) of the
node in 2000. The data of GDP per capita are from [37], and Table 4.2 gives part of
the original data, showing the columns that are relevant to our model.

Figure 4.1 is the visualisation of the international trade multiplex network. For
the sake of readability, we do not show inter-layer edges in the plot.

I spent two days cleaning the two sets of data. First, the two sets of data adopted
different naming conventions for countries, so we changed the names in [37] to the
names given in [14] (see Appendix A of [14]). Second, for some areas, the two sets
of data grouped regions differently, so we grouped the economies according to the
method of [14] (see Appendices A and B of [14]). Third, [37] does not provide GDP

1An international dollar has the same purchasing power over GDP as the U.S. dollar has in the
United States [37].

2PPP GDP is gross domestic product converted to international dollars using purchasing power
parity rates [37].
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Importer Exporter SITC4 Value (thousands of US dollars)

Algeria South Africa 8745 124
Algeria Libya 5621 1631
Algeria Morocco 5417 1955
Algeria Morocco 5530 1189
Algeria Morocco 5911 139

Table 4.1: Part of the original data for international trade values [37], with columns
that are relevant to the international trade multiplex network.

Country name GDP per capita, PPP (current international dollars)

Aruba
Andorra

Afghanistan
Angola 2687.82983
Albania 4248.83626

Table 4.2: Part of the original data for GDP per capita based on PPP [14], with
columns that are relevant to the international trade multiplex network. The empty
cells are missing values.

per capita for some economies that are documented in [14], so we added the missing
values using the most reliable sources that we could find online.

We ranked the economies in the international trade network in 2000 according to
twelve centrality measures, which are given in Table 4.3. Let us use two examples to
explain our nomenclature: simRWOC is the random walk centrality measure calcu-
lated using the method in Section 3.5 and aggRWOC is the random walk centrality
measure of the aggregate monoplex network that is obtained by adding all the layers
of the multiplex network together.

4.2 Ranking results

Data that are in the top of a ranking tend to give more robust results than the
lower-ranked ones, so we give the top ten economies according to each centrality
measure in Figure 4.2. We observe that RWOC, simRWOC, aggRWOC, PageRank,
simPageRank, aggPageRank, simRWBC, and aggRWBC give similar ranking results.
Interestingly, two groups of centrality measures give exactly the same results: the first
group is RWOC, aggRWOC and aggRWBC, and the second group is simRWOC and
simRWBC. In addition, RWCC and its associated measures give similar results. In
particular, the ranking results given by RWCC and aggRWCC are very similar. The
ranking result given by RWBC is not similar to any of the other results, but is more
different from the ones given by RWCC and its related measures. For comparison,
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Figure 4.1: Visualisation of the international trade multiplex network (3 layers of the
10 layers) using the Multilayer Networks Library [23]. For the sake of readability, we
omit intra-layer edges with weights lower than 100000 as well as inter-layer edges.
Each cyan plate is a layer, and black dots represent nodes. Lines represent intra-
layer edges, with darker colour indicating larger edge weight. The figure exhibits the
heterogeneity of the network in each layer: the top layer has fewer edges with larger
weights than the other two layers, and nodes can have very different node strengths
in different layers.

Abbreviation Centrality measure

RWOC Random-walk occupation centrality
simRWOC Simple random-walk occupation centrality
aggRWOC Aggregate random-walk occupation centrality
PageRank PageRank centrality

simPageRank Simple PageRank centrality
aggPageRank Aggregate PageRank centrality

RWBC Random-walk betweenness centrality
simRWBC Simple random-walk betweenness centrality
aggRWBC Aggregate random-walk betweenness centrality

RWCC Random-walk closeness centrality
simRWCC Simple random-walk closeness centrality
aggRWCC Aggregate random-walk closeness centrality

Table 4.3: Centrality measures and their abbreviations.



4.2. RANKING RESULTS 25

we also include the top ten economies according to GDP per capita3 in Figure 4.2.
We observe that the ranking result given by GDP per capita are very different from
the ones given by our model.

Figure 4.2: Top ten countries according to the twelve centrality measures and GDP
per capita. For each ranking method, the country at the top gives the highest in im-
portance and the rank goes down as we move down the column. Due to limited space,
we represent Belgium–Luxembourg Economic Union by Belgium, and Switzerland–
Liechtenstein Economic Union by Switzerland. National flags in the legend are ar-
ranged in alphabetical order. All the pictures of national flags are from Wikipedia
and some are resized slightly.

In order to examine the level of similarity between each pair of centrality measures
with respect to all ranking results, we calculated Kendall’s tau-b coefficients for each
pair of the measures (see Figure 4.3).

Kendall’s tau coefficient is a measure of ordinal association between two variables,
and takes values between −1 and 1 [1]. A coefficient of 1 denotes that the two
variables rank data in exactly the same order, and a coefficient of −1 implies that the
two variables rank data in exactly the reverse order [1]. The tau-b statistic makes
adjustments for ties [1].

Figure 4.3 exhibits two blocks of patterns, within which we see more similarity than

3The data are originally from [37], but we used the ‘cleaned’ version as described in Section 4.1,
in order that the economies are grouped in the same way as in our model.
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compared with centrality measures that are not in the block. The first block is RWOC,
simRWOC, aggRWOC, simPageRank, aggPageRank, simRWBC, and aggRWBC. In-
terestingly, the Kendall tau-b coefficient for RWOC and aggRWOC is 1, which means
that the two centrality measures give exactly the same ranking order. This suggests
that the two measures are probably identical. There are three pairs of centrality
measures that give very similar but not exactly the same ranking orders, which are
RWOC–aggRWBC, simRWOC–simRWBC, and aggRWOC–aggRWBC. The second
block is RWCC and its related measures, within which RWCC and aggRWCC give
very similar but not exactly the same ranking orders.

Figure 4.3: Color representation of pairwise Kendall’s tau-b coefficients of the twelve
centrality measures for the international trade network. The figure is drawn using
the matplotlib library for Python developed by J. D. Hunter [21].



5 Simulations

In this chapter, we perform computer simulations for unweighted and weighted multi-
plex networks to expand and test the observations in Chapter 4 for the international
trade multiplex network. All the Python codes are original except that Subsection
5.2.4 used Multilayer Networks Library [23] to extract the edge weights and the node
weights of the international trade network.

We identify several cases where multiple centrality measures are very positively
correlated. This observation is important for two main reasons: first, when multi-
ple centrality measures are available to calculate, and give almost the same ranking
results, one can calculate the simplest measure for economy of computational cost;
second, in this case, if the research data collected has missing values, or some part
of the multilayer structure is corrupted, researchers can be more confident to use
the aggregated network in calculating centrality measures, as the aggregated network
should be closer to the aggregated real-world network and the ranking results should
be similar.

5.1 Random-graph ensembles

Random graphs are often used to test results that are obtained from real-world net-
works. We give the definition of a random graph from [28]:

Definition 7. A random graph is a model network in which some specific set of
parameters take fixed values, but the network is random in other aspects.

We conduct simulations using Erdős-RényiG(N, p) random-graph ensembles, which
are the most fundamental and widely studied of all random graph models [28]. An
Erdős-Rényi G(N, p) random graph is constructed by connecting N nodes randomly,
and each of the

(
N
2

)
possible edges is included in the graph with probability p (called

edge probability) independently of other edges.

Because the international trade multilayer network is a multiplex network with 177
nodes, 10 layers, and categorical couplings of uniform strength, we generate Erdős-
Rényi random multiplex networks that have 177 nodes, 10 layers, and categorical
couplings of uniform strength for all simulations. The aggregate intra-layer edge
probability for the international trade multilayer network is 0.24 accurate to two
decimal points, so we let p = 0.25 in Subsections 5.2.1–5.2.3. In Subsections 5.2.3 and
5.2.4, we also require that each node have the same node weight across layers, which
makes sense in many real-world examples of networks including the international
trade system.

For each simulation, we rank the nodes in the randomly-generated multiplex net-
work according to each of the twelve centrality measures.

27
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For PageRank and its associated centrality measures, we use the teleportation
rate of 0.15, the one that is often used in the literature [15].

5.2 Analysis of ranking results

We conduct simulations for four different cases: unweighted multiplex networks, mul-
tiplex networks with edge weights, multiplex networks with node weights, and multi-
plex networks with both edge weights and node weights.

5.2.1 Unweighted multiplex networks

First, we conduct 100 simulations using random multiplex networks that have no edge
weights or node weights.

Figure 5.1 shows that the distribution of sorted centrality values are very nar-
row and approximately symmetric for all centrality measures except RWCC and its
associated centrality measures. Although none of the plots look exactly the same,
the distributions of sorted values for RWOC, PageRank, RWBC, and their associated
centrality measures are more similar to each other in shape than those for RWCC
and its associated measures. We also observe that each of RWOC and PageRank
has more sorted centrality values in the middle than their associated measures. The
sorted values of RWCC and its associated centrality measures are much flatter and
more spread out than those of other centrality measures. This suggests that, as with
monoplex networks [28], closeness centrality does not distinguish node importance as
much as the other measures.

For each pair of centrality measures, we plot a scatter plot of the centrality values
of one measure against those of the other. The plots segment the centrality mea-
sures into three groups, within which we observe more similarity than compared with
centrality measures from a different group.

The first group is RWOC, PageRank, and their associated centrality measures.
Within the group, we observe almost perfect positive correlation between each pair
of centrality measures. The almost-perfect positive correlation between RWOC and
PageRank is reasonable, because, if the teleportation rate is small, PageRank can
then be understood as RWOC when teleportation is allowed during random walks.
Moreover, the almost-perfect positive correlation between RWOC and its associated
measures is reasonable because RWOC is equivalent to degree centrality in an un-
weighted multilayer network (see Section 3.1), and the contribution of inter-layer
edges to the degree of each node is the same in a multiplex network with categorical
couplings. The scatter plots within this group are very similar and we give an exam-
ple in Figure 5.2 (Subfigure (a)). In particular, we note that, the centrality values
given by RWOC and aggRWOC are not exactly the same, even though they give the
same ranking order. This suggest that the two measures are not identical quantities
but probably have related formulae.

The second group is simRWBC and aggRWBC, which are very positively corre-
lated with each other. The scatter plot for simRWBC and aggRWBC is similar to
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(a) of Figure 5.2.

The third group consists of RWCC and its associated centrality measures. Within
the group, simRWCC and aggRWCC are very positively correlated with each other
(the plot is similar to (a) of Figure 5.2), and they are also very positively correlated
with RWCC except for the largest centrality values (see (c) of Figure 5.2). This obser-
vation suggests that the multilayer structure also has a significant effect on RWCC,
especially for the most central nodes. Another noteworthy point is that RWCC and
its associated centrality measures are not correlated with other centrality measures
(see (d) of Figure 5.2 for an example). We calculate Kendall tau-b coefficients for
each pair of centrality measures, and the coefficients for RWCC (and its associated
measures) with other centrality measures lie between −0.1 and 0.1.

Interestingly, RWBC is not very correlated with any of the other centrality mea-
sures (see (b) of Figure 5.2 for an example). This suggests that, for this family of
graphs, RWBC depends more on the multilayer structure than RWOC and PageRank.
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Figure 5.1: Histograms of sorted values for centrality measures based on simulations
using random unweighted multiplex networks. The horizontal axes give sorted cen-
trality values and the vertical axes give normalised frequency. The figure is drawn
using the matplotlib library for Python [21].

5.2.2 Multiplex networks with edge weights

Second, we conduct 18 groups of simulations, with 100 simulations for each group,
using random multiplex networks that have edge weights. In this subsection, we
generate only random multiplex networks with uniform coupling strengths. For each
group of simulations, we tried a different inter-layer edge weight: 1, 10, 100, 200, 300,
400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 10000, and 19000. We draw
real-valued edge weights independently from the uniform distribution on [1, 38000].
The plots that correspond to each coupling strength show very similar patterns, so
we display the ones that correspond to the coupling strength of 400.

Figure 5.3 is similar to Figure 5.1. However, for each of RWOC, PageRank,
RWBC, and RWCC, the distribution of sorted centrality values is the same as that
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Figure 5.2: Scatter plots of centrality measures based on simulations using random
unweighted multiplex networks. We draw red lines through the origin with slope 1
for comparison. The figure is drawn using the matplotlib library for Python [21].

of their associated measures.

As in Subsection 5.2.1, we plot a scatter plot of the centrality values for each pair
of centrality measures. The plots segment the centrality measures into two groups.
One consists of RWCC and its associated centrality measures, and the other contains
all of the remaining measures. Within each group, the centrality measures are very
positively correlated with each other (see (a) and (d) of Figure 5.2 for examples of
scatter plots within a group and across groups respectively). In particular, RWCC is
very positively correlated with simRWCC and aggRWCC even for large sorted values.
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Figure 5.3: Histograms of sorted values for centrality measures based on simulations
using random multiplex networks with edge weights. The horizontal axes give sorted
centrality values, and the vertical axes give normalised frequency. The figure is drawn
using the matplotlib library for Python [21].

5.2.3 Multiplex networks with node weights

Third, we conduct 100 simulations using random multiplex networks with node weights.
We draw real-valued node weights independently from the uniform distribution on
[100, 500].

In this case, the scatter plots look very similar to the ones in Subsection 5.2.2.
However, compared with the previous two cases in Subsections 5.2.1 and 5.2.2, the
distribution of centrality values in this case (see Figure 5.4) is much flatter and wider
for RWOC, PageRank, RWBC, and their associated centrality measures, and less
uniform for RWCC and its associated measures. This confirms our hypothesis in
Chapter 1 that node weights are a nontrivial property for multilayer networks. Addi-
tionally, as in Subsection 5.2.2, for each of RWOC, PageRank, RWBC, and RWCC,
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the distribution of sorted centrality values is the same as that of their associated
measures.

Figure 5.4: Histograms of sorted values for centrality measures for simulations using
random multiplex networks with node weights. The horizontal axes give sorted cen-
trality values and the vertical axes give normalised frequency. The figure is drawn
using the matplotlib library for Python [21].
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5.2.4 Multiplex networks with both edge weights and node
weights

Finally, we conduct 100 simulations using random multiplex networks with both edge
weights and node weights. We draw node weights and edge weights from those of
the international trade network (see Figure 5.5) without replacement. Same as in
Chapter 4, we specify the coupling strength of each random multiplex network to
be 40000.

Figure 5.5: Histograms of node weights (left) and log values of intra-layer edge weights
(right) of the international trade multiplex network. The figure is drawn using the
matplotlib library for Python [21].

For each centrality measure, the distribution of sorted centrality values is left-
skewed (see Figure 5.6), which is probably because of the distributions of the edge
weights and the node weights. We observe that two pairs of centrality measures
(RWOC–aggRWOC and PageRank–simPageRank) have the same distributions. Com-
pared with Subsections 5.2.1 to 5.2.3, Figure 5.7 shows a less obvious positive corre-
lation for each pair of centrality measures except for two pairs (RWOC–aggRWOC
and PageRank–simPageRank), which have perfect positive correlation.
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Figure 5.6: Histograms of sorted centrality values for simulations using random mul-
tiplex networks with both edge weights and node weights. The horizontal axes give
sorted values, and the vertical axes give normalised frequency. The figure is drawn
using the matplotlib library for Python [21].
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Figure 5.7: Pairwise scatter plots of centrality measures for simulations using random
multiplex networks with both edge weights and node weights. The horizontal and
vertical axes give sorted centrality values. We draw red lines through the origin with
slope 1 for comparison. The figure is drawn using the matplotlib library for Python
[21].



6 Conclusions

In this report, we have proposed a method that allows tools for centrality measures
in undirected multilayer networks with edge weights to be directly applicable to undi-
rected multilayer networks with both nonnegative edge weights and nonegative node
weights. We also conducted a theoretical and empirical investigation of centrality
measures that are based on random walks in multilayer networks and weighted mono-
plex networks. We studied two related methods to calculate random-walk occupation
centrality (RWOC), PageRank centrality (PageRank), random-walk betweenness cen-
trality (RWBC), and random-walk closeness centrality (RWCC) in undirected mul-
tilayer networks with edge weights. We ranked economies in the international trade
system and conducted simulations with undirected random graphs to compare the
results by three ranking methods in four cases: unweighted multiplex networks, mul-
tiplex networks with edge weights, multiplex networks with node weights, and multi-
plex networks with both edge weights and node weights.

For unweighted multiplex networks, simulations segmented the centrality measures
into three groups, within which we observed significant positive correlation. The first
group is RWOC, PageRank, and their associated centrality measures; the second
group is simRWBC and aggRWBC; and the third group is RWCC and its associated
centrality measures. Simulations suggested less strong positive correlation between
the first two groups and no significant correlation between the third group and the
others.

For multiplex networks with edge weights, we conducted 18 groups of simulations,
using a different coupling strength ranging from 1 to 19000 for each group. Sim-
ulations suggested that coupling strength does not have a significant effect on the
distribution of centrality values or the pairwise correlations between the centrality
measures. Simulations showed almost perfect positive correlation between RWOC,
PageRank, RWBC, and their associated centrality measures this time. Again, RWCC
and its associated centrality measures showed no significant correlation with other
centrality measures.

Simulations on multiplex networks with node weights exhibited behaviour very
different from the previous two cases. In particular, the differences between nodes are
more distinguishable by RWOC, PageRank, RWBC, and their associated centrality
measures, and the sorted centrality values are less concentrated in the centres of the
ditributions.

Simulations on multiplex networks with both edge weights and node weights ex-
hibited much lower correlations between each pair of centrality measures except for
two pairs (RWOC–aggRWOC and PageRank–simPageRank). Each of these two pairs
shows perfect positive correlation, which was also observed in the previous three cases.
However, for simulations with unweighted random graphs, none of the centrality mea-
sures have the same distribution of sorted centrality values. This suggests that each

37
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pair of RWOC–aggRWOC and PageRank–simPageRank are not identical quantities
but probably have related formulae.

Overall, the results of the four cases confirmed our hypothesis that node weights
are a property that is not only natural but also nontrivial to add to multilayer net-
works. Additionally, all simulations suggested that RWCC and its associated central-
ity measures do not distinguish node importance as much as the other measures; they
are not significantly correlated with the other measures either. These observations
are also true for monoplex networks [28]. Moreover, RWOC, PageRank, and their
associated measures tend to give ranking results that are similar to each other, if not
the same, but the correlation is weakened by the presence of both edge weights and
node weights except for two pairs (RWOC–aggRWOC and PageRank–simPageRank).
This suggests that each pair are probably related analytically. The simulations also
suggested that RWBC and RWCC depend more on the multilayer structure than
RWOC and PageRank.

There are several possible extensions to the work in this report. First, our sim-
ulations strongly suggested that each pair of RWOC–aggRWOC and PageRank–
simPageRank is related, and it would be interesting to prove this analytically. More-
over, our simulations used random multiplex networks with 177 nodes and 10 layers
to make results comparable to those of the international trade multiplex network.
Future work can use more general random graphs such as directed graphs and more
general multilayer structures. Additionally, we assumed that node weights and edge
weights are independent from each other in the last case of simulations. However,
future work can assume that the two variables are correlated at some level, which is
reasonable in some real-world models.



Appendix A. Eigenvalue problem with ten-
sors

This appendix is based on [11]. To solve Equation 3.4, we first consider the eigenvalue
problem for a rank-2 tensor:

W i
jvi = λvj, (A.1)

which is equivalent to calculating the eigenvectors of a matrix. We can ‘unfold’ any
tensor to a lower rank tensor, and there are multiple ways to unfold T to lower-rank
tensors. For our purpose, it is most convenient to flatten T to a rank-2 tensor Tf
with NK×NK scalar components. Note that Tf is simply a NK×NK real matrix.
Finding the eigentensors of T is equivalent to finding the eigenvectors of Tf .

Appendix B. The flattened transition ten-
sor for random-walk occupation centrality

Each scalar component T iαjβ of T is nonnegative, because both Mkγ
jβ and D̃iα

kγ are
nonnegative. Moreover,

uiαT
iα
jβ = uiαM

iα
kγD̃

kγ
jβ = skγD̃

kγ
jβ . (B.1)

By the definition of D̃kγ
jβ ,

skγD̃
kγ
jβ =

{
1, if (i, α) is not isolated,
0, if (i, α) is isolated.

(B.2)

After flattening T to Tf , each column of Tf sums to 1 if the corresponding node-
layer is not isolated, and the columns that correspond to isolated node-layers are 0.
Thus, Tf is almost a left-stochastic matrix.

This implies that, (Tf )
i
j, the element in the jth row and ith column of Tf , gives

the probability for a random walker to jump from state i to state j.
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Appendix C. Python code of simulations

This Python script conducts 100 simulations for the case of Subsection 5.2.2 when
the coupling strength is 400. Conducting one such simulation takes a few minutes on
a normal computer.

1 import numpy as np
2 import csv
3 from random import ∗
4 from numpy import ∗
5 from numpy import l i n a l g as l a
6 from i t e r t o o l s import i z i p
7

8 K=177 # number o f nodes
9 L=10 # number o f l a y e r s

10 N=K∗L # number o f ( node , l a y e r ) p a i r s
11

12 p va lue s=L ∗ [ 0 . 2 5 ] # edge p r o b a b i l i t y vec to r
13 edgemin=1 # minimum i n t r a l a y e r edge weight
14 edgemax=38000 # maximum i n t r a l y e r edge weight
15 c o u p l i n g s t r e n g t h =400 # st r ength o f l a y e r coup l ing
16

17 s imulat ion number=100
18 f o r number in range ( s imulat ion number ) :
19 pr in t ”−−−−−−−−−−−−−−Simulat ion ” , number , ” begins−−−−−−−−−−−−−−”
20 SAM=np . z e r o s ( shape=(N,N) )
21 f o r l in range (L) :
22 intraAM=np . random . binomial (1 , p va lue s [ l ] ,K∗∗2) # Generate edges

( repeat a B e r n o u l l i p roc e s s with s u c c e s s ra t e p [ l ] K∗∗2 t imes )
23 intraAM=intraAM . reshape ( (K,K) )
24 intraAM [ range (K) , range (K) ]=0 # make d iagona l ze ro ( remove s e l f −

l oops )
25 intraAM=np . t r i u ( intraAM ) # make sub−d iagona l e n t r i e s a l l ze ro
26 f o r i in range (K) :
27 f o r j in range (K) :
28 i f intraAM [ i , j ]==1:
29 intraAM [ i , j ]= uniform ( edgemin , edgemax ) ## Add random

edge weights to i n t r a l a y e r edges
30 f o r i in range (K) :
31 f o r j in range (K−i −1) :
32 intraAM [ i+j +1] [ i ]=intraAM [ i ] [ i+j +1] # r e f l e c t intraAM in

i t s d iagona l
33 f o r i in range (K) :
34 f o r j in range (K) :
35 SAM[ i+K∗ l ] [ j+K∗ l ]=intraAM [ i ] [ j ] # inco rpo ra t e intraAM

into the corre spond ing d iagona l b lock o f SAM
36 SAM=np . asmatr ix (SAM)
37

38 ## Add coup l ing s
39 f o r node in range (K) :

40



41

40 f o r l aye r1 in range (L) :
41 f o r l aye r2 in range (L) :
42 i f l ay e r2 != laye r1 :
43 SAM[ node+K∗ l ayer1 , node+K∗ l ay e r2 ]= c o u p l i n g s t r e n g t h
44

45 ## Trans i t i on matrix f o r the mul t ip l ex network
46 S=np . sum(SAM, a x i s =1) # Note that the mul t ip l ex network i s und i rec ted

so the supra−adjacency matrix i s symmetric
47 d=np . z e r o s (N)
48 f o r i in range (N) :
49 d [ i ]=1/S [ i ] # Note that S [ i ] i s non−zero because o f coup l ing s
50 D=np . diag ( [ d [ i ] f o r i in range (N) ] )
51 T=np . dot (SAM,D) # Note that T i s a l e f t s t o c h a s t i c matrix , i . e . a l l

e n t r i e s non−negat ive and each column sums to 1
52

53 ## Get a monoplex network by aggregat ing the mul t ip l ex network
a c r o s s l a y e r s

54 # i . e . add a l l the i n t r a l a y e r matr ices , which are weighted by l a y e r
coup l ing s

55 aggAM=np . z e ro s ( (K,K) )
56 f o r l in range (L) :
57 f o r i in range (K) :
58 f o r j in range (K) :
59 aggAM[ i , j ]=aggAM[ i , j ]+SAM[ i+l ∗K, j+l ∗K]
60

61 ## Calcu la te the t r a n s i t i o n matrix f o r the aggregated network
62 aggS=np . sum(aggAM, a x i s =1)
63 a g g i s o l a t e d=s e t (np . where ( aggS==0) [ 0 ] ) # the index s e t o f i s o l a t e d

nodes in the aggregated network
64 aggS [ aggS==0]=1 # This i s to avoid d i v i s i o n by zero l a t e r . Columns

o f aggT that correspond to i s o l a t e d po in t s are s t i l l a l l z e ro
65 aggd=np . z e r o s (K)
66 f o r i in range (K) :
67 aggd [ i ]=1/aggS [ i ]
68 aggD=np . diag ( [ aggd [ i ] f o r i in range (K) ] )
69 aggT=np . dot (aggAM, aggD) # S imi l a r to T, aggT i s a l e f t s t o c h a s t i c

matrix
70

71

72 pr in t ”A random mult ip l ex network has been generated . ”
73

74

75

76 ## RWOC
77 weight=sum(SAM)
78 rankRWOC=np . z e ro s (K)
79 f o r i in range (K) :
80 k=0
81 f o r l in range (L) :
82 k=k+sum(SAM[ i+l ∗K, : ] )
83 rankRWOC[ i ]=k/ weight
84 pr in t ”RWOC done . ”
85

86
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87 ## Simple RWOC
88 simrankRWOC=np . z e r o s (K)
89 f o r l in range (L) :
90 i n t r a l a y e r=np . z e ro s ( (K,K) )
91 f o r i in range (K) :
92 f o r j in range (K) :
93 i n t r a l a y e r [ i ] [ j ]=SAM[ i+l ∗K, j+l ∗K] # i n t r a l a y e r i s the

adjacency matrix f o r l a y e r l
94 weight=sum( i n t r a l a y e r )
95 f o r h in range (K) :
96 k=sum( i n t r a l a y e r [ h , : ] )
97 simrankRWOC [ h]=simrankRWOC [ h]+k/ weight
98 simrankRWOC=simrankRWOC/L
99 pr in t ”simRWOC done . ”

100

101

102 ## Aggregate RWOC
103 weight=sum(aggAM)
104 aggrankRWOC=np . z e ro s (K)
105 f o r i in range (K) :
106 aggrankRWOC [ i ]=sum(aggAM[ i , : ] ) / weight
107 pr in t ”aggRWOC done”
108

109

110 ## PageRank
111 T=np . dot (SAM,D) # Refresh matrix T
112 r =0.85 # (1− r ) i s the t e l e p o r t a t i o n ra t e
113 R=r ∗T+(1−r ) /N∗np . ones ( (N,N) )
114 RLeigenvector=np . asmatr ix (np . ones (N) )
115 RLeigenvector=RLeigenvector . t ranspose ( ) # Now RLeigenvector i s a N∗1

column vecto r
116 whi le l a . norm( RLeigenvector−np . dot (R, RLeigenvector ) )>10∗∗−8:
117 RLeigenvector=np . dot (R, RLeigenvector ) / l a . norm(np . dot (R,

RLeigenvector ) )
118 NRLeigenvector=RLeigenvector /np . sum( RLeigenvector )
119 NRLeigenvector=NRLeigenvector . reshape ( (L ,K) )
120 rankPageRank=np . squeeze (np . asar ray (np . sum( NRLeigenvector , a x i s =0) ) )
121 pr in t ”PageRank done . ”
122

123

124 ## Simple PageRank
125 r =0.85 # (1− r ) i s the t e l e p o r t a t i o n ra t e
126 simrankPageRank=np . z e ro s (K)
127 f o r l in range (L) :
128 i n t r a l a y e r=np . z e ro s ( (K,K) )
129 f o r i in range (K) :
130 f o r j in range (K) :
131 i n t r a l a y e r [ i ] [ j ]=SAM[ i+l ∗K, j+l ∗K] # i n t r a l a y e r i s the

adjacency matrix f o r l a y e r l
132 S=np . sum( i n t r a l a y e r , a x i s =1)
133 i s o l a t e d=s e t (np . where (S==0) [ 0 ] ) # the index s e t o f i s o l a t e d

nodes in l a y e r l
134 S [ S==0]=1
135 d=np . d i v id e (np . ones (K) ,S)
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136 Diag=np . diag ( [ d [ k ] f o r k in range (K) ] ) # the norma l i s ing matrix
f o r i n t r a l a y e r matrix

137 i n t ramatr ix=np . dot ( i n t r a l a y e r , Diag )
138 R=r ∗ i n t ramatr ix+(1−r ) /K∗np . ones ( (K,K) )
139 f o r k in i s o l a t e d :
140 R[ : , k]=np . ones (K) /K
141 RLeigenvector=np . asmatr ix (np . ones (K) ) # Calcu la te the l ead ing

e i g e n v e c t o r o f R us ing power i t e r a t i o n
142 RLeigenvector=RLeigenvector . t ranspose ( )
143 whi le l a . norm( RLeigenvector−np . dot (R, RLeigenvector ) )>10∗∗−8:
144 RLeigenvector=np . dot (R, RLeigenvector ) / l a . norm(np . dot (R,

RLeigenvector ) )
145 NRLeigenvector=RLeigenvector /np . sum( RLeigenvector )
146 f o r h in range (K) :
147 simrankPageRank [ h]=simrankPageRank [ h]+ NRLeigenvector [ h ]
148 f o r h in range (K) :
149 simrankPageRank [ h]=simrankPageRank [ h ] /L
150 pr in t ”simPageRank done . ”
151

152

153 ## Aggregate PageRank
154 aggT=np . dot (aggAM, aggD) # Refresh matrix aggT
155 # Calcu la te the t r a n s i t i o n tenso r R
156 r =0.85 # (1− r ) i s the t e l e p o r t a t i o n ra t e
157 R=r ∗aggT+(1−r ) /K∗np . ones ( (K,K) )
158 f o r k in a g g i s o l a t e d :
159 R[ : , k]=np . ones (K) /K
160 RLeigenvector=np . asmatr ix (np . ones (K) )
161 RLeigenvector=RLeigenvector . t ranspose ( ) # Now RLeigenvector i s a K∗1

column vecto r
162 whi le l a . norm( RLeigenvector−np . dot (R, RLeigenvector ) )>10∗∗−8:
163 RLeigenvector=np . dot (R, RLeigenvector ) / l a . norm(np . dot (R,

RLeigenvector ) )
164 NRLeigenvector=RLeigenvector /np . sum( RLeigenvector )
165 aggrankPageRank=np . squeeze (np . asar ray ( NRLeigenvector ) )
166 pr in t ”aggPageRank done . ”
167

168

169 ## RWBC
170 T=np . dot (SAM,D) # Refresh matrix T
171 RWBCsum=np . z e r o s (K)
172 f o r i in range (K) : # absorb ing node
173 U=T
174 f o r j in range (L) : # absorb ing node in a l l l a y e r s
175 U[ : , i+j ∗K]=0
176 V=l a . inv ( ( np . i d e n t i t y (N)−U) )
177 Vsumcol=np . z e ro s ( (N,K) )
178 f o r m in range (K) :
179 f o r n in range (L) :
180 Vsumcol [ : ,m]=Vsumcol [ : ,m]+np . squeeze (np . asar ray (V[ : ,m+n∗

K] ) )
181 Vsumrow=np . z e r o s ( (K,K) )
182 f o r m in range (K) :
183 f o r n in range (L) :
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184 Vsumrow [m, : ] = Vsumrow [m, : ] + Vsumcol [m+n∗K, : ]
185 Vsum=Vsumrow/L
186 RWBCsum=RWBCsum+np . sum(Vsum, a x i s =1)
187 RWBC=RWBCsum/(K∗(K−1) )
188 rankRWBC=RWBC/sum(RWBC) # Normalise the rank s i z e s so that they sum

up to 1
189 pr in t ”RWBC done . ”
190

191

192 ## Simple RWBC
193 T=np . dot (SAM,D) # Refresh matrix T
194 simrankRWBC=np . z e r o s (K)
195 f o r l in range (L) :
196 i n t r a l a y e r=np . z e ro s ( (K,K) )
197 f o r i in range (K) :
198 f o r j in range (K) :
199 i n t r a l a y e r [ i ] [ j ]=SAM[ i+l ∗K, j+l ∗K] # i n t r a l a y e r i s the

adjacency matrix f o r l a y e r l
200 S=np . sum( i n t r a l a y e r , a x i s =1)
201 i s o l a t e d=s e t (np . where (S==0) [ 0 ] ) # the index s e t o f i s o l a t e d

nodes in l a y e r l
202 S [ S==0]=1
203 d=np . d i v id e (np . ones (K) ,S)
204 Diag=np . diag ( [ d [ k ] f o r k in range (K) ] ) # the norma l i s ing matrix

f o r i n t r a l a y e r matrix
205 i n t ramatr ix=np . dot ( i n t r a l a y e r , Diag )
206 simRWBCsum=np . z e ro s ( (K, 1 ) )
207 f o r i in range (K) : # absorb ing node
208 U=int ramatr ix
209 U[ : , i ]=0
210 U=np . asmatr ix (U)
211 V=l a . inv ( ( np . i d e n t i t y (K)−U) )
212 simRWBCsum=simRWBCsum+np . sum(V, a x i s =1)
213 simRWBC=simRWBCsum/(K∗(K−1) )
214 simRWBC=np . squeeze (np . asar ray (simRWBC) )
215 simRWBC=simRWBC/sum(simRWBC) # Normalise the rank s i z e s so that

they sum up to 1
216 f o r h in range (K) :
217 simrankRWBC [ h]=simrankRWBC [ h]+simRWBC[ h ]
218 f o r h in range (K) :
219 simrankRWBC [ h]=simrankRWBC [ h ] /L
220 pr in t ”simRWBC done . ”
221

222

223 # Aggregate RWBC
224 aggT=np . dot (aggAM, aggD) # Refresh matrix aggT
225 aggRWBCsum=np . z e ro s (K)
226 f o r i in range (K) : # absorb ing node
227 U=aggT
228 U[ : , i ]=0
229 V=l a . inv ( ( np . i d e n t i t y (K)−U) )
230 aggRWBCsum=aggRWBCsum+np . sum(V, a x i s =1)
231 aggRWBC=aggRWBCsum/(K∗(K−1) )
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232 aggrankRWBC=aggRWBC/sum(aggRWBC) # Normalise the rank s i z e s so that
they sum up to 1

233 pr in t ”aggRWBC done . ”
234

235

236 ## RWCC
237 T=np . dot (SAM,D) # Refresh matrix T
238 s=np . z e ro s (K)
239 f o r i in range (K) :
240 f o r l in range (L) :
241 s [ i ]= s [ i ]+np . sum(SAM[ : , i+l ∗K] ) # s [ i ] i s the sum of node

s t r e ng th s a c r o s s l a y e r s
242 node strengths sum=np . sum( s )
243 MFPT=np . z e ro s (K)
244 f o r i in range (K) : # absorb ing node
245 U=T
246 f o r l in range (L) : # absorb ing node in a l l l a y e r s
247 U[ : , i+l ∗K]=0
248 MFPT[ i ]=np . sum( l a . inv (np . i d e n t i t y (N)−U) ) /N+node strengths sum /( s

[ i ]∗K) # Note that s [ i ]>0 because o f coup l ing s and MFPT[ i ]> i s we l l
de f i ned

249 RWCC=np . d iv id e (np . ones (K) ,MFPT)
250 rankRWCC=RWCC/sum(RWCC) # Normalise the rank s i z e s so that they sum

up to 1
251 pr in t ”RWCC done . ”
252

253

254 ## Simple RWCC
255 T=np . dot (SAM,D) # Refresh matrix T
256 simrankRWCC=np . z e r o s (K)
257 f o r l in range (L) :
258 i n t r a l a y e r=np . z e ro s ( (K,K) )
259 f o r i in range (K) :
260 f o r j in range (K) :
261 i n t r a l a y e r [ i ] [ j ]=SAM[ i+l ∗K, j+l ∗K] # i n t r a l a y e r i s the

adjacency matrix f o r l a y e r l
262 S=np . sum( i n t r a l a y e r , a x i s =1)
263 i s o l a t e d=s e t (np . where (S==0) [ 0 ] ) # the index s e t o f i s o l a t e d

nodes in l a y e r l
264 S [ S==0]=1
265 d=np . d i v id e (np . ones (K) ,S)
266 Diag=np . diag ( [ d [ k ] f o r k in range (K) ] ) # the norma l i s ing matrix

f o r i n t r a l a y e r matrix
267 i n t ramatr ix=np . dot ( i n t r a l a y e r , Diag )
268 s=np . sum( i n t r a l a y e r , a x i s =1) # s [ i ] i s the node s t r ength o f node

i in l a y e r l ( exc lud ing coup l ing s )
269 node strengths sum=np . sum( s )
270 MFPT=np . z e r o s (K)
271 simRWCC=np . z e r o s (K)
272 f o r i in range (K) : # absorb ing node
273 i f s [ i ] !=0:
274 U=int ramatr ix
275 U[ : , i ]=0
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276 MFPT[ i ]=np . sum( l a . inv (np . i d e n t i t y (K)−U) ) /K+
node strengths sum /( s [ i ]∗K) # MFPT[ i ]>0 i s we l l de f i ned f o r i such
that s [ i ]>0

277 simRWCC[ i ]=1/MFPT[ i ] # sim [RWCC]=0 f o r i such that s [ i
]=0 ( i . e . i f i i s i s o l a t e d in l a y e r l )

278 simRWCC=simRWCC/sum(simRWCC) # Normalise the rank s i z e s so that
they sum up to 1

279 f o r h in range (K) :
280 simrankRWCC [ h]=simrankRWCC [ h]+simRWCC[ h ]
281 f o r h in range (K) :
282 simrankRWCC [ h]=simrankRWCC [ h ] /L
283 pr in t ”simRWCC done . ”
284

285

286 # Aggregate RWCC
287 aggT=np . dot (aggAM, aggD) # Refresh matrix aggT
288 s=np . sum(aggAM, a x i s =1) # s [ i ] i s the node s t r ength o f node i
289 node strengths sum=np . sum( s )
290 MFPT=np . z e r o s (K)
291 aggRWCC=np . z e r o s (K)
292 f o r i in range (K) : # absorb ing node
293 i f s [ i ] !=0: # i f node i i s not i s o l a t e d then we c a l c u l a t e as

the f o l l ow ing , o therw i se aggRWCC[ i ]=0
294 U=aggT
295 U[ : , i ]=0
296 MFPT[ i ]=np . sum( l a . inv (np . i d e n t i t y (K)−U) ) /K+

node strengths sum /( s [ i ]∗K)
297 aggRWCC[ i ]=1/MFPT[ i ]
298 aggrankRWCC=aggRWCC/sum(aggRWCC) # Normalise the rank s i z e s so that

they sum up to 1
299 pr in t ”aggRWCC done . ”
300

301

302 ## Export rank s i z e s to one csv f i l e
303 i f number==0:
304 c s v f i l e=”Output . csv ”
305 with open ( c s v f i l e , ”w” ) as output :
306 w r i t e r=csv . w r i t e r ( output , l i n e t e r m i n a t o r=”\n” )
307 w r i t e r . wr i terows ( i z i p (rankRWOC, simrankRWOC, aggrankRWOC ,

rankPageRank , simrankPageRank , aggrankPageRank , rankRWBC, simrankRWBC ,
aggrankRWBC ,rankRWCC, simrankRWCC , aggrankRWCC) )

308 output . c l o s e ( )
309 e l s e :
310 f=open ( ”Output . csv ” )
311 rank=[row f o r row in csv . r eader ( f ) ]
312 f . c l o s e ( )
313 f o r node in range (K) :
314 rank [ node ] . extend ( [ rankRWOC[ node ] , simrankRWOC [ node ] ,

aggrankRWOC [ node ] , rankPageRank [ node ] , simrankPageRank [ node ] ,
aggrankPageRank [ node ] , rankRWBC[ node ] , simrankRWBC [ node ] , aggrankRWBC [
node ] , rankRWCC[ node ] , simrankRWCC [ node ] , aggrankRWCC [ node ] ] )

315 f=open ( ”Output . csv ” , ”w” )
316 csv . w r i t e r ( f ) . wr i terows ( rank )
317 f . c l o s e ( )
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[23] M. Kivelä, Multilayer networks library [software —plexmath project webpage],
2013, www.plexmath.eu/?page_id=327.
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