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Abstract

Students use grade distributions from previous semesters to help them in

selecting future classes to take. However, there is more information to be

told by these distributions than a simple average GPA or percentage of fail-

ures. Using Singular Value Decomposition (SVD), we analyzed this data to

discover underlying patterns. We also discovered patterns using probability

distributions and entropy. For background, we will discuss error reduction

over noisy channels. We also explain Shannon information content and some

of its applications, particularly in data compression. We then discuss the

SVD and its applications in data compression and noise suppression. For
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our research, we used the grade distributions from the math department of

Georgia Tech. First we constructed a matrix of the grade distributions from

each section of undergraduate classes with more than 10 students. This data

was obtained from classes held over the past five years, when Georgia Tech

started the semester system. We computed the SVD of this matrix, and

then we broke the grades down by class and professor and computed those

SVD’s. We used truncated SVD’s to reconstruct our data and found that

the singular values acted differently for each grade. We also computed fre-

quency graphs for our data and observed that A’s B’s and C’s have similar

distributions and D’s and F’s have similar distributions. We were also able to

use these frequency graphs to compute the entropy of our data and come to

conclusions about a particular professor or class based on its overall entropy.

1 Introduction

One of the main considerations of graduate admissions officers and employers

of college graduates is a job candidate’s academic transcript, in which, the

student’s performance in each class is reflected by a single letter. What

information is really stored in these letter grades? It is fairly safe to say that

grades are a matter of concern to most college students at any university or

institution, including Georgia Tech, and any additional information about

grades would be valuable.

As the students of Georgia Tech register for classes each semester, many

students look up grade distributions with the online Course Critique [1] in

order to figure out which classes are easiest or which professors give the most
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A’s. What other information can be extracted from this data? What else

can aid students in their selection of classes? In our project, we attempt to

answer these questions.

To begin, we need some background knowledge from information the-

ory, which was developed to study the theoretical limitations and potentials

of communication systems given noisy channels [2]. A natural measure of

information content of an outcome x is measured in bits by the Shannon

information content, which is defined by

h(x) = log2

1

P (x)
, (1)

where P (x) is the probability of outcome x. For an ensemble of outcomes,

X, the entropy is the average Shannon information content. Entropy, also

measured in bits, is defined by

H(X) ≡
∑
x∈X

P (x) log2

1

P (x)
. (2)

It vanishes when one outcome contains all the probability, that is, if P (xi) = 1

for some xi, then H(X) = 1 · log2(1) = 0. Entropy is maximized when the

ensemble is uniformly distributed such that P (xi) = 1/|X| for all xi.

We also utilize singular value decompositions (SVDs), which are obtained

by decomposing an m× n matrix A into

A = UΣV T , (3)

where U and V are orthogonal matrices, and Σ is an m × n matrix with

“singular values” along the main diagonal entries and zero everywhere else.

The built-in Matlab SVD function easily computes the vector of singular
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values, s, which is subsequently normalized by dividing it by the square of

its length. This gives how much data lies in the direction of each singular

vector. We subsequently interpret these singular values in the context of the

problem we study.

The data used in this research project comes from the Georgia Tech Cri-

tique Database, downloadable from the critique website [3]. The database

gives the percentage of students who received grades A, B, C, D, and F

for each class. These percentages also include students who took the class

pass/fail or who withdrew from the class before drop day, so we adjusted

the data to obtain percentages only taking students with letter grades into

account. We then organized the raw data and grouped it by semester, class,

and teacher to be imported into Matlab as matrices where each row corre-

sponds to a class section. The first column represents the percent of A’s,

the second column represents the percent of B’s, and so forth, so that each

matrix has five columns. We used this source for convenience despite the fact

that the data are rounded to the nearest whole percent. We also obtained

the data to two decimal places and found that the effects of rounding are not

significant, as indicated by Table 1.

The full database lists all classes from Spring 2000 to present, although

the data also is available in other formats for Fall 1999, when the Institute

changed to the semester system. Any data from quarters before Fall 1999 are

difficult to compare to data from semesters because the material in Georgia

Tech’s classes were divided differently. For example, a year of calculus is

divided into two classes under the semester system, but it is three classes

under the quarter system.
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Effects of Rounding Data

2 decimals Rounded Difference

0.8003 0.8008 0.0005

0.0914 0.0911 -0.0003

0.0632 0.0629 -0.0003

0.0318 0.0319 0.0001

0.0133 0.0133 0.0000

Table 1: Normalized singular values rounded to 2 decimals, rounded to the

nearest whole percent, and the differences between these two quantities using

data from all math classes in fall semester 1999. The very small differences

indicate that using rounded data does not greatly affect results.

Not all professors or classes were analyzed because those professors or

classes with only a small number of sections created matrices with too few

rows to be analyzed reasonably using SVDs. Larger matrices can be analyzed

more reliably; more data reduces the standard error and produces more ac-

curate results. Also, we chose not to include sections containing fewer than

ten students or graduate classes because small classes may skew results, and

they tend to enter many zeros into the matrix. A class with only two stu-

dents, for example, may have a grade distributions with those two students

both receiving A’s (100% A’s) and zero percent B’s, C’s, D’s, and F’s.

In this paper, we examine various approaches to analyzing and interpret-

ing this data. In section 2 we examine the frequency distributions of each

letter grade, the shapes of the distributions. In section 3, we discuss sin-

gular value decomposition and its applications. In section 4, we perform
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singular value decomposition analysis on the matrices and on matrices of

the grades relative to average distribution, and we subsequently reconstruct

the matrices with truncated singular value decompositions to see how much

information each singular value encodes. In section 5, we calculate the en-

tropy of the data sets. We summarize our results in a concluding section and

discuss background research on information theory, entropy, inference, and

data compression in an appendix.

2 Frequency Distributions of Letter Grades

In a typical college course, one might have certain expectations regarding

the grade distributions– such as greater percentages of A’s, B’s, and C’s, and

fewer D’s and F’s. Examining means of different sets of the Course Critique

data, this is confirmed; grades of A, B, and C make up a greater percentage

of the grade distribution than do grades of D and F. Table 2 shows the mean

percentage of each letter grade given in the set of all undergraduate classes

with at least ten students, all sections of Math1501 (Calculus I), and all

classes taught by math professors #1, #22, and #27 (names withheld). We

observe similar results with almost all data sets. There are some exceptions

such as math professor #27, half of whose students, on average, received D’s

and F’s. Otherwise, it is generally true that D’s and F’s together comprise

approximately one fifth of the recorded grades.
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All Math1501 MaProf1 MaProf22 MaProf27

A’s 25.47 21.58 22.42 36.10 21.60

B’s 29.01 27.23 33.91 38.10 15.50

C’s 25.53 27.08 22.84 15.90 17.00

D’s 11.10 12.91 10.14 3.90 22.10

F’s 8.83 11.15 10.74 5.70 23.80

Table 2: Mean percent of letter grades for all undergraduate classes with

at least ten students, all sections of Math1501 (Calculus I), and all classes

taught by math professors #1, #22, and #27 (names concealed). In general,

A’s, B’s, and C’s make up a greater percentage of the grade distribution than

do D’s and F’s.

Probability Models

To discover unexpected results, it is insightful to examine the distribution

of individual letter grades in each data set by constructing frequency distri-

butions (Figure 1). The x-axis of each histogram ranges from 0 to 100 and

is divided into twenty intervals (each with length five). Choosing a differ-

ent interval length will produce different frequency histograms. For future

research, it would be interesting to use different interval lengths and observe

whether and how the results change. The y-axis represents the relative fre-

quency that the percent of A’s, B’s, C’s, D’s, or F’s given for the data set

falls in each interval. At first glance, one notices that the distribution of A’s,

B’s, and C’s have approximately the same shape, and that the distribution

of D’s and F’s have approximately the same shape. This gives two distinct

groupings.
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Figure 1: Frequency distributions of the percent of A’s, B’s, C’s, D’s, and

F’s in all classes with at least ten students. The plot in the lower right

corner shows the outlines of each of the other histograms on the same axis

so they may be more easily compared. The distributions of A’s, B’s, and

C’s are shaped similarly to each other, and the distributions of D’s and F’s

are shaped similarly to each other.

We depict the data with A’s, B’s, and C’s on the same histogram and D’s

and F’s together on another histogram in Figure 2. We wish to determine

what type of probability distribution best describes A’s, B’s, and C’s, and

what type best describes D’s and F’s. We observe that A’s, B’s, and C’s

appear to be roughly described by shifted normal distributions, whereas D’s

and F’s appear to be exponentially distributed.

The probability density function of the unshifted normal distribution is
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Figure 2: Frequency histograms for the set of all classes with at least ten

students with A’s, B’s, and C’s combined on the left graph, and D’s and F’s

combined on the right graph.

defined by

f(x) =
1

σ
√

2π
exp

[
−(x− µn)2

2σ2

]
, −∞ < x < ∞, (4)

where µn is the mean and σ is the standard deviation. The mean and stan-

dard deviation are computed for each set of A’s, B’s, and C’s, and the values

are inserted into the normal probability density function to obtain a fit for

each graph (Figures 3a,b,c). Although the shape seems to match reasonably

well, a small shift to the left would improve the accuracy of the approxima-

tion. We see this in most of the fittings of the distribution of A’s, B’s, and

C’s.
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Figure 3: Frequency histograms of percent A’s, B’s, C’s, D’s, and F’s in

the set of all undergraduate classes with at least ten students and the su-

perimposed distribution fittings. Graphs (a), (b), and (c) are approximated

by a shifted normal distribution although we fit it to an unshifted normal

here. Graphs (d) and (e) are approximated by an exponential distribution.

The probability density function of the exponential distribution is

f(x) =
1

µe

e−x/µe , 0 ≤ x < ∞, (5)

where µe is the mean. We compute the mean percent of D’s and F’s for

each set of raw data and insert the value into the exponential probability

density function to obtain a fit for each graph (Figures 3d,e). As one can

see, the distribution of D’s and F’s is approximated well by the exponential

distribution.

A reasonable conclusion of this analysis is that instructors have a notion

that the letter grade D carries the same stigma as an F, whereas A’s, B’s,
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and C’s do not. Although technically an F is a failing grade, and D is still a

passing grade, the idea is that a D is like a failing grade because many courses

require at least a C in order for the class to count towards one’s degree.

In addition, many majors have GPA cutoffs for good academic standing,

so students who do not maintain a minimum GPA are in danger of being

dropped from their major. In the math department, for example, the cutoff

is 1.70 for freshmen, 1.80 for sophomores, 1.95 for juniors, and 2.00 for seniors.

Some departments, such as the School of Industrial and Systems Engineering

(ISYE), also have GPA cutoffs to be eligible to transfer into the major.

(The ISYE GPA requirements range from 2.4 to 2.8.) Furthermore, the

minimum grade point average required to graduate from Georgia Tech with

an undergraduate degree is 2.0 (a C average). In other words, a D average

is not enough to receive a diploma, despite the fact thata D is technically

a passing grade. Thus, as confirmed by our analysis, D’s are treated in the

same manner as F’s when grades are assigned.

Another possible conclusion is that because there are only two types of

grades (based on their distribution), having five letter grades is unnecessary.

That is, a pass/fail system could accomplish the same goal. This may not

be the case for all universities, however, as most do not follow a five-grade

system. At a school where each letter grade can also include a plus or minus

(where a B+ has a different grade point value than a B−), different grades

might be treated differently. One might also expect different distributions

and different groupings. It is thus worthwhile to repeat our study at other

universities to analyze data across different schools.
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3 Singular Value Decomposition

Singular value decompositions (SVDs) were originally introduced as an al-

ternative to spectral decomposition. Spectral decomposition decomposes a

positive definite matrix A into CLCT , where L is a diagonal matrix who

entries are the eigenvalues of A and C is a matrix of the corresponding

eigenvectors of A. However, we cannot use this method of decomposition on

m × n matrices. The SVD theorem states that we can always decompose a

real m× n matrix M into the following form

M = UΣV T , (6)

where Σ is a diagonal matrix, U is an m ×m matrix and V is an n × n

matrix.[4]

3.1 Computing the SVD

The matrices U and V are constructed from the eigenvectors of MMT and

MT M , respectively. Because MMT and MT M are square, symmetric, real

matrices, their eigenvalues are real and positive and their eigenvectors can

be made orthonormal. Thus, U and V satisfy

UUT = Im V V T = In .

The matrix Σ can be viewed in block form as two matrices If m > n,

Σ =


D

0


 ,
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and if m < n

Σ =
(
D 0

)

where D is an n× n or m×m, respectively, diagonal matrix and 0 is an

|m− n| × n matrix of zeros.

The first k diagonal entries σ1, σ2, . . . , σk of the matrix Σ (where M is

a rank-k matrix) are the square roots of the eigenvalues of MMT and MT M ,

all of which are positive. The so-called singular values σi are ordered so that

σ1 > σ2 > ... > σk .

The remaining k + 1 → n entries of D are zero, corresponding to M ’s

nullspace.

Additionally,

AAT ui = σiui AT Avi = σivi, i ≤ min(m, n)

where ui and vi are the ith columns of U and V , respectively.

We also note the extremely important expansion that follows from equa-

tion 6, one obtains the expansion

M =
n∑

i=1

σiuiv
T
i for n < m , (7)

which is sometimes written as

A = B1 + B2 + ... + Bn , (8)

where the Bi are modes of M .
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The orthogonality of U and V implies that

M = UΣV T ⇒ MV = UΣ ,

which can be written separately for each of the modes,

Avi = σiui , i = 1, 2, . . . , n .

3.2 Applications of the SVD

Data represented by matrices often contains large amounts of redundancy.

The leading modes in equation 8 represent most of the data. Using SVDs,

we can construct a lossy compressor. Lossy means that we are guaranteed

that we can make the file less than or equal to its current size, but we are not

guaranteed to retain all of the information. The use of lossy versus lossless

compressors is explained in more detail in the appendix.

Here, we use SVDs for noise filtering. We look at the larger singular values

and their associated modes, as they contain most of the data and the smaller

singular values are treated as noise. By ignoring the modes associated with

the smaller singular values, we can try to reconstruct our data and effectively

filter out some of the ”noise”.

4 SVD of Grade Distributions

At the end of every semester, the Georgia Tech math department records the

grade distribution for each class into a database. Large classes are divided

into smaller sections, so that all the grade distributions are recorded over
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groups of about 10-40 students. Each section is an entry in the database.

We can think of each entry as a vector of percentages. For example, the

vector

g = (25, 27, 29, 9, 10)

represents a section whose instructor gave 25% A’s, 27% B’s, 22% C’s,

9% D’s and 10% F’s.

The data we used originally contained the percentages for A’s, B’s, C’s,

D’s, F’s and W’s, where W’s are the students who withdrew from the class

during the semester. The percentages included every student registered for

the class, so the row sums did not always equal 100 because data was not

included for students who took the class as a pass/fail course. We adjusted

the percentages to make the row sums 100.

First, we made a matrix consisting of all such vectors from undergraduate

classes (classes numbered 1XXX, 2XXX, 3XXX or 4XXX). We only included

courses with at least 10 students.

Computing the SVD of the undergraduate matrix M gives us the matrices

U and V and the vector σ, which contains the five singular values {σi} (the

diagonal entries of the Σ matrix). For the undergraduate matrix,

σ = (1860, 643.9, 469.6, 358.1, 272.1)T .

We then normalize σ by defining

σ̃i =
σi∑5

i=1 σ2
i

.
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Dropping the ˜ for convenience, we obtain a vector of percentages

σ = (0.805, 0.0965, 0.0513, 0.0298, 0.0172)T .

For this matrix, the first singular value encodes about 80% of our original

information. Using the second singular value as well, we can retain about

90%. But what does this mean?

Digital Signal Processing Theory

We motivate the answer to our question with digital signal processing theory.

In digital signal processing, one has a matrix M corresponding to a noisy

signal. We compute the SVD of the matrix M and discard the smaller

singular values, which represent noise [5].

Neglecting the smaller singular values, we can reconstruct a new projec-

tion matrix of rank k (where k is the number of remaining singular values),

given by

Mk =
k∑

i=1

uiσiv
T
i .

Recall from section 3 that this is the truncated matrix. We have projected

the original data onto a basis of the first k modes. Our ”noise” comes from

abnormal data. Extreme situations, such as an entire section receiving A’s

would skew our data and thus viewed as noise. and no other grades, which

would skew our data, are seen as noise are made to look more like the leading

modes.

To analyze these projection matrices, we look at Figures 4 and 5. The

16



0 20 40 60 80 100
0

0.2

0.4

0.6

re
la

ti
v
e

 f
re

q
u

e
n

c
y

M
1

0 20 40 60 80 100
0

0.2

0.4

0.6

re
la

ti
v
e

 f
re

q
u

e
n

c
y

M
2

0 20 40 60 80 100
0

0.2

0.4

0.6

re
la

ti
v
e

 f
re

q
u

e
n

c
y

M
3

0 20 40 60 80 100
0

0.2

0.4

0.6
re

la
ti
v
e

 f
re

q
u

e
n

c
y

M
4

0 20 40 60 80 100
0

0.2

0.4

0.6

re
la

ti
v
e

 f
re

q
u

e
n

c
y

M

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8
All

Figure 4: Frequency distribution of the percentage of A’s given by instruc-

tors in undergraduate classes. We also show the frequency distributions for

M2, M3, M4, and the original data from M . The last plot shows all five

graphs on the same axis. As one can see, M1 has a steep peak, whereas the

rest of the graphs are nearly identical. Hence, a two-dimensional truncation

suffices to explain the data
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Figure 5: Frequency distribution of the percentage of B’s given by in-

structors in undergraduate classes. The first graph is for M1, the frequency

distribution obtained when just keeping one singular value. We also show

the frequency distributions for M2, M3 and M4 and the original data from

M . The last plot shows all five graphs on the same axis. As one can see, M1

and M2 are nearly identical for the distribution of B’s, whereas M3 and M4

are nearly identical to each other and the original data. A three-dimensional

truncation suffices to explain this data.
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former shows the distributions of the percentage of A’s given out by instruc-

tors in different sections. Keeping just one singular value gives the original

mean, but the effects of the extreme cases have been largely ignored. Keep-

ing two singular values produces nearly the same distribution as the original

distribution in M . Hence, even when we keep 80% of the information, one

still misses vital information from the distribution of A’s, but when we keep

90% we have virtually everything we need.

Figure 5 shows the distributions of the percentage of B’s. Keeping one

singular value gives us the original mean, but keeping only one or two singular

values insufficiently approximates the original grade distribution. We can

conclude that there is more noise in the distribution of B’s than that of A’s.

We considered some possibilities for this difference in the distribution of

the B’s as compared to that for A’s. In Georgia, a significant number of

students that go to college get the HOPE scholarship for living in Georgia

and having above a 3.0 grade average [6]. Because receiving a B at Georgia

Tech earns the student a 3.0 towards their grade point average, this grade

is typically considered very pivotal by students and professors. One might

also question the reliability of a 3.0 grade average, because of the significant

amount of noise in this range of grades. Hence, this SVD analysis highlights

a significant concern in the grades handed out at Georgia Tech.

Let’s now consider C’s, D’s, and F’s. We find that C’s behave much like

A’s in that their distribution can be approximated with just two singular

values when including all undergraduate classes. However, for D’s and F’s,

it is necessary to keep four singular values to get a good approximation for

the original data. That is, D’s and F’s contain the most. We can compare
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this finding with that found earlier in the frequency distributions. The D’s

and F’s have the most extreme tails, foreshadowing this significant noise.

While this information is interesting, it is particularly instructive to apply

SVDs to individual classes and instructors. Figure 6 is similar to Figure 4,

except we only use information from sections of Math 1501 (Calculus I).

Nearly every student at Georgia Tech must take this course, so it is one of

the most significant courses at the school. For a student trying to predict

grade distributions for a future class of Math 1501, he or she would get the

most accurate prediction by reducing the impact that noise has on the data.

In Figure 6, we see that using M2 allows us to more accurately predict a

future grade distribution. In this particular example, sections in which more

than 50% of the students received A’s are not present in M2 and there are

fewer section with no A’s. Both these cases are unlikely in a section of Math

1501, thus we consider them ”noise.”

Figure 7 compares the grade distribution of the M matrix to that of M2,

the 2-dimensional truncation of M .

5 Entropy of Grade Distributions

We can also use entropy to quantitatively measure the average information

content of grades. First, we connect the idea of relative frequency of an out-

come in a data set to the probability that the outcome will occur, assuming

that grades follow the same distribution and that it is valid to make infer-

ences based on our data. We obtain an ensemble X for each letter grade from

the relative frequency histogram. The set of possible outcomes, AX , consists
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Figure 6: Frequency distribution of the percentage of A’s given in Math

1501. The first graph depicts M1, the frequency distribution obtained in

the one-mode projection. We also show the frequency distributions for M2,

M3, and M4 and the original data from M . The last plot shows all five

graphs on the same axis. Though M1 preserves the mean, we have lost

some important information. In M2 the mean and most of the important

information is preserved, while data at the tails is discarded in favor of the

leading modes.
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Figure 7: Comparison between the original matrix M and the truncated

matrix M2. The means remain the same, but the data is more evenly dis-

tributed around the mean in M2. The leading modes take over the data and

the noise at the tails has been reduced.
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of the twenty intervals that we use for constructing the frequency histograms,

and outcomes have probabilities equal to the relative frequencies:

AX = {[0, 5), [5, 10), . . . , [95, 100]}, |AX | = 20

PX = {p1, p2, · · · , p20},
20∑
i=1

pi = 1. (9)

Now, using equation (2), we calculate the entropy for the letter grades A, B,

C, D, and F for each data set. The maximum value of entropy in this case is

max H(X) = log2 |AX | = log2 |20| ≈ 4.3219. (10)

This maximum value would change if we chose a different interval length

because then the number of intervals (or outcomes) |AX | would change. The

maximum value occurs when the probability distribution is uniform, so an

entropy close to 4.3219 bits implies that the distribution is close to uniform.

We have already found that the distribution of letter grades can be closely

modelled with a shifted normal or exponential distribution, rather than the

uniform distribution, so we expect that the entropies will not be close to the

maximum value. Table 3 shows the entropies of the ensembles corresponding

to each letter grade for the set of all undergraduate classes with at least ten

students and all class sections taught by math professors #15 and #30.

We interpret these entropies as average information content, or the num-

ber of bits of information an average piece of data supplies. However, we do

not see any clear pattern with these entropies across data sets. In some cases,

one acquires more information from an outcome of A, and in others, there

is more information from an outcome of F. A high entropy implies that it is

almost equally probable for an outcome to fall in any of the twenty intervals
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All MaProf15 MaProf30

H(XA) 3.3959 1.9212 3.4031

H(XB) 3.2661 2.2028 3.9038

H(XC) 3.2628 2.1800 3.7919

H(XD) 2.7128 2.3826 3.6880

H(XF ) 2.5034 2.4581 3.3710

Table 3: Entropies of ensembles for A’s, B’s, C’s, D’s, and F’s using the

data set of all undergraduate classes with at least ten students, and all

class sections taught by math professors #15 and #30. Math professor

#15’s relatively low entropies reflect a tendency to give grades in a certain

interval. Math professor #30’s relatively high entropies reflect more uniform

(random) distributions.

of percents; that is, the instructor does not favor a particular percentage

range for the letter grade. A low entropy implies the opposite; there may be

some intervals in which outcomes are more probable, and the instructor may

consistently give grades in those intervals.

We computed entropies of the ensembles for each letter grade for thirty-

seven instructors; of these, the average of the five entropies was lowest for

math professor #15 and highest for math professor #30 (Table 3). We plot

the rows of the matrices formed by these data sets to examine how grade

distributions of single class sections vary within each data set (Figure 8).

The distributions for math professor #15 follow a clearer pattern than do

those of math professor #30. Thus, math professor #15 favors a particular

distribution of grades, whereas math professor #30 does not; this is reflected
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by the entropies.
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Figure 8: Line plots of the rows of the matrices for math professors #15

and #30. Math professor #15 favors a particular distribution of grades,

whereas math professor #30 does not.

Instead of considering each distribution of letter grades as a separate

ensemble, we can examine the overall entropy of a data set with a different

ensemble, Y , defined so that the outcomes are the letter grades. We assign

each letter grade a probability equal to the expected value (i.e., mean) of the

letter grade. For the ensemble Y,

AY = {A,B, C, D, F}, |AY | = 5,

PY = {µA, µB, µC , µD, µF}. (11)

The maximum entropy is now

max H(Y ) = log2 |AY | = log2 |5| ≈ 2.3219. (12)

An entropy close to 2.3219 now means that grades are nearly uniformly dis-

tributed across the five letter grades. We saw earlier that this is usually not

25



the case, so we do not expect that the entropies will be very close to the

maximum value.

Table 4 shows the entropies for all thirty-seven math professors for whom

we had sufficient data. The highest entropy is that of math professor #27,

whose entropy 2.3032 is close to the maximum, 2.3219, corresponding to a

nearly uniform distribution among the letter grades. The lowest entropy

belongs to math professor #22, at 1.0910, whose distribution of letter grades

is more greatly skewed. Recall from Table 2 that math professor #27 assigned

a large number of D’s and F’s, whereas math professor #22 assigned, on

average, very few D’s and F’s (less than 10% combined) and had relatively

high means for the percent of A’s and B’s given.

A low entropy does not indicate the outcome(s) toward which the prob-

abilities are skewed; it may be that there are very few A’s, B’s, and C’s,

but many D’s and F’s. However, based on the assumption that instructors

generally give more A’s, B’s, and C’s, we may conclude that a low entropy is

likely to be indicative of a very low percentage of D’s and F’s in the data set.

A high entropy indicates that the chances of getting an A is approximately

the same as the chances of getting any other grade. We might compare this

situation to an instructor who has a fair five-sided die and assigns grades by

rolling the die.

Given these results, a student would likely prefer professors with a low

overall entropy. Assembling these results allows students to easily compare

instructors by comparing a single value instead of looking at all the data for

each class section. It would also be useful to compute entropies not only

for different instructors, but also for different classes or semesters in order
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MaProf entropy MaProf entropy MaProf entropy MaProf entropy

1 2.1798 11 2.2116 21 2.1945 31 2.0314

2 2.0894 12 2.2649 22 1.9010 32 2.2205

3 2.2422 13 2.1870 23 2.0553 33 2.1913

4 2.0975 14 2.2778 24 2.1766 34 2.2303

5 1.9419 15 2.1197 25 2.2637 35 2.0889

6 2.2556 16 2.2788 26 2.0901 36 2.0421

7 2.1597 17 2.2329 27 2.3032 37 2.2104

8 2.1957 18 2.0740 28 2.2353 All 2.1846

9 2.1649 19 2.1064 29 2.0124

10 1.9379 20 2.0816 30 2.1127

Table 4: Entropies for math professors #1 through #37 and for all un-

dergraduate classes with at least ten students. Math professor #27, whose

distribution of letter grades is close to uniform, has the highest entropy.

Math professor #22, whose distribution of letter grades is skewed, has the

lowest entropy.
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to aid students in selecting which classes to take and when to take them.

For example, most freshmen who test out of Calculus I take Calculus II in

the fall, and these students are usually very bright and were motivated to

take college-level calculus during high school. Therefore, taking Calculus II

in the fall may be different from taking it in the spring because the student

make-up of the classes are often different.

6 Conclusions

By considering a probability model for grade distributions, we have un-

earthed a few interesting results. Firstly, when taken over many sections,

the frequency distribution of A’s, B’s and C’s given in a course can be ap-

proximated by a normal distribution, while the D’s and F’s are approximated

by an exponential distribution. This implies that when distributing grades,

instructors treat D’s like F’s. This can be attributed to the fact that being

in good academic standing at Georgia Tech requires a student to have above

a C grade average.

When we consider the grade distribution database as a noisy system and

compute the SVD, we discover that a projection onto the first mode will

retain the original mean, however the distribution is largely skewed. For

A’s and C’s, a 2-dimensional truncation accurately approximates the data,

however for B’s a 3-dimensional truncation is needed. A significant factor

in this difference comes from students struggling to maintain at least a B

average in order to keep scholarships. However, the fact that the B’s need a

3-dimensional truncation for a good approximation implies that the variance
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of the B’s is higher than that of A’s or C’s, and so the grade of a B is less

reliable as a judge of a student’s performance in a class. D’s and F’s required

a projection onto 4 modes to accurately approximate the data. Thus, D’s

and F’s have the largest amount of noise data.

Once again considering the probability model for grade distributions, we

can use the frequency distributions to compute entropies for different pro-

fessors. While interpreting the exact meaning of the entropy of an ensemble

is difficult without knowing any more information about the ensemble, we

know that a high entropy implies that the instructor associated with the

ensemble does not favor a particular grade distribution or letter grade. A

low entropy implies that certain grade distributions are more probable than

others and the instructor consistently gives this pattern of grades. While we

cannot exactly judge the grade distribution that an instructor with a low en-

tropy gives out, based on our knowledge that A’s, B’s, and C’s have a higher

frequency, we can conclude a low entropy is most likely associated with a low

percentage of D’s and F’s in the data set. A high entropy implies the chance

of getting an A is the same as that of an F, or any other grade.

For our future research, we intend to analyze the entropy of different

courses during different semesters and comparing our results. In addition,

doing the same computations for other departments of Georgia Tech and

other colleges will be important to assure that the math department of Geor-

gia Tech is not a special case. We also would like to discover the effect of

grading systems that make use of +/- instead of only 5 letter grades.
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Appendix: Background Research

Before beginning our research, we studied David MacKay’s book, Informa-

tion Theory, Inference, and Learning Algorithms [2]. We focused on the chap-

ters about information theory. The following subsections will summarize

what we covered.

A.1 Introduction to Information Theory

One of the most important questions raised in information theory is how to

communicate perfectly over an imperfect, noisy communication channel. For

instance, on a computer one may want to write some information, in the form

of a binary string, from the memory to the disk drive. On the disk drive we,

distinguish a 0 from a 1 by aligning a magnetic strip in one direction for a

0 and another for a 1. There is a chance that these bits may spontaneously

flip, resulting in noise.

There are two types of ways to deal with such noise problems. One is im-

proving the physical system, perhaps by using better materials to construct

the disk drive. The other uses information and coding theory. More specifi-

cally, one can add redundancy through an encoder and decoder to a message

to reduce the risk of bit error. Two of the simpler examples of encoding are

Repetition Codes and Block Codes.

Repetitions codes repeat every bit in a message N times. If the original

probability of bit error is f , the repetition code has a new probability of bit

error

pb =
N∑

n=(N+1)/2

(
N

n

)
fn(1− f)N−n
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However, there is a trade-off, as our new rate of communication is 1/N .

On the other hand, block codes provide a way of converting a source

message s of length K into a transmitted message t of length N . The first K

bits of t are the original message s and the last N −K bits are parity checks

on the original message. In the (7, 4) Hamming Code, a type of block code,

an original message of length four is sent as a message of length 7. The first

four bits are the original message and the last 3 bits are parity checks. The

probability of bit error for the (7, 4) Hamming Code is

pb =
7∑

r=2

(
7

r

)
f r(1− f)7−r

The new rate of communication here is 4/7.

Although there seems to be a trade-off between bit error and commu-

nication rate, Claude Shannon proved that the maximum possible rate of

communication does not vanish as the probability of bit error goes to zero.

A.2 Shannon Information and Entropy

The most important results of this section concern Shannon information

content and Shannon entropy.

We defined the Shannon information content for an outcome x in section

?? as

h(x) = log2

1

P (x)

The function h(ai), a natural measure of the information content of an

event x = ai, is measured in bits.
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The entropy of an ensemble X is defined as the average information con-

tent in the set of outcomes, AX ,

H(X) ≡
∑

x∈AX

P (x) log
1

P (x)
.

The entropy is also measured in bits.

The entropy function satisfies the following properties:

1. H(x) ≥ 0 with equality if and only if (iff) pi = 1 for only one i.

2. Entropy is maximized if the probabilities of the outcomes in the set

AX are uniform. That is

H(X) ≤ log(|AX |) with equality iff pi = 1/|X| for all i

The relative entropy or Kullback-Leibler divergence between two proba-

bility distributions (defined over the same outcome set AX) is

DKL(P ||Q) =
∑

x

P (x) log
P (x)

Q(x)
.

The relative entropy satisfies Gibbs’ Inequality

DKL(P ||Q) ≥ 0 ,

where equality equality if and only if P = Q.

A.3 Inference

In inference, probabilities are interpreted not as frequencies or proportions,

but rather as degrees of belief. For an example of an inference problem,
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consider a bent coin. We toss it F times and observe a sequence of heads

and tails. We want to know the bias of the coin and want to predict the

probability that the next toss will be a head.

To do this, we must first make an assumption about the prior distribu-

tion. Inference is always conditional on assumptions. When doing inference

problems, it is important to be explicit about one’s assumptions so that they

can be easily noted and (if necessary) modified. One’s computations also

must be easily reproducedible. Popular applications of inference include the

analysis of evidence in legal cases.

A.4 Lossy versus Lossless Compression

Consider a guessing game in which a player attempts to identify an outcome

by asking as few yes/no questions as possible. Assuming all outcomes are

equally probable, the answer is yes or no with probability 0.5 each, and the

questions are independent. Each question has Shannon information content

log2
1

1/2
= 1 bit. If the answer to each question is encoded with 1 for yes and

0 for no, then each outcome is encoded by a binary file with length log2 |AX |,
where AX is the set of all possible outcomes. This length, defined to be the

raw bit content of X, is the minimum number of questions necessary. The

total information content equals the total length of the binary file.

We gain the most information from an outcome if the probability distri-

bution over the outcomes is uniform. Also, less probable outcomes provide

more information than more probable outcomes. For example, the probabil-

ity that an English word begins with ‘xyl-’ is very small, whereas there is a

much greater probability that an English word begins with ‘pro-’. That the
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first three letters of a word are ‘xyl-’ conveys a lot information, as it is easy

to guess the remaining letters in the word. Conversely, it is unlikely that we

would correctly guess the word beginning with ‘pro-’.

There are two types of data compression: lossy and lossless. A lossy com-

pressor compresses some files, but others may have the same encoding and

may be confused with each other. If the probability that a lossy compressor

will fail, δ, is small, then it may still be useful. The smallest δ-sufficient

subset, Sδ is formed by adding elements in order from most probable to least

probable until the total probability satisfies

P (x ∈ Sδ) ≥ 1− δ. (13)

The essential bit content of X,

Hδ(X) = log2 |Sδ|, (14)

is then the length of the binary encoding of each element in the smallest

sufficient subset.

Extended ensembles, XN consist of a string of N independent, identically

distributed (i.i.d.) random variables from X. The essential bit content of XN

approaches NH(X), where H(X) is the entropy of a single random variable.

This leads to Shannon’s source coding theorem:

Theorem 1 Given ε > 0 and 0 < δ < 1, there exists a positive integer N0

such that for N > N0,

| 1
N

Hδ(X
N)−H| < ε,

where H is the entropy of the ensemble X.

This means that N i.i.d. random variables compressed into more than

NH(X) bits has negligible risk of information loss, whereas it is almost
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certain that information will be lost if they are compressed into fewer than

NH(X) bits.

A lossless compressor encodes all files with distinct encodings. A well

designed lossless compressor has high probability of shortening a file and low

probability of lengthening one, although it is necessary that both shortening

and lengthening occur. Binary symbol codes map each outcome of an en-

semble to a ‘codeword’, or binary string, c(x) with length l(x). A string of

outcomes is encoded by concatenation of the corresponding codewords, and

any encoded string must be uniquely and easily decodeable. Prefix codes,

which can be represented by binary trees, are uniquely decodeable symbol

codes in which no codeword is a prefix of another. Furthermore, any set of

codewords satisfying the Kraft inequality,

|AX |∑
i=1

2−l(xi) ≤ 1, (15)

always has a prefix code with the given codeword lengths.

Symbol codes must also achieve the most efficient compression possible;

that is, the expected length of a code should be small. The expected length

is minimized for code lengths l(xi) equal to the Shannon information content

log2(1/pi), so the minimum expected length equals the entropy. This occurs

when equation (15) is an equality and leads to the following source coding

theorem for symbol codes:

Theorem 2 For an ensemble X, there exists a prefix code C with expected

length L(C,X) satisfying

H(X) ≤ L(C,X) < H(X) + 1.
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To find the optimal prefix code, we employ the Huffman coding algorithm,

which builds a binary tree from the bottom up. The algorithm combines the

two symbols with the smallest probabilities into one symbol and iterates this

procedure until all symbols have been used. This method insures that the

least probable symbols have the longest codewords, minimizing the expected

length.
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