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Abstract

Community detection is an active field of research across the sciences due

to its potential value in practical applications. Many different paradigms

are devoted to the development of algorithmic solutions which reveal these

mesoscopic, modular subnetworks. Much of the work in the field has been

devoted to detection using the structure of the network. However, an

alternate approach to the problem is to use dynamics on the network to

reveal the underlying mesoscopic structures.

A new quality function known as stability uses the normalize Laplacian

dynamics to reveal the underlying community structure. Stability can be

generalized to reveal ties to the popular quality function modularity. It can

also be utilized to perform community detection on a set of structurally

complex network known as multislice networks, which are composed of

network slices coupled together.

We use different normalize Laplacian dynamics with a teleportation step

to define a new form of stability from the PageRank algorithm. A care-

ful examination of the teleportation step for these dynamics reveals the

best form of teleportation to use for stability. The introduction of the

PageRank form of stability allows for stability to be defined for directed

single, static networks or directed multislice networks where directionality

is observed. A stability-optimization algorithm can then be employted to

identify community structures. A few real world example are examined us-

ing the popular Zacharys Karate Club and a some artificially-constructed,

simple benchmark networks.
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Chapter 1

Background

The study of networks has received a large amount of attention in the scientific com-

munity as networks provide a way to model many systems of interest, such as social

networks, the Internet, computer networks, and metabolic and regulatory networks

[1, 2, 3]. The network models of these systems have been found to divide naturally

into mesoscopic modular structures known as communities [1, 2]. However, detect-

ing and characterizing these community structures is an outstanding problem and

continues to receive attention in both the social and physical sciences. The problem

of community detection is complicated by the complexities of the real world sys-

tems modeled, such as time dependent systems or systems containing objects with

multi-faceted connections between them. Currently, networks that model these more

structurally complex systems are not fully encompassed by the available algorithms.

However, despite the complex structures that can be constructed and modeled, the

basic structure of a network is easily defined and understood.

1.1 The Basics

Networks are composed of two primary building blocks: connecting lines known as

edges, links, or arcs and connecting points for the edges known as nodes or vertices.

For this work, we will use the terms edges and nodes. An edge in a network can have

an associated weight, a value which designates the strength of the interaction the

edge represents. Similarly, each node in a network has an associated strength given

by the sum of the weights of all adjacent edges. Nodes also have a degree given by

the number of adjacent edges.

The above definitions are for undirected networks, where an edge represents a

pairwise binary connection which is either present or not. However, networks often

have directed edges, in which the edges are oriented to point from one vertex to
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Figure 1.1: The Zacharys Karate Club network is a famous network depicting mem-
bers of a university karate club in the 1970s [4]. The members are represented as
nodes and their social connections are represented by edges. A conflict within the
club led to a split, with the post-split affiliations designated by color. The ability for
a community detection algorithm to reproduce these affiliations is a basic benchmark
by which community-detection algorithms can be tested. This figure was generated
using Cytoscape 2.7.0.

another. Using this idea of orientation, we define an in-degree as the number of

adjacent edges that are oriented so that they end at the node, and an out-degree as

the number of adjacent edges beginning at the node. In-strength and out-strength are

defined similarly.

The simplicity and versatility of the building blocks of networks make them pop-

ular choice for modeling artificial and real world systems by representing objects in

the system as nodes and connections between objects as edges.These definitions re-

veal that a network shares some commonality with a graph, which may provide some

intuition for the definitions and basic properties from analogous problems in graph

theory. However, the term network and graph are not always synonymous as net-

works allow for more complicated structures. An illustration of this fact can be found

in biological networks, where biological processes may occur between more than two

objects, requiring edges to be between more than two nodes in a network [5].

Networks can often be decomposed into mesoscopic structures known as commu-
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nities. Such structures help identify structural and topological features of large-scale

networks and sometimes can represent functional units [6]. A large body of litera-

ture has been devoted to exploring algorithms for detection of community structures.

However, no definitive definition for a community exists. This makes formulating a

sharp analytical definition of community impossible, so instead we use a general idea

of a group of nodes that are densely connected to each other and sparsely connected

to other densely connected groups of nodes [7, 1, 8, 9, 2, 6]. The range of applications

and the variety of ways of defining a community have resulted in a large number of

community detection algorithms [1, 2].

1.2 Community Detection in Networks

The diverse notions of what defines a community has resulted in community detec-

tion algorithms which use a variety of techniques to discover community structures.

Some of the most popular approaches rely on identifying communities through hier-

archical clustering or partition optimization. A hierarchical clustering approach uses

clusters of nodes to model communities and typically divides or merges these commu-

nity clusters by considering an appropriately defined measure such as a distance or

similarity between them. In contrast, partition optimization approaches repeatedly

imposes the grouping of nodes into network partitions according to a given criterion

until an optimal partition is found. In both kinds of approaches, a decision must be

made whether to focus on local network properties or global network properties. Local

properties are defined by the topology and structure of a neighborhood around a node

or a subgraph regardless of the structure of the rest of the network. For example,

identifying complete subgraphs of k-nodes, known as k-cliques requires examining lo-

cal properties. In contrast, global properties consider the entire network at once, and

may be defined from large-scale statistical properties of the network. An example of

global approach is presented in the following subsection on modularity optimization.

1.2.1 Modularity Optimization

A popular community-detection algorithm is modularity optimization. Modularity is

a quality function which was developed by Newman [7] to measure the quality, or

goodness, of a network partitioning.

Definition 1. Network Partition For a network A of size N , a partition is an assign-

ment function P : 1, ..., N → 1, ..., p where P(i) represents the class assignment for

node i.
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For modularity, the partitions represent communities within a network. Therefore,

finding a network partition with high modularity means a strong community structure

has been found. Modularity measures if edges are more abundant within a community

than one would expect if edges were randomly distributed.

Q = (fraction of edges within communities) − (expected fraction of edges with

random distribution).

The idea of random edge distribution is given by a null model, a random network

defined in such a way that it shares some structural features with the original network

[2].

Definition 2. Null Model The null model is used as a baseline for comparison to a

network. Consider a network A with N nodes. The null model with respect to A is

a random network P on N nodes with probability Pij that an edge (i, j) will occur.

The restrictions for generating P are problem dependent.

Using this idea, an expression for modularity can be defined.

Definition 3. Modularity Consider an weighted, undirected network A with network

partition P . Let Aij be a standard adjaceny matrix which represents the weight of

the edge between nodes i and j. Since the network is undirected, it is true that

Aij = Aji.The strength of node i is ki ≡
∑

j Aij and the total weight of the network

is m ≡
∑

i,j
Aij
2

. The modularity function Q is

Q =
1

2m

∑
C∈P

∑
i,j∈C

[Aij − Pij], (1.1)

where i, j ∈ C is a summation over pairs of nodes i and j belonging to the same

community C of P and Pij is an appropriately defined null model.

One of the most popular methods for modularity was introduced by Newman and

Girvan [7] and used the null model Pij =
kikj
2m

so that, although the edges are randomly

placed, the degree distribution is the same as the original network A.

Definition 4. Newman-Girvan Modularity Consider an weighted, undirected network

A with network partition P . The Newman-Girvan modularity function QNG is

QNG =
1

2m

∑
ij

(Aij −
kikj
2m

). (1.2)
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Despite its popularity, modularity suffers from a few drawbacks. It is a known

NP-Hard problem, meaning it is impractical to test all partitions to determine the

maximal modularity, and thus best solution [10]. Therefore, in general modularity

optimization algorithms are used to approximate the best solution. It also suffers

from a resolution limit, meaning that it can not distinguish communities below a

certain size which may result in incorrect partitions [11]. This resolution limit has

been circumvented in a few ways [2] and we will present one such approach from

Lambiotte [9] and a more thorough exploration of the resolution limit in Chapter 2.

1.2.2 Synchronization

Thus far, we have considered community detection algorithms which rely directly

upon a network’s structure to identify communities. However, it is also true that the

information about mesoscopic structure can be revealed by the behavior of dynamics

on the network [9]. Arenas et al. [12] sought to employ this idea to identify a com-

munities modular topology using synchronization. A brief outline of this method is

useful for motivation the use of dynamics on a network to identify community struc-

tures. Synchronization phenomena may occur in systems of interacting units and has

been studied across many disciplines relating to nature, society and technology. One

of the first and most successful models for understanding synchronization phenomena

was introduced by Kuramoto [13] who utilized a model of phase oscillators coupled

through the sine of their phase differences. The Kuramoto model consists of a popu-

lation of N coupled phase oscillators where the phase of the i-th unit, θi(t), evolves

according to the following dynamics

dθi
dt

= ωi +
∑
j

Kij sin(θj − θi), i = 1, ..., N, (1.3)

where ωi is the natural frequency, and Kij expresses the coupling between units of

the system. This model displays a large variety of synchronization patterns and can

be adapted to many different contexts [12].

It is typically true that densely interconnected sets of oscillators synchronize more

easily than those with sparse connections [12]. This scenario suggests that highl-

interconnected units forming local clusters will synchronize first and that larger and

larger structures also will follow until the final state, where the whole population

should have the same phase. If a community structure exists on the network, then

it is reasonable to expect that this will occur at different time scales [12]. Thus, dif-

ferent topological structures, which we presume represent communities, are revealed
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by following the dynamical route towards the global attractor. In Chapter 2 and 3,

we will explore in detail another dynamical approach using a normalized Laplacian

dynamics.This approach will be used to define stability, a new quality function. We

will generalize this formalization to include several classes of networks including mul-

tislice networks, which have multiple associated adjacency matrices coupled together.

In Chapter 4, we will use the approach given in Chapter 2 to define an alternate

form of stability based on the PageRank algorithm and use it to explore community

detection for networks with directed edges.
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Chapter 2

Stability-optimization

Much of the previous work done in community detection has focused upon structural

properties to discover communities [1, 9]. As we saw with the Kuramoto model,

dynamics on a networks also provide empirical results by which mesoscopic structures

can be uncovered. Another approach that uses dynamics on a network to reveal

the underlying structure, rather than examining topological or structural properties

directly, is stability. Stability was introduced by Lambiotte et al. [9] as a quality

function defined in terms of the statistical properties of a dynamical process taking

place on the network. Using this dynamics based approach standard modularity

functions, such as Newman-Girvan, can be re-derived [9]. Furthermore, stability

is quite robust and can be generalized to encompass several specialized forms of

networks, a topic which we will explore in Chapter 3.

2.1 Laplacian dynamics and stability

Stability is a quality function introduced by Lambiotte et al. [9] which uses stochastic

processes applied on a network to determine the quality of a partition. One of the

motivating concepts behind stability is that the flow of probability on a network will

remain trapped within a community for a long period of time [14]. We will express

the stability, in terms of the quality of a partition P , as an autocovariance function

of an ergodic Markov processM(t) on the network. We define the stability RM(t) as

follows

RM(t) =
∑
C∈P

P (C, t)− P (C,∞), (2.1)

where P (C, t) is the probability for a walker to be within a community C both initially

and at time t. Due to the ergodicity of the dynamics, the second expression is also

the the probability for two independent walker to be in C as the initial condition is
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lost at infinity. We can then express this autocovariance function in a way which can

be easily understood

RM(t) = (Probability for a random walker to be in the same community initially

and at time t) - (Probability for two independent random walkers to be in the same

community).

The idea captured by the right hand side is the null model for this approach. The

selection of an appropriate null model is crucial as they serve as the baseline by which

the goodness of a partition is measured [15]. Additionally, the null model must fit

the network model well so that it can accurately reproduce the appropriate network

structures and laws that are present in the original network.

2.1.1 Normalized laplacian dynamics

Lambioette et al. use normalized Laplacian dynamics as the model for an unbiased

random walker on the network. The discrete-time expression for the density of random

walkers on a node i of an undirected, weighted network evolves according to

pi,n+1 =
∑
j

1

kj
Aijpj,n, (2.2)

where Aij is a standard adjacency matrix and ki = kouti =
∑

iAij the out-strength of

node i. We can define a continuous-time process for the density of walkers on a node

i by assuming that there are independent, identical homogeneous Poisson processes

defined on each node on the graph [9],

ṗi =
∑
j

1

kj
Aijpj − pi. (2.3)

Note that the continuous-time density equation is driven by the Aij/kj− δij, which is

the negative of the Laplacian operator. The steady states for both the discrete-time

and continuous-time dynamics is given by p∗j =
kj
2m

, where 2m =
∑
i

ki =
∑
ij

Aij is

the total strength in the network.

2.1.2 Stability

First examining the continuous-time normalized Laplacian, we arrive at the following

expression for the stability of a partition for an undirected, weighted network.
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R(t) =
∑
c

∑
i,j∈C

[(etL)ij
kj
2m
− ki

2m

kj
2m

] (2.4)

where Lij = δij − Aij/kj is the negative of the Laplacian operator. The first

expression is the probability that a walker is in a community C at two successive time

steps and the second is the multiplication of the probabilities that two independent

walker are both contained in the community.

Note that 2.4 is a time-dependent expression. Therefore, different time scales

result in different measures for stability. It is of note that this means a single optimal

partitioning may not exist, but rather there will be a sequence of optimal partitions.

Lambiotte et al.[9] show that time actually acts as a resolution parameter.

2.2 Time as a resolution parameter

It was discovered in 2.4 that stability possessed a time dependency. If we linearize

the exponential expression, we can derive the following form of stability:

R(t) =
∑
c

1

2m

∑
i,j∈C

[
(Aijt−

kikj
2m

]
. (2.5)

In this form, it is clear that at time t = 1, stability reduces to a familiar expression,

Newman-Girvan modularity.

R(1) =
∑
c

∑
i,j∈C

[
Aij
kj

kj
2m
− ki

2m

kj
2m

] = QNG. (2.6)

Lambiotte et al. [9] prove that time can be treated as an intrinsic resolution

parameter. If we let γ = 1
t

then stability with resolution parameter γ is

R(t) =
∑
c

1

2m

∑
i,j∈C

[
(Aij − γ

kikj
2m

]
. (2.7)

However, we must ask if dividing by t effects the optima for a specified t. Lam-

biotte et al. [9] prove that this does not occur. Consider when t = 0, then R(0) =

1− sumc
1
2m

∑
i,j∈C

kikj
2m

. By attempting to maximize this expression, we discover that

the optimal partition will be when each node is contained in its own network. In

contrast, if t→∞, then eigenvalue decomposition can be used to prove that R(t) is

typically maximized by a partition into two communities. However, the details of the

full proof if this fact are not particularly instructive for our understanding of stability

an thus has been omitted.
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Optimizing the stability function at each time step gives us an optimal stable

partition, where the resolution parameter allows the characteristic size of the com-

munity to be adjusted. This new form quality function, therefore, shows itself to

be a versatile while still being generalizable to standard Newman-Girvan modularity.

However, we will show in the following chapter that stability can be generalized to

several classes of models, including some with complicated structural properties that

have thus far been unsuccessfully handled by community detection algorithms.
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Chapter 3

Multislice networks

Thus far the focus for community detection methods have been on single, static

networks. However, sometimes the real-world systems possess structures that can

not be accurately modeled on such networks. For example, a social network may

have social connections which evolve over time or the connections between individuals

may have different meaning, such as business relationship versus a friendship. The

networks examined thus far do not offer structures which can accurately reflect such

complicated connections on a single network. Several types of network have been

proposed which can model more complicated systems, such as:

• Dynamic networks that have nodes or edges which change over time.

• Hierarchical or Multiscale Networks where the hierarchical structures allow for

groups of nodes to be repeatedly divide into smaller sub-networks and such

divisions can be made over multiple scales.

• Multiplex networks that have multiple edge between nodes such that each edge

represents a different type of connection.

Recently, Mucha et al. [8] propose a new form of network model which is capable

of modeling all of these forms.

Definition 5. Multislice Networks A network with s slices. Each slice has an associ-

ated adjacency matrix such that Aijs represents inter-slice connection between nodes

(i, s) and (j, r). Additionally, intra-slice couplings are represented by a matrix C such

that Cjrs connects a node j to itself in two slices, specifically it couples (j, s) to (j, r).

We will introduce ω as a parameter to control coupling between slices. An example

of a multislice network is represented in 3.1.
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Figure 3.1: A multislice network with four slices. Within each slice, the adjacencies
Aijs encode intra-slice connections represented by the internal solid lines. The dashed
lines between slices are the inter-slice connections that are encoded by Cjrs. Inter-
slice connections connect a node j in slice s with itself in slice r. The connections
shown are (a.) Ordered connections such that a node is couple only with neighboring
slices; and (b.) All-to-all connections such that a node is coupled with itself any every
other slice. Alternate forms of couplings may also be used.

Multislice networks are versatile. They can allow for dynamic networks by mod-

eling a different time-step on each slice or multiplex networks where a slice could

contain only one type of connection. The ability to accurately model hierarchical

networks is less obvious. However, the following discussion in 3.1.2 will show how

stability defined for multislice networks can allow for different resolution parameters

to used for different slices.

For the moment, we will restrict our considerations to undirected, unipartite net-

work slices so that Aijs = Ajis. We will do the same for couplings so that Cjrs = Cjsr.

Definition 6. Multislice Strength The strength for each node consists of two forms

of strength.The slice strength kjs =
∑

iAijs and the coupling strength cjs =
∑

r Cjsr.

The total multislice strength κjr = cjr + kjr

Directed edges may be introduce to the multislice model in much the same way

as they would for single, unipartite networks.

3.1 Stability for multislice networks

Mucha et al. [8] were able to successfully able to extend stability to multislice network.

In order to do so, three key generalizations have to be made. Although the stability

12



equation for multislice networks can be understood without full exposure to these

generalizations, it is instructive to see them first so that the reasons for the multislice

stability formulation are clear. We will show that the three generalizations made are

capable of recovering the appropriate null models for a specific category of network.

3.1.1 Generalizations and null models for bipartite, signed,
and directed networks

Consider that multislice networks have two types of connections, intra-slice and inter-

slice, and the type of connection traversed matters when considering a random walker

on the network. Therefore, when considering the probability of a random walker

remaining within the same community after time t in the statistically steady state it

will be necessary to restrict the independent contribution to be conditional on the type

of connection necessary to step between nodes. So, we can replace the independent

contribution p∗i p
∗
j in 2.4 with a conditional independent contribution ρ∗i|jρ

∗
j which takes

into account the type of edge being traversed. This is done through ρ∗i|j a conditional

probability of jumping from nodei from node j along a specific edge type. The edge

type that is allowed at a given step will be specified depending on the category of

networks.

Bipartite networks are a particular category of graphs which would employ such

a generalization as they have two types of nodes based on which side of the bipartite

partition the node falls. By definition, every edge must connect a node of one kind to

a node of the other kind. For an undirected, bipartite network the adjacency matrix

A in the Laplacian operator Lij defined previously will have a specific form due to

the bipartite partition. This results in the same steady state solution for all nodes,

p∗ = kj/2m where 2m is defined as before. The bipartite conditional probability ρis|jr

of visiting node (i, s) is conditional on whether there is a structure that will allow the

traversal from (j, r) to (i, s). Thus, the conditional probability is ρis|jr =
bijki
m

where

bij as a binary indicator function for bipartiteness, meaning it is 1 if nodes i and j are

of different types and 0 otherwise. Note that the probability of stepping to a given

node i is now conditional on the information of the partition assignment, doubling

the probability, thus the denominator of ρis|jr is m.

We can now state the stability for bipartite networks.

Rbipartite =
1

2m

∑
ij

{
(
Aij − γbij

kikj
m

)
δ(gi, gj). (3.1)
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This is the generalization of the Barber bipartite null model [16] when the reso-

lution parameter γ is incorporated.

Next, consider that dynamics on multislice networks must allow for motion along

both types of edges. So, we will generalize the Laplacian dynamics to allow for

multiple types of connections. We will do so by first considering directed networks.

A directed networks have two types of strength, kin =
∑

j Aij and kout =
∑

iAij.

We will define total strength to be the sum of the two strengths. We will con-

sider incoming and outgoing edges as two separate types of edges and define the

Laplacian dynamics to include motion along both types, ignoring the directional-

ity of the edges. Thus, the continuous-time normalized Laplacian dynamics will be

cdotpis =
∑

jr (Aij + Aji) pj/kj−pi. The steady state for the dynamics is p∗jr = kj/2m

with 2m =
∑

j kj. The conditional probability ρis|jr for the null model must now con-

sider the type of edge being traverse as it may in-going or out-going. Thus

ρis|jr =

(
kini
m

koutj

kj
+
kinj
m

kouti

kj

)
kj
2m

=
kini k

out
j + kouti kinj

2m2
. (3.2)

We can now state stability for directed edges.

Rdirected =
1

m

∑
ij

{
(
Aij − γ

kini k
out
j

m

)
δ(gi, gj). (3.3)

This recovers the generalization for the standard directed null model [17] with an

incorporated resolution parameter γ.

The next form of network to be consider is an undirected, signed network such

that an edge may have a positive or negative link weight. Clearly, edges with differing

signs will be treated separately as one contributes positively and the other negatively,

however we define both A−ij ≥ 0 and A+
ij ≥ 0. Similar to the way we define two

forms of strength for incoming and outgoing edges, we will define the strength to

be kj = k+j + k−j . Thus, the continuous-time normalized Laplacian dynamics will

be dotpis =
∑

jr

(
A+
ij + A−ij

)
pj/kj − pi. This is nearly identical as the Laplacian

dynamics for directed networks and the steady state is again given by p∗jr = kj/2m,

but now m = m++m−. The conditional probability is also nearly identical. However,

we will give A−ij ≥ 0 and k−j a negative contribution to the expression as they are

penalizations to the stability. So, using the form of 3.3 we arrive at

ρis|jr =

(
k+i

2m+

k+j
kj
− k−i

2m−
k−j
kj

)
kj
2m

=
1

2m

(
k+i k

+
j

2m+
+
k−i k

−
j

2m−

)
. (3.4)
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The stability is related to the directed case, but it does not simplify as nicely:

Rsigned = 1
2m

∑
ij{
(
A+
ij − A−ij − γ

(
k+i k

+
j

2m+ −
k−i k

−
j

2m−

))
δ(gi, gj).

Before we consider the null model for Rsigned, we will examine the third and final

generalization. Mutislice networks have different spreading weights for the different

types of edges, so we need a generalization which accommodates this fact. For signed

networks, it can be useful to consider reweighted conditional probabilities at station-

arity using some factor other than the relative strengths of the different edges at node

j. This generalization will then allow us to give the following final form for Rsigned,

Rsigned =
1

2m

∑
ij

{

(
A+
ij − A−ij − γ+

(
k+i k

+
j

2m+

)
− γ−

(
k−i k

−
j

2m−

))
δ(gi, gj). (3.5)

The null model that is obtained from the signed networks is the undirected version

of a general form of null model for signed networks [18] .

3.1.2 Multislice stability

The three key generalizations can be applied to derive the null model for multislice

networks. Note that we must consider additional parameters introduced by the con-

nections between slices. The steady-state probability distribution will be given by

p∗jr = κjr/2µ where µ =
∑

jr κjr. The multislice null model will be given in terms of

the conditional probability ρis|jr of visiting node (i, s) conditional on whether there

is a structure that will allow the traversal from (j, r) to (i, s).

ρis|jr =

[
kis

2ms

kjr
κjr

δsr +
Cjsr
cjr

cjr
κjr

δij
κjr
2µ

]
. (3.6)

Note that the second term within the brackets expresses the conditional proba-

bility for motion between two slices and makes careful use of the definition of Cjrs.

Specifically, movement from (j, r) to (i, s) along an inter-slice coupling allowed only

between the same node in different slices. Furthermore, the probability of selecting

a inter-slice link between the two nodes is proportional to
Cjsr
cjr

which is precisely the

probability of selecting a precise inter-slice link that connects to slice s.

The continuous time Laplacian dynamics on a multislice network must be altered

to consider the contribution from both the inter- and intra-slice edges. Thus, it will

be given by ṗis =
∑

jr (Aijsδsr + δisCjrs) pjr/κjr − pis.
We can now take the difference of the exponential solution to the Laplacian dy-

namics and the conditional probability just defined.
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Rmultislice =
1

2µ

∑
ijsr

{
(
Aijs − γs

kiskjs
2ms

)
δsr + δijCjsr}δ(gis, gjr) (3.7)

Note, the conditional probabilities have been reweighted using γs in much the

same way as in standard stability. This allows different resolution parameter for each

slice. This allows the ability to examine hierarchical network over multiple scales at

the same time. The inter-slice coupling parameter ω has been absorbed into Cjsr.

We will assume that Cjsr takes on binary values of {0, ω} to indicate the presence of

a coupling (ω) or the lack of a coupling (0).

Therefore, we have obtained a quality function, Rmultislice, which measures the

quality of a partition on a multislice network using an appropriately defined null

model. This introduces the necessary quality function by which to define a stability-

optimization algorithm that allows for community detection to be performed on many

types of networks, including multiplex and dynamic, that have previously been ne-

glected by the available community detection algorithms.
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Chapter 4

PageRank and Smart Teleportation

The Laplacian dynamics were able to reveal community structures for standard mul-

tislice networks once an appropriately defined null model was developed. However,

although we are able to generalize the stability equation to directed multislice net-

works, a major drawback of the generalization was that the directionality of an edge

is ignored to ensure an ergodic solution. Even for the single, static network, the

directed case must be defined carefully, such as by assuming total connectivity, to

ensure an ergodic solution. One way to resolve these problems is to consider different

dynamics which may have ergodic solutions for directed networks.PageRank is a pop-

ular dynamic that has resolved the problem of finding ergodic solutions in directed

networks. It was developed as a link-analysis algorithm to rank the importance of

webpage results for web keyword searches [19, 20]. PageRank achieves an ergodic

solution by introducing teleportation into a random walk.

Definition 7. Random Walk with Teleportation. A random walk with teleportation

is a standard random walk with the addition of a constant probability of teleporting

to a random node at each step.

Random walks with teleportation are necessary for PageRank as it was designed to

perform on directed networks that model webpage links, which are one-directional by

definition [19]. However, directed networks are not guaranteed to be ergodic because

a random walker on a directed network may become trapped at a dangling node.

Definition 8. Dangling Node. A dangling node is a node with zero out-degree.

Consider a standard random walk governed by normalized Laplacian dynamics,

the walker will make a decision about the destination of its next step based in part

upon the local topology. Thus, if the next step leads to a dangling node, or in the

vicinity of a dangling node, there is a possibility the walker will become stranded
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there at a future time step. The introduction of teleportation allows the walker to,

with some probability α, ignore the local network topology and escape to a random

node via teleportation. This ensures an ergodic solution by preventing entrapment,

while still allowing directed edges. Unfortunately, this approach is not with out its

drawbacks. Previously, a random walker was influenced by the topological properties

of the network and thus so was the flow of dynamics on the network. The imple-

mentation of an artificial teleportation process disrupts this flow as it also plays a

role in the behavior a random walker [3]. An examination of the teleportation step

in PageRank provides some useful insight into how teleportation alters a standard

random walk.

Teleportation on a network is controlled by a preference vector with elements, vi,

which represents the frequency with which node i is selected as the destination of the

teleportation step. Note that this definition of the preference vector assumes that

teleportation occurs between two nodes as this is the form of teleportation used by

the standard PageRank algorithm.

Definition 9. Node Teleportation. Teleportation with a uniform preference vector

so that a node is selected as the destination of the teleportation step with uniform

frequency.

However, non-standard teleportation can utilize different structural features, such

as degree or strength, to define the preference vector in a different way and thus

model other forms of teleportation.

Let us consider a weighted, directed network with the adjacency matrix A defined

in the standard way and the strength of a node ki = kouti =
∑

j Aij. Since the network

is directed

Definition 10. PageRank A damping factor, α, is introduced to a standard random

walk. This damping factor represents the probability of continuing a random walk

uninterrupted and 1 − α is the probability of teleporting to a random node. The

expected density of random walkers on a node will be

pi;t = α
∑
j

Tjipj;t−1 + (1− α + αdi)vi) (4.1)

Where vi is a component of the preference vector which represents the frequency with

which a node i is selected as the destination of the teleportation step and di = 1 only

if node i is a dangling node and 0 otherwise.

18



Note two items about this definition, the order of the indices of the matrix T

matter as the network is directed and if α = 1 then we have derived a standard

random walk. The associated continuous time dynamics are as follows.

ṗi = α
∑
j

Tjipj + (1− α + αdi)vi − pi (4.2)

The steady state for this dynamic is p∗i = (1− α + αaidi)
∑

j(I − αT )−1ji vj.

In order to ensure an ergodic solution we must prove that (I − αT ) is always

invertible. This result follows from the following theorem.

Theorem 1. If u is a vector and M is a transition matrix, then ||Mv||1 ≤ ||v||1
where || · ||1 is the l1 norm.

Proof. This proof is not instructive for our discussion and thus can be found in Ap-

pendix I.

This leads to the following corollary.

Corollary 1. If M is a transition matrix, then I − sM is invertible for all s < 1 .

Proof. This proof is not instructive for our discussion and thus can be found in Ap-

pendix I.

The introduction of teleportation requires that we re-examine the assumptions

behind our stability definition. For example, is it still true that random walker remains

trapped within a community for a long period of time? Teleportation is non-local in

nature so there is a chance this assumption no longer holds. Instead of remaining

constrained by the local topology, at each time step there is some probability that

the walker will teleport away, possibly out of the local community. In fact, Lambiotte

and Rosvall [3] showed that by using Taylor expansion on p∗i with regards to α we

can explicitly see the non-local nature of this form of teleportation.

p∗i = vi +
k=∞∑
k=1

αk
∑
j

(T kji − T k−1ji )vj. (4.3)

An examination reveals that each term is associated with paths of length k sup-

porting our intuition about the potential problems caused by teleportation. Lam-

biotte and Rosvall [3] proposed that one solution to this problem is to employ forms

of smart teleportation to reduce the non-local nature of teleportation and, for detect-

ing modular structures, they suggest two forms of smart teleportation be combined.
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Definition 11. Link Teleportation. Link teleportation uses a random walk with

teleportation where the elements of the preference vector, vi, are proportional to the

strength of the node i.

Definition 12. Unrecorded Teleportation A random walk with smart teleportation

where the teleportation step is not recorded, meaning that teleportation step do not

contribute towards the density of walkers on a node.

Unrecorded link teleportation can be achieved by defining the elements vi of the

preference vector to be proportional to the out-degree of the node i. Essentially, in

a standard teleportation step a random walkers arrival at a node is treated the same

regardless of it method of arrival. Therefore, a teleportation step may introduce

an artificial connection between two communities.If instead the teleportation step

is not recorded, then , since the frequency is proportional to the out-degree i, the

teleportation step is as if the random walker teleported to a random edge. So, when

considering the density of walkers ṗi at node i the contributions from teleportation

steps are not recorded, and thus not consider in any measure of the partition. This

results in the steady-state solution p∗i = (1 − α)
∑

l Tli
∑

j(I − αT )−1jl vj. Notice this

is the steady-state solution for standard PageRank with an additional step for the

random walker at the end. Again, we use Taylor expansion on the steady-state

solution.

p∗i =
∑
l

Tli

(
vi +

k=∞∑
k=1

αk
∑
j

(T kji − T k−1ji )vj

)
. (4.4)

Now the dominant component of p∗is is vi, which has been defined as proportional to

the out-strength of the node i. Therefore, by imposing unrecorded link teleportation

we regain some of the local nature of a random walk. We will use unrecorded link

teleportation in the following discussions.

Previously, a random walk with smart teleportation was employed by Lambiotte

to identify modular structures in a network using a clustering method known as

InfoMap [3]. I sought to extend the application of smart teleportation for identifying

community structures by defining a stability function using the PageRank algorithm

with unrecorded, link teleportation.

The first step is to solve the original dynamical system ṗi = α
∑

j Tjipj + (1−α+

αdi)vi − pi.

pi = (1− α)

∫ τ

0

(e−(I−αT )τ )ijviTijdτ. (4.5)
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Integrating and linearizing the solution we arrive at the following expression.

pi =
∑
j

(δij + t(αT − I)ij)p
∗
i . (4.6)

We now have all the expressions necessary to define stability for a standard net-

work under PageRank with unrecorded link teleportation. Let us define the resolution

parameter gamma = 1
t

so that we arrive at the following final expression for stability.

RUR =
∑
ij

(
α(Tij)p

∗
i − γp∗i p∗j

)
. (4.7)

Note that the same null that was used for standard stability was employed in this

approach as well.

4.0.3 Stability-optimization and PageRank

In order to determine how the introduction of teleportation affects community detec-

tion, a few experiments were undertaken. The first was to define special benchmark

directed networks that are designed to trap a random walker in a community using

the directionality of edges. The simplest way to ensure a trapped random walker is to

form a circle so that there is a single entrance and a single exit node. Once a walker

enters the circle, it must traverse the directed edges around the circle to an exit node

at the opposite side. A simple example of such a network with 5 communities com-

posed of 6 nodes each is displayed in 4.1. Fixing the resolution parameter at γ = 0.1

the teleportation parameter was varied α = 0.05, 0.1, ..., 0.95 and PageRank stability-

optimization was undertaken using a general Louvain method [22] to determine the

resulting communities.

Next, the Zacharys Karate Club was explored in a similar manner. A few interest-

ing resolution parameters are given in ??. The introduction of teleportation prevents

the original community partition from be discovered. Instead, at least 4 communities

are found under each resolution parameter when α = 0.95 and for any resolution

parameter greater that 1.5, exclusively disjoint communities are found.

For these simple results, the indication is that the teleportation rate should be

kept low for accurate results. However, further experiments should be performed to

test how other types of networks, such as hierarchical networks or those with larger

degree distribution, are affected by the introduction of smart teleportation.

Lambioette [3] found that
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Figure 4.1: The directed, benchmark network is displayed above. The first sub-
network on the left has the entrance and exit nodes highlighted in green and red
respectively. The two heat maps display the communities discovered at two separate
resolution parameters. Color indicates the assigned community. At an appropriate
resolution, the intended community structures are recovered regardless of the tele-
portation parameter. In fact,the teleportation parameter has very have any affect
on the final community assignment for this simple benchmark network due to the
unrecorded, link teleportation being used.This figure was generated using the Matlab
Heatmap toolbox [21].

4.0.4 PageRank on a multislice network

We can generalize the approach in the previous section to Multislice networks using an

approach similar to that found in 3. Just as we had to differentiate between traversing

an intra-slice and inter-slice edge, in a multislice network, we must consider two forms

of teleportation.

Definition 13. Inter-slice Teleportation Teleportation from a node (i, s) to a node

(j, r) such that s 6= r.

Definition 14. Intra-slice Teleportation Teleportation from a node (i, s) to a node

(j, s).
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As a result there are two possible approaches to defining the frequency vector for

the multislice network. We can define a total frequency vis which represents the total

frequency with which a node (i, s) is selected. Alternately, we can define two separate

frequency vectors which represent the frequency with which a node is selected given

that the appropriate form of inter- or intra-slice is occurring at that time step. We will

focus on the first form of teleportation and briefly consider the latter in the following

section.

Therefore, we will consider a random walk with teleportation such that α is the

damping factor. We will again consider an undirected, weighted network.Unfortunately

the former notation for multi-slice networks proves unwieldy in the following dis-

cussion, therefore we will instead introduce a transition matrix T(is)(jr) encodes the

probability of moving from node (i, s) to node (j, r). In terms of our former notations,

T(is)(jr) = (Aijsδsr + δijCjrs)κjr

. If κjr = 0 then T(is)(jr) = 0. It is important to note that in a directed network

T(is)(jr) 6= T(is)(jr). We will define kis = koutis =
∑

j Aijs and cjs = coutjs =
∑

r Cjsr.

Thus, the strength for each node is κ =
∑

jr Aijs + Cjsr =
∑

jr T(is)(jr). It is also

useful to impose teleportation for dangling nodes (j, r) by replacing the associated

column in the transition matrix with the teleportation frequency vector v.

To define link teleportation on a multislice network, consider the preference vector

vis = 1
κis

. The dynamics for the density of random walkers on a node can now be

expressed.

ṗis = α
∑
jr

T(jr)(is)pjr + (1− α)vis − pis. (4.8)

The steady-state solution is p∗is = (1− α)
∑

lm T(lm)(is)

∑
jr(I − αT )−1(jr)(lm)vjr).

The conditional probability ρis|jr is defined as in the standard multislice network

but with the additional probability that a walker will teleport from the node (j, r) to

(i, s).

ρis|jr = α

[
(
kis

2ms

kjr
κjr

)δsr +
Cjrs
cjr

cjr
κjr

δij

]
+ (1− α)vis. (4.9)

Linearizing the exponential terms in the solution pis, our final stability for a

random walk withe teleportation on a multislice network is revealed to be

RTelep. =
∑
ijsr

αT(jr)(is)p
∗
jr − γs

[
α(

kis
2ms

kjr
κjr

)δsr + αT(is)(jr)δis + (1− α)vis

]
p∗jr. (4.10)
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where gamma = 1
t

is the resolution parameter.

PageRank on a directed network ensures an ergodic solution and it allows us to in-

corporate directionality of the network into our stability. However, it does comes with

the same drawbacks as those that occurred in a singular, static network. Even though

unrecorded link teleportation helps to eliminate the noise introduced by teleportation

by artificially creating edges, it is still true that the random walker’s decisions are

no longer as strongly connected to the network topology. Despite its drawbacks, the

stability equation for a directed, weighted multislice networks is a key step in gen-

eralizing the work of Lambiotte et al. [9] and Mucha et al. [1] to a networks with

directed edges.

4.0.5 Intra-slice and inter-slice restricted teleportation

In special cases it seems natural to seek to further reduce the problem of noise caused

by teleportation. In the previous subsection, we considered total teleportation as it

allowed teleportation to occur between nodes in any location of the multislice net-

work. However, for multislice networks with undirected intra-slice edges but directed

inter-slice edges the teleportation could be restricted to inter-slice jumps. Such tele-

portation is not strictly necessary to ensure an ergodic solution, the undirected nature

of the inter-slice edges always prevent a walker from becoming trapped. However, for

the purpose of identifying communities they are necessary. Without teleportation,

a walker may become trapped in the same slice which negates the benefits from the

multislice structure as the long-term behavior of the walker will be equivalent to a

random walk in that single slice. The alternate approach is to allow directionality

and use the unrecorded link teleportation for inter-slice teleportation. By restricting

the teleportation to inter-slice jumps, we avoid the problem of becoming stranded in

a slice while reducing the disruption from teleportation as it is less likely that the

random walker will teleport to an entirely different community. Such an approaches

result in dynamical systems of the following form, where uis = 1
cis

is the preference

vector

ṗis =
∑
jr

α(Aijsδsr + Cjrsδij)
pjr
κjr

+ (1− α)uis − pis (4.11)

On examination, it is clear that this is the same dynamic as with total tele-

portation, but with a different preference vector. Therefore, we easily find the the

steady-state solution p∗is = (1− α)
∑

lm T(lm)(is)

∑
jr(I − αT )−1(jr)(lm)ujr).
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However, the new form of teleportation can be used to better define our conditional

probability ρis|jr

ρis|jr = (α
kis

2ms

kjr
κjr

+ (1− α)uis)δsr + α
Cjrs
cjr

cjr
κjr

δij. (4.12)

Unlike in total teleportation, there is no contribution from the teleportation guar-

anteed at each step and the δjr ensures that the teleportation step only contributes if

the nodes are both in the same slice. Therefore, our final stability for a random walk

with only inter-slice teleportation on a multislice network is revealed to be

RIS =
∑
ijsr

α

κjr
(Aijsδsr+δijCjsr)p

∗
isp
∗
jr−γs[α(

kis
2ms

kjr
κjr

)δsr+(1−α)uisδsr+α
Cjsr
κjr

δij]p
∗
jr.

(4.13)

The definition of stability for directed inter-slice edges and undirected intra-slice

edges by restricting the teleportation to intra-slice jumps is derived in a nearly iden-

tical fashion and thus has been omitted.

4.0.6 Community detection using PageRank stability on mul-
tislice networks

Consider, the Zacharys Karate Club defined as in the standrad multislice example

but with the additional restriction that intraslice edges connection slices with different

resolution parameters are directed.

The test for the stability equation for a random walk with teleportation was on the

Zacharys Karate Club (ZKC) benchmark networks (See Fig. 1). The same 34-node

unweighted adjacency matrix was maintained across 16 slices (so that Aijs = Aij for

all s). Simultaneous community detection across 16 resolution parameters was per-

formed with the following sequence of resolution parameters, γs = 0.25, 0, 5, 0.75, ..., 4.

The selection of these parameters was due to the ability to compare results with

previous multislice results on the ZKC network [1]. The results for an interesting

parameter is displayed in 4.3, the intraslice strength parameters varied was ω = 0.1,

the teleportation parameter was α = 0.85 and the resolution parameter varied over

γ = 0.25, 0.5, ..., 4. These results were generated using stability-optimization with a

generalization of the Louvain algorithm [22] and a process known as the Kernighan-

Lin (KL) node-swapping steps [23].

As expected, small resolution parameters are needed to detect communities. Ad-

ditionally, it is quite clear from examining the left hand side of each diagram that
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when 1 − α, the probability of taking a teleportation step, increased above 0.5 that

the modular structure of the graph is no longer distinguishable using the PageRank

dynamics to define stability. Above a resolution parameter of 2, and values near it,

each node is seen as its own community. For small values of the teleportation param-

eter, again, each node is seen as it’s own community as it is impossible to completely

eliminate the non-local contributions that teleportation introduces.
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Figure 4.2: The Zacharys Karate Club [4] was analyzed using the PageRank sta-
bility for a single, static network. Colors depict community assignments of the 34
nodes and each column is an independent assignment of the nodes to communities.
The resolution parameter γ was held constant and the teleportation parameter α was
varied over {0.05, 0.1, 0.15, ..., 0.95}. The dashed lines represent the original commu-
nity division as portrayed in 1.1. As the teleportation parameter α increases, the
chance of teleportation decreases, and thus the underlying community structures are
more closely preserved. However, even the introduction of a small amount of telepor-
tation results in a minimum of 4 communities, where as without teleportation only
two communities are observed at the lowest resolution parameter [9]. As expected,
the community structures observed change under different resolution parameters and
as the resolution increase the communities structure of the underlying network is no
longer distinguishable and each node begins to be placed in its own community. This
figure was generated using the Matlab Heatmap toolbox [21].
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Figure 4.3: The Zacharys Karate Club [4] was analyzed using the PageRank stabil-
ity for mutlislice networks. Colors depict community assignments of the 34 nodes and
each column is an independent assignment of the nodes to communities. The resolu-
tion parameter γ was varied and the teleportation parameter α was held constants at
α = 0.85. As the resolution parameter α increases, the teleportation parameter ap-
pears to have introduced noise into the community assignment. However, for smaler
values thus the underlying community structures are not too far removed from the
expected community distribution for the Zacharys Karate Club. In contrast when
the teleportation parameter α was allowed to be near .50 and ω = 0 the communities
deteriorated into nearly every community consisting of a single node.This figure was
generated using the Matlab Heatmap toolbox [21].
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Chapter 5

Conclusions and Future Work

The work outlined in this dissertation is still ongoing and two open areas of work

are outlined below. The first, is a non-Laplacian dynamics approach to defining

stability. The second, benchmark models which have shown some promise for testing

community detection algorithms for multi-scale networks..

5.1 Non-laplacian dynamics and stability

One form of dynamic which has yet to be generalized for stability is a non-Laplacian

dynamic.

5.1.1 SIS-Model

One epidemic model known as Susceptible-Infected-Susceptible (SIS) provides some

clues for successfully generalizing stability for a non-Laplacian dynamic. However,

time constraints have prevented a full exploration of this area. I have included the

motivation behind this exploration in hopes that it will give some insight into future

directions for research.

SIS is one of the simplest virus infection models, in which nodes in a network are

in one of two states: Healthy, but susceptible to infection or Infected by the virus

and infectious to adjacent nodes. For our purpose, we will use the terms ”infection”

and virus loosely to express the possibility that some ”virus is transferred from an

infected individual to the local network surroundings. Rather than considering a

virus, suppose and item is being passes from node to node.

Definition 15. Susceptible-Infected-Susceptible (SIS) model In the SIS model [24],

nodes have two states, infected or susceptible. For an infected node, there is prob-

ability β for each adjacent edge that the infection will spread to a neighbor. Once
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infected, a node may recover from the infection with some probability δ. Therefore,

the effective infection rate τ = β
δ

.

The importance of this is that unlike many other infection models, as time goes to

infinity we do not necessarily expect to see the entire system become solely infected

or healed.

Recall that stability was based on the idea of a random walker being trapped in a

community for a long period of time. In this model, unlike a random walk where the

event that a walker is at node i and at node j are mutually exclusive, the events that

node i and j are infected may occur at the same time. However the idea of passing

an item from one node to another is quite similar to the idea of random walker. The

main difference is that the SIS model at each time step a node has a probability of

splitting the item into pieces and passing them to its neighbors. In a similar way, the

recovery probability can be thought of as the probability that the node destroys the

item. As we assumed with a single random walker, these multiple items should each

remain within in a community, assuming a low disappearance rate, for a long period

of time due to the modular structure of a sommunity. Alternately, this expresses that

the spread of an infection will remain localized within a community for long period

of time, a concept that is already used when modeling the spread of disease [25].

Therefore, although we would move away from the familiar Laplacian dynamics

the motivated our formulation, the idea which motivated stability remains largely

intact. However, since this is a filling model, careful consideration must be given to

whether stability would still be defined as with random walks for such a model.

Current research has a discrete-time SIS-model introduced by Wang et al. [24]

with a threshold for a steady-state solution that can be used for any network. How-

ever, this steady-state turns out to be intractable with real networks due to the

size of the Markov process, thus a mean-field approximation to the solution known

as N-intertwined SIS was introduced by [26] is a possible area to explore. The N-

intertwined SIS gives a continuous time approximation to the system. However, the

resulting dynamical system is non-linear and the solution is not easily found in order

to predict the probability that an infection is contained within a community initially

and at time t. In order to find an expression for stability, an approximation for the

model would need to be made. One possible idea is to use the fact that dynamical

systems behaves in a nearly linear fashion near equilibrium points. Thus we could

impose a restriction on τ to ensure that the system is approximately linear. The

discrete-time model for SIS is presented below. Notice the non-linear form of the

dynamics.
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5.1.1.1 Discrete-time SIS

Wang et. al. [24] express the spread of disease through a network using pi,t the

probability that a node is infected at time t. To define this expression, consider Ui,t

the probability that a node is not infected by a neighbor at time t. Although this

seems to be the opposite of out intended goal of finding the probability of infection

for a node, we utilize this approach as 1− pi, t, the probability a node is not infected

at time t, is more intuitive to express.

Ui,t =
∏

j,j∈Nb

(1− β)pj,t−1 + (1− pj,t−1) =
∏

j,j∈Nb

1− βpj,t−1 (5.1)

Consider that a node i is susceptible at a given time step under two conditions:

• At the previous step, i was healthy and in this time step did not receive an

infection from any infected neighbors.

• The node i was infected at a previous time step and was cured at the current

time step. This can occur in two ways.

– Node i receives an infection from a neighbor at the current time step as it

is being cured, in this case the ”new” infection is ignored.

– Node i does not receives an infection from a neighbor at the current time

step and is cured.

The assumption is made that for an infected node, the probability that a parallel

infection from a neighbor and cure at a time step occurs roughly 50

Therefore, we can now define the probability that a node is healthy.

1− pi,t = (1− pi,t−1)Ui,t + δpi,t−1Ui,t +
δ

2
pi,t−1(1− Ui,t) (5.2)

The first term in this expression is the probability that node i was not infected at

the previous time step but is infected at this time step.

Therefore, we define the infection density to be

ṗi = 1− (1− pi,t−1)Ui,t + δpi,t−1Ui,t +
δ

2
pi,t−1(1− Ui,t)− pi; t (5.3)

The steady state solution is the discrete-time expression p∗i =
1−Ci,t

δCi,t−Ci,t+ δ
2
(1−Ci,t)+1

.

Wang, et al. [24] proved the following.
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Theorem 2. SIS-Model Epidemic Threshold If an epidemic dies out on a network

A, then the the effective infection rate β
δ
< τ = 1

δ1,A
, where β is a constant birth rate,

at δ the recovery rate, and δ1,A is the largest eigenvalue of the network’s adjacency

matrix A.

Proof. The proof of this theorem is rather long and adds little to the immediate

discussion, therefore, interested readers are referred to [24].

Equivalently, above this threshold τ , a persistent number of nodes will remain

infected and thus a steady-state is guaranteed. Note that this is a Markov process for

a network A with N nodes so that every node has two possible states. The state of the

entire network at time t is S(t) and will be defined by every possible configuration of

state on the nodes that can be achieved at time t.Therefore the state space consists of

2N states .This makes this model computationally intractable for real world networks

[27]. However, a reasonable approximation based on mean field theory known as the

N-intertwined SIS-model was recently introduced by Van Mieghem et. al [27, 26]

and seems to be a possible area of exploration for finding a tractable solution for the

steady state needed to define stability.

This model does not fit perfectly with the previous definitions designed for stability

with normalized Laplacian matrices. Thus, additional work is required in order to

better understand how the a filling model dynamic will change the ability to detect

underlying structures in a network and if nonlinear systems are impractical due to the

inability to solve the system without imposing strict restrictions on the parameters

of the model.

5.2 Benchmarks for Multislice Community Detec-

tion

There are no benchmarks specifically designed for multislice networks. It is possible

to use certain standard benchmark networks such as the popular LFR benchmarks

[28] to define a multislice network by placing instances of the benchmark in each slice.

This is similar to what was done with the multislice Zacharys Karate Club network.

However, although this can provide some insight, it does not specifically address the

complicated structures that a multislice network can allow.

For example, LFR benchmarks [28] allow for communities of varying size and de-

gree distribution. If an LFR benchmark network is generated and copied to each slice

the slice are coupled with some weight ω, then multislice community detection can be

32



performed over several resolution parameters to find hierarchical communities in the

networks. The use of LFR benchmarks to test the ability for stability-optimization

to find hierarchical structures can thus be tested in this way. IT exploits the ability

to use multiple resolution parameters. However, an alternate approach would be to

put a separately generated LFR benchmark in each slice and couple these slices to-

gether. In this case the special construction of multislice networks is not explicitly

considered when determining how the model should be constructed. Furthermore,

LFR benchmarks are constructed with specific degree requirements, it would seem

that the contribution of intra-slice connections should be considered in a model if the

degree distribution is to be carefully controlled.

Ideally, a set of benchmark network are needed which consider the special struc-

ture of multislice networks. This may require multiple types of benchmarks, as a

benchmark to model directed or time dependent networks may require consideration

not necessary for detecting hierarchical community structures or multiplex networks.

Once benchmarks have been developed, then a rigorous test of the multislice sta-

bility formulations with multiple parameters to determine the effect of varying the

parameters should be undertaken.

5.3 Conclusion

There is much work that can still be done to explore both the generalizations for

stability to other forms of dynamics and further extensions of multislice networks. I

have presented two of unfinished problems that I found most interesting and which

show the most promise for successful future exploration. Further applications and

verifications of the PageRank model would be useful to help determine it’s limits and

to analyze some real-world models with time dependencies to see is current community

detection algorithms have missed out on key communities due to inefficient models

for directed edges.

Theorems, Corollaries, and Proofs This appendix includes proofs to the theorems

and corollaries given in the main text.

Theorem 3. If u is a vector and M is a transition matrix, then ||Mv||1 ≤ ||v||1
where || · ||1 is the l1 norm.

Proof. The definition of the l1 norm for a vector is ||u||1 =
∑

i |ui|. Applying this

definition directly to our expression.

||Mv||1 =
∑
i

sumj|Mijuj| ≤
∑

Mjk|vk| ≤ ||v||1
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Using the triangle inequality, |a + B| ≤ |a|+ |b| and the fact that each entry Mjk in

a transition matrix is positive so Mjk = |Mjk|. A transition matrix has column sum

1 for each column. Therefore, if we sum over k we get our desired result.

||Mv||1 ≤
∑
k

|vk| = ||v||1

This theorem leads to the following interim corollary concerning the eigenvalues

of a transition matrix that was omitted form the main text but proves helpful in

proving other results.

Corollary 2. If M is a transition matrix, then all for all eigenvalues λ of M it is

true that λ ≤ 1

Proof. Let v be a be an eigenvector if M with eigenvalue λ, so λv = Mv. Use the

definition of the l1 norm and apply it to both sides.

|λ|||v||1 = ||Mv||1

Now, from the previous proof we know that |λ|||v||1 ≤ ||v||1, and thus we have

achieved our result |λ| < 1.

Corollary 3. If M is a transition matrix, then I − γM is invertible for all γ < 1 .

Proof. This follows from the previous corollary. We will prove the result by contra-

diction. Suppose that I − γM is not invertible, then for some non-trivial vector v

it is true that (I − γM)v = 0. However, this means that Mv = 1
γ
v, implying that

M has an eigenvalue 1
γ
> 1, but this is prohibited by the previous theorem. Thus, a

contradiction.
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[11] S. Fortunato and M. Barthélemy, “Resolution limit in community detection,”

Proceedings of the National Academy of Sciences USA, vol. 104.
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