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Abstract

We investigate the quantization of a free particle interacting linearly
with a harmonic oscillator. We extend the work of previous authors
to obtain accurate and reliable estimates for the large energy levels in
order to determine the spectral statistics of the system. We do this via
an analytical study of the system in the two complementary regions of
phase space, followed by attempts to undertake the requisite matching
of the solutions numerically. We use matching conditions to obtain
good approximations to a large number of eigenvalues, from which
the statistics can be determined and compared with the long-standing
conjectures as to their nature. This task has been started, but more
work needs to be undertaken to complete the study.

1 Introduction

The field of quantum chaos — the investigation of features of the quan-
tization of the systems that exhibit chaos in the classical regime — has
developed greatly in recent decades [2], [6], [7]. To understand the quantum
features that reflect classical chaos, one generally considers the behavior in
the semiclassical limit. Strictly speaking, this is the limit as the effective
value of Planck’s constant tends to zero, a singular limit that is often dif-
ficult to study. However, in isolated systems, one can approach this limit
by considering the asymptotic behavior of the energy levels as the energy
becomes large [7]. The statistics of these high-energy levels can then be
investigated. It is this approach that we take in this paper.

Among the most interesting systems to which to apply such methods
are mixed regular-chaotic quantum systems, whose classical counterparts
exhibit both integrable and chaotic behavior. One such system consists of a
particle moving on a ring that is divided into two regions; at the boundaries
between these two sections, the particle is pushed impulsively by an other-
wise separately-evolving harmonic oscillator. This system has been shown
to exhibit cleanly divided integrable and chaotic regions in classical phase
space [1]. More recently, this system was quantized, and certain aspects
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of the quantum version were studied [5]. The investigation in reference [5]
focused on avoided crossings of energy levels and certain features of the
Husimi distributions and their connections with the chaotic features of the
classical system.

Reference [5] mentions the suitability of this system for a spectral study
— determining and investigating statistical distributions based on the energy
eigenvalues (eigenenergies) of the quantum system. In order to undertake
this, we must obtain suitably accurate and reliable approximations to the
eigenvalues of the system, particularly those at high energy values. The cru-
cial quantities that must be analyzed are not the levels themselves, but the
level spacings. This means that our approximations must be good enough to
ensure that their ordered differences are close enough to their true values so
that the spacings we obtain are reliably representative of the true spacings.

The rest of the paper is organized as follows. In section 2 we describe
the quantum version of the system. We then proceed in section 3 to recap,
and slightly correct, the method of reference [5] for the direct approximation
of the levels. Following that, we present in section 4 our approach to the
problem. In section 5 we test our method for one particular set of parameter
values. We summarize our results in section 6 and discuss further work in
section 7.

2 The Quantum System

The Hamiltonian describing the quantum system is, by means of the canon-
ical quantization [5], given by

H =
1

2

(
− ∂2

∂x2
− ∂2

∂y2
+ y2

)
− αχ(x)y, (1)

where x is the particle coordinate, which we restrict between −2 and L.
The region −2 < x < 0 is the interaction region, for which χ(x) = 1, and
0 < x < L is the free region, for which χ(x) = 0. Additionally, y is the
oscillator coordinate. We have chosen these particular domains for x and
y, as opposed to the different ones used in the previous papers, for reasons
of simplicity that will emerge later. The two non-dimensional parameters
that determine the behavior of the system are α, representing the coupling
strength, and L, representing the length of the free region.

3 Direct Approximation of the Levels

In a previous paper [5], Mainiero and Porter focused on calculating the
low energy levels and then investigated the existence of avoided crossings
between such levels. To do this, they formed a basis consisting of the eigen-
states of the uncoupled (α = 0) system. These eigenstates are denoted by
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Figure 1: The configuration space corresponding to equation (1) (adapted
from [5]).

ψ
part
n ⊗ψosc

k , where ψ
part
n and ψosc

k are, respectively, the nth separable par-

ticle eigenstate and the kth separable oscillator eigenstate, in the uncoupled
regime. If one separates, solve, and introduces the operators

Px = −i ∂
∂x
, Py = −i ∂

∂y
, a+ =

1√
2

(y + iPy), a
− =

1√
2

(y − iPy),

then one obtains the matrix expression

H = E1 ⊗ 1 + 1⊗ E2 − αW1 ⊗W2, (2)

where

(E1)nn′ =
〈
n
∣∣P 2
x

∣∣n′〉 =
2π2n2

(2 + L)2
δnn′ , (3)

(E2)kk′ =

〈
k

∣∣∣∣a−a+ +
1

2

∣∣∣∣ k′〉 =

(
k +

1

2

)
δkk′ , (4)

(W1)nn′ =
〈
n |χ(x)|n′

〉
=

 i
2π(n−n′)

(
1− e

4π(n−n′)
2+L

)
if n 6= n′

2
2+L if n = n′

, (5)

(W2)kk′ =
1√
2

(√
k + 1δk,k′+1 +

√
k′δk,k′+1

)
. (6)
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The methods employed in the above calculations are exactly those from
the reference [5]. However, it should be noted that the result we have ob-
tained in equation (6) is a factor of 2 smaller than the result that was ob-
tained there. This correction will change the numerical values of the results
obtained in reference [5], but, as it simply amounts to an effective rescaling
of the constant π, it will not change the physical nature or significance of
the results obtained.

One is then able to calculate the low eigenvalues by applying the QR
matrix factorization, as implemented in Matlab in the eig function, to a
truncation of this Hamiltonian matrix. This method works particularly well
and efficiently for calculating eigenvalues below certain bounds, defined by
the computational power available, but becomes prohibitively expensive for
larger ones. For example, on a modern mid-range laptop computer (2.00
GHz Intel Core2 Duo, 3GB RAM, Windows Vista Professional, Matlab
R2010a), direct calculation reveals that the largest practical matrix trun-
cation size is approximately 10000 × 10000, and from this matrix one can
reliably obtain all eigenvalues below 100. However, due to the nature of
the algorithm applied, once one gets above 100, one starts to miss some
eigenvalues.

4 A Matching Approach

Inspired by the work for the separable uncoupled case, we approach the
general equation (1) by splitting the ring into the two natural regions (free
and interaction). This gives two cases.

4.1 Case 1 - Free

We have 0 < x < L and

1

2

(
− ∂2

∂x2
− ∂2

∂x2
+ y2

)
ψ = Eψ.

Now we separate ψ = XY , which, for a separation constant λ, gives

X ′′ + (2E − λ)X = 0, (7)

−1

2
Y ′′ +

1

2
y2Y =

1

2
λy2Y. (8)

Note that, with the requisite boundary condition that ψ → 0 as y → 0,
(8) is the equation of a one-dimensional harmonic oscillator, so that we
must have λ = 2k + 1, k ∈ N. Therefore

X = A cos
(
L
√

2E − 2r − 1
)

+B sin
(
L
√

2E − 2r − 1
)
,
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Y = e−
1
2
y2Hk(y),

where Hk is the kth Hermite polynomial.
Consequently, the general solution in the free region takes the form

ψfree =

∞∑
k=0

e−
1
2
y2Hk(y)

[
Ak cos

(
L
√

2E − 2r − 1
)

+Bk sin
(
L
√

2E − 2r − 1
)]
.

4.2 Case 2 - Interaction

The interaction region is defined as −2 < x < 0, and here equation (1) is

1

2

(
− ∂2

∂x2
− ∂2

∂x2
+ y2

)
ψ − αyψ = Eψ.

Then proceeding in a manner exactly analogous to that employed in the free
region, we obtain the general result for the wave function in the interaction
region:

ψint =
∞∑
l=0

e−
1
2
(y−α)2Hl(y − α)

[
Āl cos

(
x
√
α2 + 2E − 2l − 1

)
+ B̄l sin

(
x
√
α2 + 2E − 2l − 1

)]
.

It should be noted that we are using the overbar notation to denote new
coefficients, different from those used in the free case, rather than complex
conjugates.

4.3 Boundary Conditions

The first, and most obvious, boundary condition to employ is that of conti-
nuity across the boundaries. This yields

ψfree

∣∣∣
x=0

= ψint

∣∣∣
x=0

(9)

and
ψfree

∣∣∣
x=L

= ψint

∣∣∣
x=−2

. (10)

Equation (9), along with our expressions for ψfree and ψint, then implies

∞∑
k=0

Ake
− 1

2
y2Hk(y) =

∞∑
l=0

Āle
− 1

2
(y−α)2Hl(y − α).

Now we use the orthogonality of the Hermite polynomials under their expo-
nential weighting by integrating both sides against Hn(y−α) over the whole
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y-axis. To do the right-hand integration, we assume that we can interchange
the sum and the integral, and we use the relation

Hn(y − α) =
n∑
r=0

(
n

r

)
(−α)rHn−r(y).

Then we can use orthogonality on both sides. Doing so and rearranging
yields

Ān =
n∑
r=0

Ar
(−α)n−r

(n− r)!
. (11)

Analogously, but more difficult calculationally, working with (10) arrives
at the second boundary condition

Ān cos
(

2
√
α2 + 2E − 2r − 1

)
− B̄n sin

(
2
√
α2 + 2E − 2r − 1

)
=

n∑
r=0

(−α)n−r

(n− r)!

(
Ar cos

(
L
√

2E − 2r − 1
)

+Br sin
(
L
√

2E − 2r − 1
))

.

(12)
We note that we require |α| < 1 for convergence. This is simply a restriction
imposed by our method; we would expect that the results obtained should
still extend beyond this range, though a different method would need to be
employed to verify this. Henceforth, we work with this restriction.

The fact that the jump in the energy, and consequently the momentum,
is across boundaries specified entirely in the x-coordinate dictates that the
momentum corresponding to the y-coordinate, Py, should be continuous
across each boundary. Consequently, we obtain the second set of boundary
conditions from the relations

∂ψfree
∂y

∣∣∣∣∣
x=0

=
∂ψint
∂y

∣∣∣∣∣
x=0

(13)

and
∂ψfree
∂y

∣∣∣∣∣
x=L

=
∂ψint
∂y

∣∣∣∣∣
x=−2

. (14)

Differentiating these expressions and then applying the defining recurrence
relation of the Hermite polynomials

Hk+1(y) = yHk(y)−H ′k(y),

we see that the boundary conditions obtained from (13) and (14) are, re-
spectively, exactly the relations (11) and (12).

Finally, we need a pair of boundary conditions pertaining to the x-
momentum, Px = −i ∂∂x . There is a jump in the energy across the boundaries
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between the regions, so we expect that there will be a corresponding jump
in Px. Then, by symmetry, we have

∂ψfree
∂x

∣∣∣∣∣
x=0

=
∂ψint
∂x

∣∣∣∣∣
x=0

+Q (15)

and
∂ψfree
∂x

∣∣∣∣∣
x=L

=
∂ψint
∂x

∣∣∣∣∣
x=−2

+Q. (16)

Differentiating, and then integrating against Hn(y−α) in each case and
expanding Q in the Hermite basis,

Q =
∞∑
j=0

pje
− 1

2
(y−α)2Hj(y − α),

the boundary conditions (15) and (16) become

B̄n =
n∑
r=0

√
2E − 2r − 1

α2 + 2E − 2n− 1
Br

(−α)n−r

(n− r)!
− pn√

α2 + 2E − 2n− 1
. (17)

and

B̄n cos
(

2
√
α2 + 2E − 2r − 1

)
+ Ān sin

(
2
√
α2 + 2E − 2r − 1

)
=

n∑
r=0

√
2E − 2r − 1

α2 + 2E − 2n− 1

(−α)n−r

(n− r)!

[
Br cos

(
L
√

2E − 2r − 1
)

−Ar sin
(
L
√

2E − 2r − 1
)]
− pn√

α2 + 2E − 2n− 1
.

(18)

We now have the four boundary conditions that we require — namely
(11), (12), (17) and (18). We can substitute the results of the first two of
these into the last two, to give the two crucial equations (for all n ∈ N):

n∑
r=0

(−α)n−r

(n− r)!

(
Ar

[
(cos

(
L
√

2E − 2r − 1
)
− cos

(
2
√
α2 + 2E − 2r − 1

)]
+Br

[
sin
(
L
√

2E − 2r − 1
)

+

√
2E − 2r − 1

α2 + 2E − 2n− 1
sin
(

2
√
α2 + 2E − 2r − 1

)])

−
pn sin

(
2
√
α2 + 2E − 2r − 1

)
√
α2 + 2E − 2n− 1

= 0,

(19)
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n∑
r=0

(−α)n−r

(n− r)!

(
Br

√
2E − 2r − 1

α2 + 2E − 2n− 1

[
cos
(
L
√

2E − 2r − 1
)

− cos
(

2
√
α2 + 2E − 2r − 1

)]
−Ar

[
sin
(

2
√
α2 + 2E − 2r − 1

)
+

√
2E − 2r − 1

α2 + 2E − 2n− 1
sin
(
L
√

2E − 2r − 1
)])

− pn√
α2 + 2E − 2n− 1

[
1− cos

(
2
√
α2 + 2E − 2r − 1

)]
= 0.

(20)

We then require one further equation for each n. To obtain this, we note
that the E are the eigenenergies, and the An and Bn are coefficients of the
corresponding eigenvectors. However, if f is an eigenfunction corresponding
to an eigenenergy λ, then so too is kf for all k ∈ R. This implies that, for
each fixed E, if we have a solution set An, Bn, then we should be able to
multiply these coefficients by any real number and still have a solution set.
This indicates that the pn must depend linearly on the An, Bn. Assuming
dependence on all of these, the simplest such relation is

pn = qn(An +Bn), (21)

where the qn are what will need to be determined. Due to its intuitive appeal,
we work with this form for the pn, though it remains an open problem to
derive these expressions in a rigorous manner.

Substituting (21) into each of (19) and (20) and rearranging, we obtain
a pair of equations for each n ∈ N. Then we note that the n = 0 pair is
homogeneous and linear in A0, B0, so we have a dichotomy — either A0 =
B0 = 0 or the determinant of the system is zero. This latter possibility gives
an equation for E, and in turn determines a first set of possible eigenvalues.
If the former is the possibility that holds, then we proceed to n = 1 and
obtain an analogous dichotomy. We can work “up the ladder” of n in this
way and thereby obtain a countable set of pairs of equations. For each n,
the pair of equations must have zero determinant in order to have a non-
trivial solution. Consequently, the sets of possible can be obtained from the
following equations:
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(√
2E − 2n− 1

α2 + 2E − 2n− 1
cos
(
L
√

2E − 2r − 1
)
− qn√

α2 + 2E − 2n− 1

−
√

2E − 2n− 1− qn√
α2 + 2E − 2n− 1

cos
(

2
√
α2 + 2E − 2r − 1

))
×

(
cos
(
L
√

2E − 2r − 1
)

− cos
(

2
√
α2 + 2E − 2r − 1

)
−
qn sin

(
2
√
α2 + 2E − 2r − 1

)
√
α2 + 2E − 2n− 1

)

+

(
sin
(
L
√

2E − 2r − 1
)

+

√
2E − 2n− 1− qn√
α2 + 2E − 2n− 1

sin
(

2
√
α2 + 2E − 2r − 1

))

×

(√
2E − 2r − 1

α2 + 2E − 2n− 1
sin
(
L
√

2E − 2r − 1
)

+ sin
(

2
√
α2 + 2E − 2r − 1

))
+

qn√
α2 + 2E − 2n− 1

[
1− cos

(
2
√
α2 + 2E − 2r − 1

)]
= 0.

(22)
We note that these equations generate the eigenenergies in countably many
subsets — one for each equation — when given the values of the qn. From
the behavior of the approximations that we obtained earlier, we expect that
the qn should depend on the energy in some way and hence should not be
viewed as constants in our equation. However, it is not obvious how to
obtain the qn analytically. Therefore, we adopt a numerical approach to
determining these quantities.

4.4 The α = 0 Case

In the uncoupled case, for which α = 0, the system can be easily solved
analytically by separation, so we can test (22) by comparison with these
solutions. If α = 0, then there is no jump in the oscillator equilibrium, so
there should be no jump in the momenta, implying that q = 0. In this case,
(22) simplifies to

cos
(

(L+ 2)
√

2E − 2n− 1
)

= 1,

so

E =
2k2π2

(L+ 2)2
+

1

2
+ n,

are the eigenenergies (exactly as can be shown to be given by the analytical
solution).

4.5 The qn = 0 Approximation

The numerical work detailed in later sections shows that the optimal values
of the qn are small, suggesting that we might gain a rough insight into the
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behavior of the eigenvalues by considering the roots of the simpler equations

for which all qn are set to zero. Setting all qn = 0, we note that the nth

equation becomes a function of 2E−2n−1. Consequently, the nth equation
is just a translation of the n = 0 equation, so that if {Ei : i ∈ J} are the

roots of the 0th equation (for some indexing set J), then the roots of the

nth equation are simply {Ei+n : i ∈ J}.Therefore, we have a base subset of
eigenvalues corresponding to the n = 0 equation, and then a second subset
equal to the base set incremented by one, a third subset equal to the base
set incremented by two, and so on.

4.6 The General Case

Now we effectively consider qn 6= 0 as a perturbation to the above qn =
0 case. Consequently, we expect that the exact eigenvalues to come in
a similar distribution to those above, namely one base subset (from the
n = 0 equation) and then further subsets (from the n = r case) that are
approximately, but no longer exactly, equal to the base subset incremented
by r = 1, 2, 3, . . .. We must remember that the qn are not constants, but
depend on the actual energy value.

There is an additional insight that one can gain from the simplifications
above. Namely, in the α = 0 case, the eigenvalues within each subset (i.e.
corresponding to each value of n) are quadratically dependent on the other
quantum number k, which determines the level number within the set. For
sufficiently small α, we expect that this quadratic relationship should extend
to the general case. Thus, we expect the levels within each subset in the
general case to follow a roughly quadratic pattern, so an initial quadratic
approximation of them might well be both reasonable and useful.

In short, we expect (though we have not shown this rigorously) to find
the eigenvalues arranged in the form of a base subset coming from the n = 0
equation, which depend roughly quadratically on the level number within
the subset, and then, for each n ∈ N\{0}, a further subset that is close to
the base subset incremented by n. Though this argument provides some
justification for the method we use, the main justification is really retro-
spective; the justification is that it works! Genuine justification remains an
open problem; we expect that this may arrive by means of the dimensional
analysis arguments hinted at in section 7.

4.7 Optimization of the qn

Suppose that we fix the parameters α and L. Then we can use the method of
Mainiero and Porter in [5] to obtain excellent approximations to the energy
level at the lower end of the energy spectrum. We can use these approx-
imations, together with the equation and our insights described above, to
determine the optimal qn — the values that forces equation (22) to output
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the eigenvalues most accurately. Because each qn has an energy (and hence
a level number within the subset) dependence, we must optimize each qn
separately for each level number within the nth subset. The numerical work
suggests that, for each fixed pair (n, k) and any sufficiently accurate ap-
proximation of the eigenvalues, there is a unique qn,k such that the distance

between the kth root of equation (22) and the corresponding approximate
eigenvalue is equal to zero. Thus, we are effectively finding the optimal qn,k,
each dependent on two quantum numbers. Consequently, the optimization
can proceed as follows.

1. Generate the approximations to the small eigenvalues by the method
of reference [5].

2. Enumerate these and manually select the first ten or so members of

the 0th subset.1 For small α these can easily be spotted as the E for
which there is an eigenvalue present in our enumerated list that is very
close to E + 1 but there is none present very close to E − 1).

3. Find the quadratic curve of best fit through the scatter points of the

above levels versus their level number (within the 0th subset).

4. Use the quadratic equation to generate quadratic approximations to

the 0th subset energy levels. Order this list and call the ordered list
R. Use the index k to label the elements of this list.2

5. Algorithmically search the list from step 1 to find the “true” level that
is closest to each element of list R. Call this list S. This will give us a

very good approximation of the small eigenvalues in the 0th subset.

6. Find the root of equation (22) (for n = 0) that is closest to the kth

element of list S. Determine the value of q0 that minimizes the distance

between this root and the kth element of list S. Call this q0,k. Do this
for all k.

7. Find the quadratic curve of best fit through the scatter points of all
the levels obtained against their level number (within the 0th subset).
Call this list T.

8. For each n from 1 up to the square root of the matrix size (or some-
where lower), put R = T +n, and then repeat steps 5 and 6, but with
n in place of 0 wherever it appears.

1More gives better reliability - it is best to iterate somewhat, so use the first five to
generate the next five, then those ten to give the next ten etc

2We do this because the rth entry of R is our initial approximation to the rth energy

level within the 0th subset of energy levels.
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The aim of this method is to find relationships governing the qn,k, so
that we can determine an approximate analytical expression for the jump in
the x-momentum, and thereby obtain accurate and reliable approximations
to all the eigenenergies in a computationally efficient way.

Based on the process of obtaining the data that has been obtained (see
the discussion in section 5), we observe that the method appears to work
for a wide range of parameter values (as long as we maintain the techni-
cal restriction α < 1). However, as one increases L, the distance between
neighboring roots in each of equations (22) increases. Consequently, any im-
plementation of this algorithm will have to use a larger number of sampling
points, making it less efficient.

5 Test for Specific Parameter Values

We now consider the application of the above method by considering an
example with parameter values α = 0.1 and L = 2. The non-zero value of
α and the sufficiently large L mean that, for values of E that are not too
large, a significant portion of the classical phase space should be chaotic [1].

We proceed with the 8 steps listed above, starting with using the method
of Mainiero and Porter [5] to generate the lower eigenenergies for use in the
optimization. We use a matrix size of 10000 and look at values of n and k
up to 90 for reliability. The results that we obtain show definite patterns
both within each subset and across the different subsets.

5.1 Fixed n

To exhibit the behavior within each subset, we present the data from the 0th

subset, which is representative of all those considered. In Figures 2 and 3,
respectively, we plot the graphs of q0,k versus even k and versus odd k.

Figure 2 exhibits the clearest behavior, which is an apparently linear
relationship. In fact, the Pearson product moment correlation coefficient of
this data is 0.999999996085565. It should be noted that, for most of the k
values, there turns out to be a range of q0,k for which the difference between
our estimate and the element of the list of matrix eigenvalues (list A) is
minimized to zero. Also, one should note that the aforementioned list A
consists only of estimates (although they are extremely good ones). Hence,
it seems plausible that this apparent linear relationship is truly reflective of
a real linear relationship between q0,k. Similar relationships appear to hold
for the even k for all n.

For the case of odd k, however, the situation is somewhat more compli-
cated. Figure 3 still shows a clear relationship between the two quantities,
but it is no longer linear. Now we note the apparent asymptotic tendency
towards a quantity close to 0.005. Indeed, the only quantity that would
seem to make sense here from a dimensional perspective is α2

2 = 0.005.
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Figure 2: Plot of q0,k versus k for the even values of k below 90.

Figure 3: Plot of q0,k versus k for the odd values of k below 90.
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Figure 4: Plot of r0,k versus k for the odd values of k between 2 and 80.

Hence, guided by the shape of the data, we plot in Figure 4 the new quan-
tity r0,k = 1√

(q0,k−0.005)
versus odd k, between 2 and 80. We observe a good

linear relationship, which suggests the asymptotic form

q0,k = 0.005 +
Ω

k2

for some constant Ω.
Due to the fact that we have obtained the results from these numerical

simulations, this is one obvious place where dimensional methods could po-
tentially be employed to verify that the power of 2 is in fact correct. Again,
this argument generalizes to the case of non-zero n.

5.2 Fixed k

Now we consider the relationship with n. Let us begin with the simpler case
of even k. In this case, for each fixed n, there is a linear relationship between
qn,k and k. We represent this using the gradient and the y-intercept. We plot
these quantities in Figures 5 and 6. These figures show excellent correlation,
so we feel justified in extrapolating this relationship and thereby feel able
to determine with accuracy the necessary values of qn,k for large ranges of
n and k, provided that k is even.
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Figure 5: Plot of the gradient of the lines for qn,k versus n for even k.

Figure 6: Plot of the y-intercept of the lines for qn,k versus n for even k.
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Figure 7: Absolute errors for eigenvalue estimates for even k.

The situation is less clear for the case of odd k. As mentioned previously,
we can obtain a good expression governing the asymptotic behavior of the
data we have for each n. However, the relationship linking these expressions,
though apparently extant, is not clear, and is something that would be
interesting to investigate in future work. For the work of the following
section, we approximate Ω by means of exponential regression, though this
is clearly not the true solution, as our expression is only really true in the
limit of large energy. To find an equation valid across the whole energy
scale, more work is needed.

5.3 Errors

We used only values of n below 70 for the matching, so that we would
have some eigenenergies (between 70 and 100) left over from the matrix
calculation to compare with our estimates. To do this, we determined our
estimates as roots of Equation (22) using the relationships from the previous
section to determine qn. We then calculated the differences of our results
from the relevant matrix eigenvalues. In Figures 7 and 8, we plot the results,
separately for those from even k and odd k. We plot absolute, rather than
relative, errors here, since the quantity that will eventually be of significance
is the level spacing distribution [3], on which the absolute size of any errors
will have an effect.
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Figure 8: Absolute errors for eigenvalue estimates for odd k.

Note that the x-axes in Figures 7 and 8 both show energy from 70 up
to 100, with the points plotted being fairly evenly distributed throughout
this interval on each graph. This means that the larger absolute errors
shown in Figure 8 compared with those in Figure 7 translate into larger
relative errors.3 This allows us to conclude that, as expected, the agreement
is much better for those from even k than for those from odd k, as more
work is needed on elucidating the true relationship governing the qn,k in
the odd case. Nonetheless, particularly in the even case, the agreement is
excellent, and all of the errors appear to be systematic, rather than random,
in nature. This strongly suggests that our approach, though somewhat
painful numerically, is a promising one. It should be noted that we have
actually performed such tests for five such sets. Further data can, and indeed
should, be obtained by an analogous approach for different parameter values.

6 Conclusions

We have described what appears to be a promising approach to the prob-
lem of determining and analyzing the semiclassical level spacing distribu-
tion of the quantization of the particular classically chaotic system studied

3Comparing corresponding individual points from the two graphs makes this clear.
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in [1]. By studying the quantum system analytically, we have derived equa-
tions (22) that can be used to determine the eigenenergies of the system.
We have also formulated a method for doing this algorithmically. This al-
gorithm gives a method that appears to work in the cases that we have
studied, although it’s veracity has not been proved. We have already ob-
tained five separate sets of data, of which the above is just one example. All
of these have been analyzed as above, and each shows up such clear patterns
as above. These patterns have been studied in a rough sense, though we ex-
pect that it should be possible to make this study more precise, by means
of obtaining more data and considering the dimensions of the quantities
present.

7 Further Work

As indicated above, all of the sets of data already obtained must be studied
further. In addition, many further sets could easily be obtained and analyzed
entirely analogously. Once sufficient data is obtained, the true relations
governing the quantities qn should be reasonably straightforward to obtain
with the help of some dimensional analysis [4]. Further, it would be useful to
obtain a rigorous mathematical derivation of equation (13) and the various
heuristic assumptions that we used to infer it. In theory, it seems likely that
this approach could give arbitrarily good estimates of the true eigenvalues;
therefore, it ought to be an excellent method for obtaining the spectral
statistics of the system.

8 Acknowledgments

This work was funded by an EPSRC Undergraduate Summer Research grant
and undertaken under the supervision of Mason Porter. I would particularly
like to thank him for all the advice, assistance and encouragement he pro-
vided. I would also like to thank Leonid Bunimovich for his most helpful
suggestions at the very beginning of the project.

18



References
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