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1 Introduction

We are interested in studying dynamical processes on spatially embedded

graphs and in particular the effect of spatial embeddedness on the dynam-

ics. To our knowledge, only a few dynamical processes on spatial networks

have been studied [8]. We considered Random geometric graphs (RGG), a

spatially embedded network and studied the Watts’ model [5] (in particular

the equilibrium fraction of infected nodes ρ) and the classical Voter model

(in particular the consensus time T ) on these graphs.

2 Random geometric graphs

Random geometric graphs (RGG) are random graphs on a bounded region

(e.g. [0, 1]d or [0, 1)d) generated by placing vertices (or nodes - we will be

using both terms interchangeably) uniformly at random on the region and

connecting nodes if their distance is less than some fixed r, called the distance

parameter. We considered the RGGs on the unit-hypercube [0, 1]d and on

the unit-hypertorus [0, 1)d where d is the dimension of the embedding space.

The two regions differ in that the latter region allows edges through the

boundary (periodic boundary condition) whereas the former does not (open

boundary condition). Figure 1 (a) shows one realization of a RGG on the

unit-squre [0, 1]2 and Figure 1 (b) illustrates the difference between the two

boundary conditions with the red edges being the additional edges added on

the two-dimensional torus [0, 1)2. In the following sections RGGs on [0, 1]d

and [0, 1)d will be called non-toroidal and toroidal, respectively. We will see

that the boundary conditions will have a non-trivial effect on the dynamics.
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(b) RGG with 15 nodes. The red dashed

edges are added for periodic boundary con-

ditions

Figure 1: Toroidal and non-toroidal RGGs

3 Watts’ model

We studied the Watts’ cascade model on both types of RGGs [5] with uniform

threshold φ = 0.18, as in the original Watts’ paper. The system size n is

1000 which is considerably small. These two values φ and n are fixed for the

remainder of the section. The value of interest is the fraction of infected (or

active) nodes ρ at the time when the graph has reached equilibrium (i.e. the

state at which no more vertices become infected). We numerically evaluate

ρ while varying the distance parameter r. Most results have been averaged

over 100 realizations for accuracy.
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3.1 Initial findings

For different sizes of initial seed fraction ρ0, we see a qualitative difference

between ρ0 > φ and ρ0 < φ. In Figure 2, we plotted ρ vs r for both ρ0 > φ

(Fig. 2 (a)) and ρ0 < φ (Fig. 2 (b)) and in each case for both toroidal (green

line) and non-toroidal RGGs (blue line). In the former case, we see only one

transition of ρ from ρ0 to 1 as r increases while in the latter case there is

a second transition from ρ to 1. The existence of the second transition can

be trivially explained as with increasing r, the mean degree z increases and

for sufficiently high z (or r), vertices have a fraction of infected neighbors

of approximately ρ0 < φ, hence most vertices do not become infected and

the equilibrium state is immediately reached. In the former case however for

large r, most vertices become infected in the first time step as ρ0 > φ and

we reach again almost instant equilibrium but this time with ρ = 1.

3.2 Mean-field theories

We applied the pk− and P (k, k′)-theories [1, 2] on both types of random

geometric graphs and plotted the result in Figure 3 for ρ0 > φ and ρ0 < φ.

The green dashed line shows the pk-theory prediction and the red solid line

shows the P (k, k′)-theory prediction. We see that both mean-field theories

predict the trend very well, but lack of accuracy. This result is not surprising

since RGGs are generally highly clustered, so we don’t expect mean-field

theories to be accurate as they assume locally tree-like structure, although

they do sometimes show high accuracy on clustered graphs [3]. Gleeson also

pointed out that the lack of accuracy may also be due to the small size effect.
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Figure 2: Watts’ model on RGG
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Figure 3: pk- and P (k, k′)-theories on non-toroidal RGGs
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3.3 Increasing dimensions

We now study the effect of increasing the dimension of the embedding space.

In Figure 4, we plotted the infected fraction ρ with rho0 = 0.2 for dimensions

d = 2−15 on non-toroidal (left figure) and toroidal RGGs (right figure). We

first notice that toroidal RGGs in higher dimensions experience the transition

at lower r, indicating the in higher dimensions more edges are added through

the boundary, hence we reach the same mean degree z at lower r.
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Figure 4: Infected fraction ρ for dimension d = 2− 15 on non-toroidal (left)

and toroidal RGGs (right)

We also notice a scaling behaviour for both types of graphs. The graphs

suggest a scaling by r−R(d)
c(d)

where R(d) and c(d) is a function of d (and techni-

cally also of n, φ, ρ0) and represent the transition shift and transition length

respectively (see Figure 5 for illustration). Figure 6 shows the collapsed scal-
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Figure 5: Illustration of R(d) and c(d)

ing function for both type of RGG using the above scaling and we see a great

collapse. In Figure 7, we plotted the numerical values of R(d) and c(d) and

see that R(d) ∼ O(
√
d) and c(d) saturates to a constant value. So far no

analytical approach has been found to deduce these scaling values. It has

been suggested that renomalization techniques can be applied.

3.4 Comparison to Erdös-Renyi Graphs

We also compared the behaviour of the dynamic on RGGs to Erdös-Renyi

Graphs (ER-Graph). Many structural properties of toroidal RGGs are simi-

lar to ER-Graph in the limiting case of d → ∞, e.g. critical connectivity in

the percolation theory [4] or the degree distribution pk (for any dimension

d). In Fig. 8, we plotted infected fraction ρ against the mean degree z for

non-toroidal RGG (left) and toroidal RGG (right) for dimensions 2, 5, 10, 50

and 100. We also plotted the ρ for ER-Graph (black dashed line). We can see

that for the system size of n = 1000, the toroidal RGG shows a behaviour

approximate to the ER-Graph in higher dimensions, whereas non-toroidal
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Figure 6: Scaling plot

RGGs diverges in higher dimensions. This indicates that the boundary con-

dition plays a significant part in the dynamics and in higher dimensions more

edges are added in toroidal RGGs which affect the dynamics.

3.5 Largest connected component

Next, we studied the largest connected component size and compared this

value to the infected fraction ρ. In Fig. 9, we plotted ρ and the larg. con-

nected comp. size in the same graph for ρ = 0.2 and ρ0 = 0.01 and notice a

strong correlation. Especially for low ρ0, we see an accurate match between

the largest component size, suggesting that in most cases the largest con-

nected component is fully infected and makes up most of the infected nodes.

This is supported by Fig. 10 which shows the infected fraction for φ = 0,
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Figure 7: Scaling values. Numerical values for R(d) and c(d) and fitted graph

for R(d)

i.e. in the case when a component becomes fully infected with a single seed

node, since the graph in Fig. 10 is identical to the one in Fig. 9(b). There is

a intuitive explanation for this, since the transition connectivity (or critical

connectivity) αc is typically less than 5 and with our choice of φ = 0.18 in

the simulations, a single seed node will infect most of its neighbors as their

degree is typically less than 5 and thereafter infect the whole component.

In most cases, we will have a small seed node in the largest connected com-

ponent (or at least it averages like that). Hence our choice of φ and the

homogeneity of the degree distribution causes the strong correlation between

largest connected component size and infected fraction. One thing we need

to node is that the Watts’ model on spatial networks lack self-averaging, so
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Figure 8: Infected fraction ρ vs mean degree z. We see that toroidal RGG

approach the behaviour of Erdös-Renyi graph in higher dimensions whereas

non-toroidal do not.
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Figure 9: Largest connected component size and infected fraction ρ. (a) We

see that the largest component size approaches ρ at the end of the transition

for all dimensions for ρ0 = 0.2 (b) With smaller seed size of ρ0 = 0.01 we see

a perfect match for the transition. (see text for explanation)

this needs to be confirmed. [9]

3.6 Summary

In summary, we have studied the infected fraction ρ of nodes at equilibrium

state on RGGs, using the Watts’ model with φ = 0.18 and showed a strong

correlation between largest connected component size and ρ. We also ob-

served a dimensional scaling behaviour of the form r−R(d)
c(d)

and numerically

showed that R(d) ∼ O(
√
d) and c(d) saturates at constant value. We showed

that toroidal RGGs reflect the behaviour of ER-Graphs in higher dimensions
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Figure 10: Largest connected component size and infected fraction ρ vs mean

degree z. We see that the critical connectivity is typically less than 5

while non-toroidal do not. Lastly, we observed that the mean-field pk and

P (k, k′)-theories do not give a good prediction for RGGs.

4 Voter model

The second model we studied is the classical Voter model as defined in [6]

Section II. It is a binary state model with the following updating rule (at

each time step dt:

1. Pick a random node (a voter)

2. The voter adopts the sate of a random neighbor

In this section, we use a system size of 300 unless otherwise stated and look

at the consensus time T , the time at which all connected components reached

consensus (i.e. the same state). Note the difference to global consensus which

requires that all nodes have the same state, not just that each component
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has the same states. Also we set ρ = 0.5, i.e. there are initially equal number

of nodes at either state.

4.1 Initial findings

In Fig. 11, we plotted the consensus T against the distance parameter r

for RGG. We see three phases as r increases: First an instant consensus,

secondly we observe a peak in consensus time and lastly a saturation to a

fast, but not instant consensus. Fig. 12 shows the largest connected compo-

nent size and the variance of the non-giant cluster/component sizes against

r together with the consensus time T . We see that the consensus time peaks

near the critical connectivity αc, i.e. near the point when a large connected

component emerges. This can be explained by high variance of non-giant

cluster sizes near αc, indicating diverse cluster sizes which lead to the ob-

served phenomenon called critical slowing down. Intuitively, we can also say

that the largest connected component is approximately a 1-D lattice, so it

simulates a random walk on a 1-D lattice which has very high absorption

time. We also notice that the saturation occurs for all r > rc + δ for some

δ > 0, even for maximal r =
√

(d). Therefore we numerically see that in

the third phase, a RGG behaves the same as a fully connected graph. In [6],

Sood et al showed for a fully connected graph that

T (ρ) = n

[
(1− ρ) ln

1

1− ρ
+ ρ ln

1

ρ

]
(1)

where ρ is fraction of nodes initially set to state 0 (or 1) and n is the system

size.

In particular, we see for fixed ρ, the consensus time T scales with n, therefore
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Figure 11: Consensus time T vs. r, averaged over 50 realization

RGGs in the third phase show the same scaling behaviour as d-dimensional

lattices for d > 2 [7]. Also for ρ = 0.5, T (ρ) = n ln 2, as we can see confirmed

in Fig. 13 which shows the consensus time T for different system sizes n at

r = 0.3. Noteworthy is the last point for n = 2000 which seems to diverge

from the predicted value. This will need to be more closely studied as

4.2 Summary

In summary, we showed for small n numerically three ’phases’ of consensus

time:

1. r < rc: Instant consensus due to very low cluster sizes

2. r ≈ rc: ’Critical slowing down’ with very high consensus time since we

have very diverse range of cluster sizes

3. r >> rc RGG enters a regime that shows the same behaviour as a fully

connected graph.
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5 Future work

With these results there are a vast possibilities of future work in both of the

models.

5.1 Watts’ model

Due to the nature of question, there are many variables (e.g. n, φ, d, ρ0, r)

and we have only explored the effect of r, d and to some extent ρ0. Hence

it is natural to consider varying φ, especially as we saw in Section 3.5, that

our particular choice of φ = 0.18 caused that a single initial seed node will

typically infect the whole component, so one may use in future a higher φ and

possibly observe a critical φc at which the behaviour changes qualitatively.

A larger system size n (while fixing the mean degree z) will likely reduce

the boundary effect and possibly give better approximation of the mean-field

theories (pk and P (k, k′). We may also consider to study the existence of a

finite-size scaling. In Section 3.3, we observed a scaling behaviour and one

may try to formulate an analytical derivation for the function R(d) and c(d).

Lastly, as we only considered the case for φ < ρ0 with only one transition,

we may also study the second transition for φ > ρ0. We expect a strong

dependence on ρ0 as it is the case for Erdös-Renyi graphs [1].

5.2 Voter model

The boundary effect of the voter model has not been studied, neither has the

effect of increasing the dimension of the space which are interesting things

to study in future.
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5.3 RGG

Another thing we can consider in future is to have variations of random

geometric graphs with a region different than unit-cube and unit-torus or

with nodes connected to each other non-deterministic, e.g. with probability

proportional to 1
r
. This will allow a small number of long-range links which

might change the dynamics.
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