
Benjamin Franz

University of Oxford

College: Mansfield College

E-Mail: benjamin.franz@mansfield.ox.ac.uk

Reading for: MSc in Mathematical Modelling and Scientific Computing

Synchronisation Properties of an Agent-Based
Animal Behaviour Model

Master’s Dissertation

Supervisor: Dr Mason Alexander Porter

Prof Marian Stamp Dawkins

Handed in: September 3, 2009

Abstract

We developed an agent-based model of animal behaviour inspired by the model

presented in [6]. The original model was expanded to allow the agents to eat and

rest. The decisions for state changes are governed by a deterministic finite-state

machine. In order to evaluate the validity of this model, we compared simulation

results with real data obtained from video footage of different farms. During the

validation process, we used a simulated annealing algorithm to find parameter sets

that allow for a best match with the data. Because the agents are situated in a

mutual environment, they can influence each others’ behaviour. This effect, com-

bined with the constant change in the agents’ state between resting and standing,

motivated the interpretation of the multi-agent system as a combination of weakly

coupled oscillators. Using this interpretation, we investigated the possibility of syn-

chronisation between the agents and we developed different order parameters to

measure the amount of emerging synchrony. Different biological studies like [9] and

[19] show that both growth rate and welfare of beef cows increase when the herd

acts in unison. This renders synchronisation as an effect that is highly intended

by farmers. We hence developed an algorithm that tries to optimise the layout of

feeding and bedding areas in order to find a barn design that favours synchroni-

sation. We successfully fit our model to the data, but incompleteness in the data

set did not allow for a conclusive model evaluation. During the simulations, we de-

tected emerging synchrony and increased it using the optimisation algorithm. We

concluded that an agent-based model with a small set of rules can describe certain

aspects of cattle behaviour and can yield to complex behaviour like synchrony.

I

Acknowledgements

I take pleasure in expressing my gratitude to those who have helped me with this project.

Without the help of my supervisors Marian Dawkins and Mason Porter this project would

have been almost impossible to master. Our weekly talks helped me developing most of

the ideas in this dissertations. During the final write-up they both happily offered to

read through my drafts and made very useful comments, indeed. Additionally, I am

thankful for the feedback I received of Mark Richardson, Radek Erban, Iain Couzin,

Steven Strogatz and Peter Mucha towards the project in general and the dissertation in

particular. The project was based on prior work done by Nicole Milligan and Tom Shaw.

I was delighted that I had the chance of meeting Tom and that he helped me understand

the different data sets. In a more general note, I would like to thank our course organiser

Kathryn Gillow, who never hesitated to reply to urgent requests regarding the progress

of the course or other matters.

I am also very thankful to the people who gave me the opportunity of doing this course

in the first place. First, my scholarship “Studienstiftung des Deutschen Volkes” for their

generous funding and second – but more importantly – my parents for providing four

helping hands whenever I needed them. During the final work on this dissertation I was

especially grateful to my dear friends Chloé Joyeux and Ricardo Engel for providing me

with their company and their joy. Additionally, I very much appreciate the help I received

on my former essays from Erin Null, Benjamin Clark and John Platt.

II

Contents

Contents

1 Introduction 1

2 Model of cow behaviour 3

2.1 Agent-based modelling . 3

2.2 Rules for the behavioural cow model . 6

2.3 Implementation details . 11

3 Model validation 14

3.1 Validation data . 14

3.2 Parameter fitting . 17

3.3 Simulated annealing . 21

3.4 Simulation and results . 24

4 Synchronisation 30

4.1 Weakly coupled oscillators . 30

4.2 Agents as oscillators . 31

4.3 Simulations and results . 35

5 Barn optimisation 39

5.1 Algorithm . 39

5.2 Simulation . 44

6 Conclusions and future work 46

III

Contents

A Graphical user interface i

B Polygon algorithms ii

B.1 Check if point is inside polygon . ii

B.2 Polygon clipping . iii

B.3 Area of a polygon . iv

B.4 Polygon gathering . vi

C Correlation vii

D Additional plots viii

E Sample data xi

E.1 Lying data . xi

E.2 Housing data . xii

E.3 Standing data . xiii

IV

List of Figures

List of Figures

1 Behaviour of a single agent . 5

2 3 Zones around an agent in Couzin et al.’s model 7

3 Finite state machine . 10

4 Distribution of lying time lengths . 18

5 Barn used for validation . 24

6 Results of a single parameter fitting process using simulated annealing . . . 26

7 Distributions of parameters and error found by simulated annealing process 28

8 General barn layout used by Færevik et al. 36

9 Tiling of the barn . 41

10 Possible feeding and bedding areas . 44

11 Initial solution of optimisation algorithm 45

12 Final solution of optimisation algorithm 45

13 Screenshot of graphical user interface . ii

14 Point inside polygon . iii

15 Polygon clipping . iv

16 Additional distribution plots for the validation process viii

17 Distributions of order parameters α0.7 and β in synchronisation simulations ix

18 Distributions of order parameters ψ and κ in synchronisation simulations . x

V

List of Algorithms

List of Tables

1 Internal states for the agent-based cow model 6

2 Parameters of agent-based model . 19

3 Fixed validation parameters . 25

4 Variable validation parameters . 25

5 Validation parameters for best curve fitting 26

6 Validation parameters obtained from ensemble of annealing processes . . . 29

7 Length of the bedding area used by Færevik et al. 35

8 Order parameters for the simulations of Færevik et al.’s experiments 36

9 Linear correlation coefficients for Small . 37

10 Linear correlation coefficients for Medium 37

11 Linear correlation coefficients for Big . 38

12 Meaning of the respective signalling values in housing files xii

List of Algorithms

1 One update step of an agent . 13

2 Simulated annealing . 23

3 Optimisation algorithm . 40

4 Calculate initial solution for optimisation 42

VI

1 Introduction

1 Introduction

Animal behaviour research was initially driven mainly by observations. One of the first

written records of the systematic study of animal behaviour was Charles Darwin’s “On the

Origin of Species by Means of Natural Selection” [7], which includes a full chapter about

what he called “Instinct”. With the development of computers during the 20th century,

modelling and simulations started to play an important role in animal behaviour research.

Nowadays, models for different kinds of animals exist and are used in combination with

simulations and experiments to gain deeper insight into animal behaviour and to explore

possible ways for human use.

In [6], Couzin et al. presented a model for the movement of fish schools and bird

flocks that was able to produce various kinds of swarming behaviour observed in nature.

The model was capable of creating a chaotic swarm as well as a nicely organised group

movement or movement in a torus depending on the different parameters chosen. This

model might be adequate for swarm movement, but it does not include effects like eating

or resting. These effects play an important role in the behaviour of big farm animals like

cows. This dissertation will extend Couzin et al.’s model by incorporating eating and

resting periods in order to resemble the behaviour of big and slow moving animals – in

particular, cattle.

Using this model, we investigate the possibility of emerging synchrony in a cattle herd

by interpreting the agents as a set of weakly coupled oscillators. Different kinds of order

parameters will be used to measure the amount of synchrony. This investigation has a

special importance for beef cows because of their unique double-digestive system [16]. The

first digestion takes place during the actual eating process when the cow usually stands

upright. Thereafter it moves to the bedding area to lie down. This is when the second

digestion, often referred to as ‘chewing the cud’, happens. Fisher et al. showed in [9] that

the growth rate of beef cows is higher when the resting period is not disturbed and the

cow can stay lying as long as it wants. A study by Nielsen et al. [19] demonstrated that

the occurrence of undisturbed cycles coincides with the synchrony in the herd, implying

1

1 Introduction

that most of the animals rest at the same time. Hence, a higher synchrony of the cows

leads indirectly to a better growth rate, which itself leads to a better outcome for the

farmer. Thus, the farmer’s goal coincides with the cows’ wish for an undisturbed resting

period, which improves animal welfare.

We will then use these synchrony measures to help optimise the pen design. We com-

posed an algorithm that optimises the positions and sizes of the bedding and feeding

areas in order to find a configuration that favours synchrony in the multi-agent system.

We implemented this algorithm and incorporated it into a graphical user interface (GUI).

This GUI should give farmers the chance to analyse the effects of changes in barn layout

based on simulation results. They can then use the algorithm to find a configuration with

an optimal predicted outcome.

In the first chapter of this dissertation the agent-based model for cattle behaviour is

presented. This model, though inspired by Couzin et al.’s model, is original in the way

it introduces resting and eating periods into the agents’ behavioural rules. The second

chapter contains the evaluation of the model using comparison to data from farms. The

third chapter begins with a short review of weakly coupled oscillators. We then present

different ways to measure synchrony in the model and the results of a series of simulations.

Both the second and the third chapters contain reviews of known concepts and their special

adaptation for this model. The fourth chapter will then present an original algorithm

that optimises the configuration of the pens with respect to the synchrony measures.

Additionally, we will demonstrate the work of the algorithm on an example. The main

results of this dissertation are summed up in the conclusion along with suggestions for

future research. We will provide additional details on the GUI, on some known concepts

that we used during the dissertation and on the data in the various appendices.

2

2 Model of cow behaviour

2 Model of cow behaviour

The modelling of discrete entities arises in many problems, such as traffic flow analysis

and the modelling of disease spread [3]. In general, there are two possible ways to model

these systems. If the number and density of the elements is reasonably high, one can

concentrate on analysing the density flow in the considered area. Using this modelling

approach, one typically obtains a set of partial differential equations. However, in a

usual barn the number of cows and their density is too small to use such a continuum

model. In such cases, one can instead apply a modelling framework based on agents. The

development of such a model is presented in this chapter.

In the first section of this chapter we give a review of agent-based modelling. After

a short introduction and an informal description, agents and their characteristics are

formulated more rigorously. In the second section, we present the basic rules used for

the behavioural cow model. This model generalises Couzin et al.’s model for animal

movement in [6], which we will also present in this section. We conclude the chapter with

a description of the implementation of the model along with the discussion of specific

problems that had to be addressed when implementing it.

2.1 Agent-based modelling

During the first half of the 20th century, the Hungarian-American mathematician John

von Neumann developed the first ideas of an intelligent agent, which eventually found its

climax in the famous von-Neumann-machine, a theoretical automaton that was capable

of self-reproduction. After von Neumann passed away in 1959, his work was published

by Arthur W. Burks in 1966 in [18]. In the 1970s John Horton Conway developed the

famous “Game of Life” [12]. This game showed that complex behaviour can emerge by

combining a number of agents with very simple rules and restricted information. Since

then the concept of individual agents with their own rules and a restricted communication

between each other has been used in many scientific disciplines and gained considerable

3

2 Model of cow behaviour

importance with computational advances that have allowed increasingly large systems to

be analysed. See references [23] and [29] for more details.

2.1.1 An informal definition

There is no standard definition of the term agent. Explanations are often based on the

properties of an agent. The way we use the term throughout this dissertation is loosely

based on the definition given in [29].

Definition 2.1. An agent is a system that uses a fixed set of rules based on communication

with other agents and information about the environment in order to change its internal

state and fulfil its design objectives.

All agents of the system are situated inside a finite environment and exchange infor-

mation about their respective statuses. Theoretically it is also possible that an agent

changes the environment in which it lives, but we will neglect this possibility here. We

will also assume that an agent is time-discrete, which means it only changes its state

at certain times t0 < t1 < One can distinguish between adaptive and non-adaptive

agents. Adaptive agents can change their rules throughout their life process and there-

fore learn certain behaviour. We will concentrate on non-adaptive agents, which follow

a constant set of rules and thus cannot adapt their behaviour to environmental changes.

We will denote the combination of a number of agents and the common environment as

a multi-agent system.

2.1.2 A more rigorous definition

We now want to give a more rigorous explanation of an agent. We assume that our system

consists of N agents that all follow the same basic rules with only slight differences in

parameter values. The agents are numbered 1, . . . , N and each of them has a vector of

internal states xi(t), i = 1, . . . , N . The internal states are assumed to be invisible to

4

2 Model of cow behaviour

other agents in the system, so we introduce a vector of external states yi(t), i = 1, . . . , N .

These external states depend solely on the internal states of the agent and are given by

yi(tl) = gi(xi(tl)), i = 1, . . . , N, l ≥ 0. (2.1)

The agents live in a mutual environment E, which is modelled as a set of boundary

conditions for the internal states of an agent. We allow E to change with time, but as

mentioned in Section 2.1.1 we assume that it cannot be changed by the agents. Because

we assume the system to be time-discrete and the rules not to change with time, the

general update function for the internal states is

xi(tl+1) = fi
(
xi(tl),y1(tl), . . . ,yi−1(tl),yi+1(tl), . . . ,yN(tl);E

)
, i = 1, . . . , N, l ≥ 0.

(2.2)

In equation (2.2), one can see that the environmental information E can also have an

influence on the internal states of an agent and therefore on its behaviour. The system

is started at time t0 with the internal states x1(t0), . . . ,xN(t0) and the external states

yi(t0) = gi(x(t0)) for i = 1, . . . , N . Without loss of generality, we can choose t0 = 0,

because f and g are both independent of time. In the general model, no restrictions need

to be made for the functions fi and gi. A sketch of the behaviour of a single agent can

be seen in Figure 1.

x if g
...

y i

y i

x1

xN

y 1

yN

x i

E

Figure 1: Behaviour of a single agent

5

2 Model of cow behaviour

2.2 Rules for the behavioural cow model

The next step is to develop a set of rules that govern the behaviour of cattle and model

the most important aspects of a beef cow’s life in the barn. The model should include

resting and eating periods as well as movement of the cows. This led to the chosen set

of internal states xi, which we show in Table 1. Throughout this dissertation we will use

the words resting and lying interchangeably.

ri ∈ B ⊆ R2 position of the cow in the barn B

di ∈ [0, 2π] angle between the x-axis and the facing direction of the cow

si ∈ S status of the cow chosen from a set of possible statuses S,

with S = {Standing, Walking, Resting, Eating}

ai ∈ [0, 1] state of hunger (ai = 0 - very hungry)

bi ∈ [0, 1] desire to lie down for a rest (bi = 1 - no desire)

Table 1: Internal states for the agent-based cow model

In this model, the environmental information is given by the set B ⊆ R2, which repre-

sents the shape of the barn. Walls and barriers are implicitly described by the boundary

∂B. Additionally the sets F ⊆ B, representing the feeding, and R ⊆ B, representing

the bedding area, are part of the environment and will have an influence on the agent’s

behaviour (see the discussion below). Both these sets can theoretically be changed in

time, as the farmer could decide to adjust their positions or sizes. Therefore, we obtain

for the environmental information E = {B,R, F}.

Out of the internal states shown in Table 1, only ri, di, and si can potentially be observed

by other cows in the barn. These therefore constitute the set of external states yi. Hence,

the output function g takes the following form

g : xi = (ri, di, si, ai, bi) 7→ (ri, di, si) = yi. (2.3)

In fact, we will see that the actual model only uses a subset of these states. The definitions

of these internal and external states allows us to describe basic behavioural rules and

formulate them in mathematical terms.

6

2 Model of cow behaviour

2.2.1 Avoidance

We will start this part with a short review of Couzin et al.’s model for animal movement

[6]. Because this model was originally used to model fish schools and bird flocks, some

adaptations are needed in order to make it suitable for cattle. A detailed review of the

model and further simulations can also be found in [17].

In the original model, each agent has three different ways to react to other agents

depending on the distance between them. Hence, Couzin et al. differentiated between 3

different zones around each agent, as can be seen in Figure 2.

b
ri(t)

ZOR

ZOO

ZOA

di(t)

y

x

Figure 2: 3 Zones around an agent in Couzin et al.’s model

The innermost zone is called the “Zone of Repulsion” (ZOR), which the agent tries to

keep as its private space. We define the number of other agents in this zone to be nr, and

these agents to be numbered j1, . . . , jnr . In order to keep this zone for his own, the agent

will try to walk away from every intruder entering it. Therefore, if nr > 0 the movement

is governed by an avoidance rule, with the desired direction defined through

rr,i := −
nr∑
k=1

rjk(tl)− ri(tl)

‖rjk(tl)− ri(tl)‖
. (2.4)

The direction rr,i is the sum of the unit vectors pointing away from the intruders. The

second zone is called “Zone of Orientation” (ZOO). The agent tries to adjust its current

facing direction in order to align with other agents in its ZOO. The desired direction of

7

2 Model of cow behaviour

movement for the orientation zone is thus defined to be

ro,i :=
no∑
k=1

 cos dok
(tl)

sin dok
(tl)

 , (2.5)

where the no other agents in the ZOO are numbered o1, . . . , ono . The agent is attracted

to all agents in the third zone, the so called “Zone of Attraction” (ZOA). Again, we

define the number of other agents in the ZOA to be na and assume these are numbered

c1, . . . , cna . The desired direction defined through agents in the ZOA is

ra,i :=
na∑
k=1

rck(tl)− ri(tl)

‖rck(tl)− ri(tl)‖
. (2.6)

We can see that equation (2.6) is similar to equation (2.4) except for the different sign that

makes the agent move towards other agents rather than away from them. As mentioned

earlier, the total desired direction rd,i is defined to be rr,i if nr > 0, which means that

the avoidance rule has priority over the other two. If nr vanishes and both no and na are

non-zero, the desired direction is defined to be

rd,i :=
1

2
(ro,i + ra,i) . (2.7)

If nr = 0 and only one of na or no is non-zero, the rule belonging to the non-zero value

governs the movement fully. In the case where no = na = nr = 0, Couzin et al. define the

animal to keep moving in its current direction.

In order to address the restricted physical properties of cows compared to fish and birds,

we only keep the avoidance rule defined in the ZOR for the cow model. If there are no

other agents in the ZOR, the agent does not have the desire to avoid anything and stops

walking. Exceptions for this are hunger or the desire to rest, which will be discussed in

Section 2.2.2.

If nr > 0, we can calculate the desired direction of movement using equation (2.4)

and define the angle between rd,i and the x-axis to be dd,i. Another feature inherent in

Couzin et al.’s model is the finite turning speed of the agents, because animals cannot

turn infinitely fast. Hence, we define the turning speed γi measured in rad/s. In order

to calculate the facing direction at the next time step, the angle ∆d ∈ [−π, π] is defined

8

2 Model of cow behaviour

to be the difference between dd,i and di(tl). The new facing direction can be calculated

using

di(tl+1) =

 ddes,i, ∆d ≤ γi(tl+1 − tl),

di + ∆dγi(tl+1 − tl), ∆d > γi(tl+1 − tl).
(2.8)

The actual movement of the agents occurs before the turning and proceeds in the current

facing direction. Therefore, the new position is

ri(tl+1) = ri(tl) +

 cos di(tl)

sin di(tl)

 vi(tl+1 − tl), (2.9)

where vi is the speed of the agent. In the implementation, we will need to make some

restrictions to this movement in order to ensure that animals cannot run through each

other or through walls (see Section 2.3 for details). Also, we will see in Section 2.2.3 that

moving and turning only occurs if the agent is in a certain state si(tl).

2.2.2 Hunger and Resting

As mentioned in Chapter 1, cows have a unique double-digestive system, which requires

them to eat and rest alternately [16]. In order to incorporate this feature into the model,

we introduced the internal states ai(t) and bi(t). For both of these states, the value of 0

means the desire to eat or rest is the highest and 1 means no desire at all. For simplicity,

we assume these variables to change linearly in time. This assumption is reasonable,

because, as we will see in Section 2.2.3, the agent only changes its behaviour when one

of these variables becomes 0 or 1. The progress between these values only has a minor

effect. We also assume the change of ai and bi to depend on the state the agent is currently

in, because for example the consumption of energy could differ between a resting and a

standing cow. This yields

ai(tl+1) =

min

(
1, ai(tl) + tl+1−tl

Teat

)
, si(tl) = Eating ,

max
(

0, ai(tl)− tl+1−tl
Th,s

)
, si(tl) = Standing, Walking ,

max
(

0, ai(tl)− tl+1−tl
Th,r

)
, si(tl) = Resting ,

(2.10)

bi(tl+1) =

 min
(

1, bi(tl) + tl+1−tl
Trest

)
, si(tl) = Resting ,

max
(

0, bi(tl)− tl+1−tl
Tstand

)
, si(tl) = Standing, Walking, Eating .

(2.11)

9

2 Model of cow behaviour

We will investigate the time constants Teat, Th,s, Th,r, Trest, and Tstand in more detail during

the process of model validation in Chapter 3.

2.2.3 Finite-state machine for si

Switching between the 4 possible states Standing, Walking, Resting, and Eating, and the

reaction to hunger and the desire to rest are controlled by a finite-state machine. A finite-

state machine is a model consisting of a finite number of states and the conditions for

state changes, often referred to as transitions. A detailed introduction can be found in

[13]. The transitions for our model can be seen in Figure 3.

bi = 0 and ai > 0 and

nr = 0 and ri ∈ R

(ai > 0 or ri ∈ F) and

(bi > 0 or ri ∈ R) and

nr = 0

ai = 0 and

ri ∈ F

bi = 1 or ai = 0

or ns > 0

ai = 0 and ri /∈ F or

bi = 0 and ri /∈ R or

nr > 0

ai = 1

Standing

Resting

Walking

Eating

Figure 3: Finite state machine

The starting point in this state machine is si = Standing . If the agent gets hungry or

wants to rest, it will change to si = Moving in order to walk to the feeding or bedding

area. If it is hungry and enters the feeding area, it will change to si = Eating and stay in

this state until it is full and the hunger variable ai reaches the value 1. This is due to the

assumption that an eating agent does not give way to other agents. These kind of social

interactions in cows are driven by dominance relationships between the individuals, which

are explained in detail in [2]. For this model we simplify these relationships by assuming

that all cows are equal.

10

2 Model of cow behaviour

For resting, the matter is a bit different. In order to handle the resting case, we

introduce another zone around the agent, the so called “Sleeping Zone” (SZ). As soon as

the agent is disturbed by another agent in its SZ, it gets up, which is another simplified

assumption of the complex social interactions between cows. Therefore we introduce ns,

the number of other agents in the sleeping zone, similarly to nr used earlier. Also, the

nature of the double-digestion required that eating occurs before resting [16]. This leads

to the assumption that an agent gets up from resting when it is hungry even if bi < 1.

The second mechanism for an agent to enter the state si = Moving is if another agent

enters its ZOR. In this case, the movement is determined by the avoidance rule and the

agent tries to move away from its contender. Some special cases of conflicting interests

will be considered in Section 2.3 in order to ensure that the actual simulation does not

get caught in an infinite loop.

2.3 Implementation details

For the implementation of the present model, we used the C++ programming language.

For reasons of simplicity, the time stepping was chosen to be equidistant with a step size

of τ > 0. The parameter τ should be chosen in a way that the distance covered in a single

simulation step is significantly smaller than the size of an agent’s ZOR. Hence, we get for

the time-steps

tl = l · τ, and tl+1 − tl = τ, ∀ l = 0, 1, 2, . . . , L, (2.12)

where L is the number simulation steps. In the implementation of the present model, one

has to consider some special situations that can arise during a simulation. First, one has

to ensure that the agents cannot walk through walls or into each other. Therefore, we have

to install an additional test before the actual movement occurs. In this test, the movement

step determined by (2.9) is precalculated and the new position is tested for collisions with

walls or other agents. If no collision occurred, the new position is confirmed. Otherwise,

the step does not take place and the agent is set back to its original position. In order

to test the overlap with other obstacles, a shape has to be assigned to the model cows.

11

2 Model of cow behaviour

For simplicity, we used disks with a constant radius rag. The initialisation at time t0 = 0

is done by an assignment of random values to the internal states of every agent. It is

possible that agents overlap initially. In this case, the avoidance rule makes them move

away from each other immediately, so that the collision is eliminated.

A second effect we need to address is the possibility of conflicting interests in an agent.

As mentioned earlier, we resolved the conflict between the desire for food and for a rest in

favour of eating. One must also consider how to resolve the case when an agent is on its

way to move towards the feeding or bedding area and is disturbed by another agent in its

ZOR. In this case, the new desired direction is chosen to be the vectorial average direction

between the two original desired directions. This allows the agent to simultaneously move

towards its target and avoid other agents.

Putting all the rules and special considerations together, we can now obtain a pseudo-

code version of the complete cow model, which we show in Algorithm 1. Here, the

locations of feeding areas F , bedding areas R and walls defined through B are all part of

the environmental information E as mentioned in Section 2.2. In the implementation we

assumed these sets to be general polygons stored in their respective pointwise represen-

tation. When agents get hungry or tired, a random empty spot in the respective area F

or R is calculated. Unless the agent is disturbed by other agents, it moves towards this

point in a straight line. In order to get visual results and to give farmers a chance to

experiment with the model, we implemented a graphical user interface that is described

in Appendix A.

12

2 Model of cow behaviour

Algorithm 1: One update step of an agent

Input: xi(tl), yj(tl), j ∈ {1, . . . , N}\{i}, E = {B,F,R}

Output: xi(tl+1)

Calculate nr and ns;1

Calculate ai(tl+1) and bi(tl+1) using equations (2.10) and (2.11) respectively;2

ri(tl+1) := ri(tl); di(tl+1) := di(tl); si(tl+1) = si(tl);3

if si(tl) == Resting and (ns > 0 or ai(tl+1) = 0 or bi(tl+1) = 1) then4

si(tl+1) := Standing ;5

end6

if si(tl) == Eating and ai(tl+1) == 1 then si(tl+1) := Standing ;7

if si(tl) == Standing then8

if ai(tl+1) = 0 and ri(tl+1) ∈ F then si(tl+1) := Eating ;9

else if (ai(tl+1) = 0 and ri(tl+1) /∈ F) or (bi(tl+1) = 0 and ri(tl+1) /∈ R) or10

nr > 0 then

si(tl+1) := Walking ;11

else if bi(tl+1) = 0 and ri(tl+1) ∈ R then si(tl+1) := Resting ;12

else if si(tl) == Walking then13

Calculate ri(tl+1) using equation (2.9) and test for overlap with other agents or14

walls;

Calculate rd,i using equation (2.4) and merge with directions to feeding /15

bedding areas;

Calculate di(tl+1) using equation (2.8) with dd,i as described above;16

if nr == 0 and (ai(tl+1) > 0 or ri(tl+1) ∈ F) and (bi(tl+1) > 0 or ri(tl+1) ∈ R)17

then

si(tl+1) := Standing ;18

end19

end20

13

3 Model validation

3 Model validation

Modelling is often used to gain insight into a process that is difficult or expensive to

track. Simulation of the model is then used to make predictions and draw conclusions

about the real process. In order to allow the last step, one has to ensure that the model

resembles the behaviour of the original system to the extent possible. This step of the

modelling process is called model evaluation and is split into the two parts validation

and verification. In the latter, one checks if the model is implemented correctly. The

process of model validation is the actual check if the modelling assumptions allow for a

model behaviour that is sufficiently close to the analysed system. Additionally, this step

can be used to help determine the values of modelling parameters. For the model of cow

behaviour, we used empirical data to fit the parameters. The data was gathered from

video footage and is explained in more detail in the first section of this chapter. The

second section gives a summary of the parameters used in the model and the variables

that will be fit. In the third section, we will give a short presentation of the simulated

annealing optimisation concept along with the adaptations we used for the cow model.

The results of the validation process will be explained in the fourth section.

3.1 Validation data

The data we used for the model evaluation is originated from video data that was recorded

between 2004 and 2006 by Thomas Alan Shaw. He assembled video footage from 9

different farms including 60 separate groups of cattle. The visited farms are typical

examples for rearing beef cattle during the winter months, found across England. In order

to obtain time series data from these videos, image processing was done in combination

with marking of events and positions. Most of this marking was done by Nicole Milligan

in 2006. Three different streams of data were obtained from the videos: Lying data,

Housing data, and Standing data. All of them are explained in more detail below. During

the analysis of the video data, we spotted some problems in the prior work. We will

also present these problems in detail and discuss possible consequences for the validation

14

3 Model validation

process. More details and sample data can be found in Appendix E.

3.1.1 Lying data

The first data stream contains the so-called “Lying data” that consists of a set of lying

events (see Appendix E.1 for sample data). A lying event is the action of a single cow

lying down at a time t1 and getting up at a later time t2. For each of these events, the

times t1 and t2 are recorded together with the position of the cow performing the event.

Additionally, the positions of all visible standing cows at the times t1 and t2 are tracked.

For all of these cows, two positional values – one for the head and one for the tail – are

stored, which gives the additional information of the facing direction for each cow.

One possible problem for this data stream is that cows could be lying down at either

the beginning or the end of the video. In these cases, the time and the positions of the

standing cows can only be recorded for the visible part of the lying event. The other time

value was set to a special error code to mark this lying event as incomplete.

3.1.2 Housing data

For most of the pens, the cameras could not capture the whole pen – a problem that we

will address later. In order to store information about the visible parts of the pens, a

second stream of data was generated – “Housing data”. We show sample data and further

details in Appendix E.2.

The first data stored in these data files is the boundary of the visible area of the pen,

which is followed by the positions of bedded areas. After that, all visible barriers on

the boundary of the pen or sometimes even extending into the interior are saved. The

last two sets represent the positions of food and water troughs respectively. All those

areas are represented by a set of points, which set up the polygon approximating the

areas. Two-point-polygons are used for simple one dimensional barriers. Except for the

15

3 Model validation

representation of the visible area itself, all other parts can theoretically be missing because

of the restricted view.

3.1.3 Standing data

In order to allow an analysis of the movement of each of the cows, a third stream of

Standing data was recorded – “Standing data” (see Appendix E.3 for more details). In

these files, the positions of all visible standing cows was recorded every 30 seconds. Again,

both the head and the tail coordinates are stored. As mentioned earlier, the view of the

camera is usually restricted, which makes it possible that cows enter and leave the visible

area. This combined with the nearly indistinguishable appearances of the cows makes it

impossible to keep track of the position of a single cow throughout the whole video, which

is another problem to be discussed later.

3.1.4 Units

Because the data was collected from different barns and shows cattle herds of different

breeds and ages, comparability of the data is a major issue. The first problem following

from this is the need for a consistent set of units for all of the videos. The initial lengthscale

in the barns was provided by a tape measure attached to one of the visible corners. Having

a known length, these measures can be tracked on the videos and used to map the positions

on the video into two dimensional coordinates in the barns.

This solution still does not ensure the comparability of the different data sets. This

problem was addressed by measuring the average length of a standing cow for each of the

videos. This average length was defined to be the lengthscale and all coordinates were

scaled accordingly. We will denote this lengthscale as 1 cl (cowlength) throughout the rest

of the dissertation. This process implies that every video has an average length of standing

cows of 1, no matter how old the filmed cows were. In order to ensure for a comparable

time scale the time unit was chosen to be one second on the video. Because every video

16

3 Model validation

with the length of 180 minutes contains 24 hours of footage, a unit time represents 8 s of

real time and is equal for all of the different barns. In all the following explanations the

unit 1 s stands for a second on the videos, unless explicitly stated otherwise.

3.1.5 Problems with the data

As mentioned earlier, some problems lead to the data being incomplete in certain aspects.

One problem is that during darkness it was impossible to mark the cows. Hence a rea-

sonable amount of every video is missing due to nighttime, which makes an investigation

of lying behaviour during the night impossible. Thus, we had to concentrate on daytime

resting patterns.

A second incompleteness occurs due to the restricted view of the cameras. Cows can

leave and enter the visible area and it becomes impossible to keep track of the movement

of individual cows. Because we are more interested in the behaviour of the whole herd

of cattle rather than individual cows, this is not too big a problem as long as the visible

section is representative for the whole pen. However, this effect can become a major

problem for pens where only small parts of bedding or feeding areas are visible or when

they are even missing completely.

3.2 Parameter fitting

During the explanation of the model in Section 2.2, we introduced a set of parameters.

These values have a significant impact on the behaviour of the system. Hence, we want

to adjust these parameters so they fit best with the data described above. First we will

describe the variables used for the fitting of the parameters. We will then give a short

review and further discussion of the parameters themselves.

17

3 Model validation

3.2.1 Variables compared for fitting

Two different measures will be used to adjust the parameters. The first one concerns the

distribution of lying time lengths. Using the Lying data discussed earlier, one can obtain

the length of every complete lying event recorded and construct a distribution of the lying

times. In Figure 4, the distribution obtained from all the video data and used for the

parameter fitting can be seen. In order to adjust the parameters, we will later use the

least square distance between the simulated value and the curve shown in Figure 4 as an

objective function that needs to be minimised. Therefore we use the distributional data

points from Figure 4 to calculate the error value using

e1 =
m∑
i=1

(si,data − si,sim)2, (3.1)

where m is the number of data points, si,data are the individual data points, and si,sim are

the respective data points obtained from the simulation.

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Distribution of resting periods

Resting time in s

F
ra

ct
io

n
of

 s
le

ep
in

g
ev

en
ts

Figure 4: Distribution of lying time lengths

Because the distribution of the lying times does not fully represent the lying behaviour,

we need a variable that represents the percentage of time that a cow spends resting. The

incompleteness of the data discussed above does not allow us to extract this information

directly from the videos. Because this value can vary for cows of different breeds and age,

we have to make a unifying choice. Based on the information gathered in [8], we assume

the amount of time a cow spends resting to be 50 %, which will be the value we use during

the parameter fitting. Hence, the second error component satisfies the equation

e2 = (prest,sim − 0.5)2, (3.2)

18

3 Model validation

where prest,sim is the probability that an agent is resting in the simulation results. We

can now add these two error values together to acquire the total error value e that is

equivalent to the objective function we seek to minimise. Hence, e is given by

e = e1 + e2. (3.3)

3.2.2 Adjustable parameters

A summary of the parameters that appear in the model can be seen in Table 2.

Teat eating time ∼ 100 s

Trest maximum resting time ∼ 2000 s

Th,s time until agent gets hungry when standing ∼ 2000 s

Th,r time until agent gets hungry when resting ∼ 2500 s

Tstand time between two consecutive rests ∼ 2000 s

rzor size of retention zone ∼ 1.5 cl

rsz size of sleeping zone ∼ 1.2 cl

rag size of an agent = 0.5 cl

v movement speed ∼ 1 cl/s

γ turning speed ∼ 2π rad/s

Table 2: Parameters of agent-based model

Out of these parameters, the last 3 are physical attributes of the cow. These can be

directly incorporated from general information known about cows and are therefore not

used for the parameter fitting. In particular the size of an agent rag can be estimated

to be 0.5 cl, because we defined the lengthscale 1 cl to be the size (diameter) of a cow.

The parameters v and γ only have an impact on the moving behaviour of the agents, but

neither on eating nor resting patterns. Hence, we will use values for these two parameters

that represent the moving and turning speed of the cows we saw on the videos – we assume

v = 1 cl/s and γ = 2π rad/s.

We can obtain an initial guess for the maximum resting time Trest from the maximum

lying time measured in the data. Using the distribution of resting times described earlier,

19

3 Model validation

we get Trest = 2000 s as an initial guess. Additionally, the ratio Trest/(Trest + Tstand)

ideally represents the fraction of the day a cow spends resting, which we defined to be

0.5. This gives rise to an initial guess of Tstand = 2000 s.

Because of the problems in the data described in Section 3.1.5, no consistent information

about the length of eating periods is available. We can, however, assume the corresponding

parameter Teat to be much smaller than all the other time constants. For the validation

process, an arbitrary value of Teat = 100 s was chosen, because eating is usually a shorter

process than resting. Higher values of Teat can lead to additional queueing at food troughs,

but should not influence the resting behaviour.

The values for rzor and rsz can be obtained from the minimum distances of a resting cow

to a standing cow at the times t1 (lying down) or t2 (standing up), respectively. Because

the value of rzor does not directly influence the lying pattern of the agents, we assume it

to be 1.5 cl, which is consistent with the data. However, the value of rsz has an impact

on the resting behaviour, as it predicts how easily a lying agent gets disturbed. To get

initial guesses for the missing two parameters, we assume a resting agent to use up less

energy than a standing one (hence, we assume Th,r > Th,s).

3.2.3 Problems of parameter fitting

Our goal in the parameter fitting process is to minimise an objective function that is a

combination of the error variables described in Section 3.2.1. The optimisation is per-

formed with respect to the parameter space shown in Section 3.2.2. This inherits a set of

problems. First, the number of adjustable parameters is relatively big compared to the

small set of available data, which could cause overfitting in the parameters – the system

represents the data rather than the underlying behaviour. Additionally, the search space

is in fact infinitely big, which makes an exhaustive search impossible.

Another problem is that each evaluation of the objective function requires a simulation

of a large number of steps (L ≥ 100000) of the whole system in order to gain representative

20

3 Model validation

distributions. For a barn with 10 cows the simulation of 100000 steps takes about 5 s

on a computer with a 4 GHz processor and 1GB RAM. Hence, we desire an optimisation

algorithm that minimises the number of function evaluations. Additionally, there is no

chance to obtain gradient information for the objective function in this system.

The third major problem is that the behaviour of the system can depend on different

initial settings of the agents, which implies that different random seeds can produce dif-

ferent values of the objective function. A process with this property is generally called

“noisy”. This problem can be addressed by the use of ensemble averages with the disad-

vantage of even longer computation times. Hence, the optimisation algorithm needed for

this parameter fitting problem should be direct (no derivatives), stable with respect to

noise, and minimal in the number of function evaluations. One technique satisfying these

requirements is simulated annealing.

3.3 Simulated annealing

The method of simulated annealing was first formulated by Kirkpatrick et al. in [15] and

later independently redeveloped and used as an approximation algorithm for the travelling

salesman problem by Černý in [4]. This direct optimisation algorithm is inspired by the

annealing process used in metallurgy. In order to achieve a crystalline structure with a

minimum number of defects, the metal is first heated over its melting point and later

cooled very slowly to give the atoms time to settle into the minimum energy state, which

is the crystal lattice. If one considers all possible states of the metal’s atoms as the search

space and the energy as the objective function, this annealing process can be interpreted

as the search for a global minimum. This gave rise to the adaptation of a simulated

version for general objective functions with large search spaces.

Let G be the search space, which is assumed to be too large for an exhaustive search, and

h : G → R the objective function we seek to minimise. We assign a transition probability

21

3 Model validation

P (ξ → η) ∈ [0, 1] to every pair of states ξ, η ∈ G, which satisfies the property∑
η∈G

P (ξ → η) = 1 ∀ξ ∈ G. (3.4)

If the search space G is continuous as it is for our model, the function P shall be interpreted

as a probability density function and the sum becomes the integral∫
G
P (ξ → η)dη = 1 ∀ξ ∈ G. (3.5)

We can also define the set of possible successors of a state ξ ∈ G, often referred to as its

neighbourhood N (ξ), as the subset of G with nonzero transition probability P (ξ → η).

The simulated annealing algorithm starts with an initial state ξ0 ∈ G. In every step the

successor state η is chosen randomly from the probability distribution defined through

P (ξ → η). The objective function value is then calculated at the potential new state and

h(η) is compared to h(ξ). If h(η) is smaller than h(ξ), η becomes the new state, which

is equivalent to the classic random search algorithms. However, unlike the standard

algorithms, simulated annealing still allows η to be accepted even if h(η) is bigger than

h(ξ). The latter happens with the so-called “acceptance probability” Q(ξ, η, T), which is

governed by an artificial temperature value T described later and defined similarly to the

Boltzmann probability as

Q(ξ, η, T) := exp

(
−h(η)− h(ξ)

kT

)
, (3.6)

where k ∈ R is the counterpart of the Boltzmann constant kB in the physical system

and is chosen to be proportional to the dimension of h. The possibility of jumping to a

state with a bigger objective function value allows the algorithm to leave local minima in

order to find the global minimum. The question arising from this is how to change the

temperature T during the optimisation process. This choice is called the cooling schedule

and some possible approaches are shown in [27]. In one of those cooling schedules, the

temperature is kept constant for a specified number of optimisation steps (denoted LT),

before it is updated using the formula

Tk+1 = λTk, α ∈ [0, 1]. (3.7)

The constant λ is usually chosen to be between 0.6 and 1 in order to keep the cooling

process slow and allow the states to settle to the global minimum. The process of cooling

22

3 Model validation

is repeated until either h(x) reaches a satisfactorily small value hmin, the state does not

change anymore, or T becomes smaller than a predefined value of Tmin. All these aspects

are summarised in the pseudo-code seen in Algorithm 2.

Algorithm 2: Simulated annealing

Input: Initial state ξ0 ∈ G, λ, k ∈ R

Output: Final state ξfin ∈ G with objective function value h(ξfin)

ξcurr := ξ0;1

T := 1;2

while h(x) > hmin and T > Tmin and ξcurrchanges do3

for i := 1 to LT do4

Choose ξpot from N (ξcurr) with respect to probability density function5

P (ξcurr → ξpot);

if f(ξpot) < f(ξcurr) or rand < exp
(
−f(ξpot)−f(ξcurr)

kT

)
then6

ξcurr := ξpot /* State ξpot is accepted */7

end8

end9

T := λT10

end11

ξfin := ξcurr;12

Simulated annealing is mainly used in combinatorical optimisation problems, where

the search space G is usually finite but big and the neighbourhoods N (ξ) are comparably

small. One example is the travelling salesman problem and the use of simulated annealing

for this is shown in [4]. For these special problems, it can be shown that the algorithm

converges to the global minimum for an adequate cooling schedule and a proof along

with further discussion of different cooling schedules can be found in [1]. However, the

problem we are facing here does not provide a finite set G and hence special adaptations for

a continuous search space have to be made. In this case, we have G = Rn, where n is the

number of parameters used for the fitting. The objective function for this problem can be

calculated according to the curve fitting described earlier. For the transition probability

23

3 Model validation

we use a multidimensional normal distribution in the form

P (ξ → η) :=
n∏
i=1

exp

(
−(ξi − ηi)2

2σ2
i

)
, ∀ ξ, η ∈ G = Rn. (3.8)

This means that parameter values are changed independently using a normal distribution

with standard deviation σi and mean 0. The choice for P (ξ → η) can be interpreted as a

special case of the more general idea presented in [28].

3.4 Simulation and results

As mentioned earlier, the validation data was obtained from a number of different barns.

All pens had a comparable but different layout with one food trough and a relatively large

bedding area. For the validation process, we use a simple barn configuration that featured

these essential characteristics. A picture of the barn used in all following simulations,

together with the position of the agents, can be seen in Figure 5. We can see that the

barn has a big bedding area (grey) and a relatively small feeding trough (green). We

discuss the graphical user interface (GUI) we developed in Appendix A.

Figure 5: Barn used for validation (grey area - bedding, green area - feeding, grey agents

- resting, hunger represented by colour gradient from red - hungry to blue - not hungry)

Following the discussion about the parameters in Section 3.2.2, we only used 5 of them

for the actual simulated annealing process. The other 5 were given the values in Table 3.

The parameters used for the curve fitting, together with their initial values and standard

24

3 Model validation

deviations can be seen in Table 4. A justification for the fixed values and the initial

guesses was given in Section 3.2.2.

Name Teat rzor rag v γ

Value 100 s 1.5 cl 0.5 cl 1 cl/s 5 rad/s

Table 3: Fixed validation parameters

Name Trest Tstand Th,s Th,r rzs

Initial value 2000 s 2000 s 2000 s 2500 s 1.25 cl

Stand. dev 200 s 200 s 200 s 200 s 0.0125 cl

Table 4: Variable validation parameters

In all simulations, we chose τ = 0.1 in order to satisfy the condition τv � rzor, which

we mentioned in Section 2.3. We used 100, 000 simulation steps so that every simulation

is worth 10, 000 s of video time, which is equivalent to about 22 hours – nearly a full day.

The number of cows in the unit barn was chosen to be 10, which is a representative value

of the numbers of cows in the video pens.

3.4.1 Results of a single curve fitting

The best curve fitting obtained during the validation process can be seen in Figure 6(a).

The error value belonging to this fit – calculated by equations (3.1) - (3.3) – is e = 0.0018.

The parameter values for this special curve can be found in Table 5. Figure 6(b) shows

the development of the fitting error during the simulated annealing process. One can

see that the error generally tends to decrease, but the character of simulated annealing

also allows for an increase of the error. The average percentage of a cow resting in the

simulation with the parameter values given in Table 5 is 52.6%. Hence, we see that the

parameter values found by the simulated annealing allow the model to resemble the lying

behaviour represented in the data.

25

3 Model validation

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Distribution of resting periods

Resting time in s

F
ra

ct
io

n
of

 s
le

ep
in

g
ev

en
ts

Simulation
Data

(a) Curve fit

0 2 4 6 8 10 12 14 16 18
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Development of error in the accepted parameter sets

Accepted states during simulated annealing

E
rr

or
 e

(b) Error development during simulated annealing

Figure 6: Results of a single parameter fitting process using simulated annealing

Name Trest Tstand Th,s Th,r rsz

Resulting value 2824.5 s 1885.1 s 2309.9 s 1168 s 1.178 cl

Table 5: Validation parameters for best curve fitting

26

3 Model validation

3.4.2 Collective results of a number of curve fittings

In order to show the consistency of the parameter fitting process, we repeated it 100

times, which took a total calculation time of about 8 days. The distributions of the

resulting parameter values along with the errors can be seen in Figure 7. Most of these

distributions feature peaks that represent a high number of annealing processes converging

to similar values. These peaks indicate regions where the model behaviour resembles the

data reasonably well. However, all of the distributions also have a relatively wide range of

possible values. This effect is due to the noise in the minimisation process, which makes

the convergence to a singular global minimum impossible. The error obtained in all cases

is small (see Figure 7(f)), which indicates that very different parameter sets can lead to

good curve fits. This suggests that the data used for the parameter fit is not sufficient to

ensure that the model behaviour resembles the behaviour of the real system. For a further

investigation of this model, additional data needs to be gathered in order to perform a

cross-validation process. In a process like that, one would use the data obtained from a

subset of barns for the parameter fitting. Thereafter, the model would be used to predict

the outcome for another set of barns. These predictions should then be compared to the

data belonging to these barns to evaluate the validity of the model. One prerequisite for

conducting this type of validation is the need for exact information about barn layouts

and cow numbers – data that is currently not available. Another possibility is to use a

set of different objective functions. One would then fit the parameters to minimise one of

these objective functions and could analyse the behaviour of the other objective functions.

In Appendix D we show additional plots obtained from these set of validation processes.

In Figure 16(a) we can see that Trest/Tstand has a peak value at about 1.25, which is slightly

higher than the value of 1 we expected. In Section 3.2.2, we anticipated the value for Th,s

to be smaller than the value of Th,r. However, Figure 16(b) shows that in most cases the

opposite is true (Th,s > Th,r). Figures 16(c) and 16(d) show the distributions of the error

components e1 and e2, respectively. From these plots, we can see that in most cases e1 is

the dominant error component.

27

3 Model validation

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

Distribution for T
rest

T
rest

 in s

(a) Trest

500 1000 1500 2000 2500 3000 3500
0

5

10

15

20

25

Distribution for T
stand

T
stand

 in s

(b) Tstand

0 1000 2000 3000 4000 5000 6000
0

5

10

15

20

25

Distribution for T
h,s

T
h,s

 in s

(c) Th,s

500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

Distribution for T
h,r

T
h,r

 in s

(d) Th,r

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0

5

10

15

20

25

Distribution for r
sz

r
sz

 in cl

(e) rsz

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

5

10

15

20

25

30

35
Distribution of errors

Error e

(f) Error value

Figure 7: Distributions of parameters and error found by simulated annealing process

28

3 Model validation

3.4.3 Summary of results

In Section 3.4.1, we saw that the choice of certain parameter values can lead to good

agreement between the model behaviour and the data gathered from the real world,

which indicates that the model represents the resting behaviour observed in the videos

reasonably well for this particular parameter set. However, in Section 3.4.2, we showed

that a wide range of different parameter values can induce a good match to the data.

This implies that the data used for the validation process is not sufficient to support the

validity of the model. In order to obtain better results, the problems in the data discussed

in Section 3.1.5 have to be addressed and the gaps have to be filled. As discussed in Section

3.4.2, it is especially important to store information about the pens and the surroundings.

Another problem in the data set is that only resting behaviour can be studied. This

implies that the model cannot be used to predict movement or eating patters, as we do

not have the data to validate these aspects. Therefore, the synchronisation considerations

in Chapter 4 will mainly concentrate on resting effects.

From the plots shown in Figure 7, we will use the peak values for all further investiga-

tions. These values can be seen in Table 6.

Name Trest Tstand Th,s Th,r rsz

Resulting value 2500 s 2000 s 2600 s 1900 s 1.2 cl

Table 6: Validation parameters obtained from ensemble of annealing processes

29

4 Synchronisation

4 Synchronisation

The phenomenon of spontaneous synchronisation is widespread throughout a number of

different scientific disciplines. In the popular science book “SYNC”, Steven Strogatz

explains the synchronisation of two pendulum clocks hung on a mutual support, the

synchronisation of fireflies flashing in unison and more technical phenomena such as the

synchronisation of Josephson-junctions in quantum physics [25]. In all these cases, a set of

oscillators that would otherwise fluctuate in their own uncoordinated way are synchronised

through weak coupling.

In the first section of this chapter, we want to review the classic Kuramoto model of

weakly coupled phase oscillators. The next section then explains how the presented agent-

based model can be interpreted as a set of weakly coupled oscillators and how synchrony

can be measured for our model. In the last section, we perform some simulations in order

to understand how the different order parameters are related and how a combination of

them can be used to explore the synchronisation properties of cattle in a given barn. Here,

we will experiment numerically with different sized bedding areas in order to compare the

simulations to the observations by Færevik et al. in [8].

4.1 Weakly coupled oscillators

The following review of the Kuramoto model is paraphrased from its explanations in [24,

Section 3]. The Kuramoto model consists of M nearly identical oscillators with natural

frequencies ωi, i = 1, . . . ,M . At every time t ≥ 0, each of the M oscillators has phase

φi(t), and the change in phase is governed by the equation

φ̇i(t) = ωi +
M∑
j=1

Γi,j(φj(t)− φi(t)), i = 1, . . . ,M. (4.1)

In this equation, the functions Γi,j represent the interaction functions between the dif-

ferent oscillators. Kuramoto investigated the simplest possible case of equally weighted

30

4 Synchronisation

coupling with the interaction functions defined to be

Γi,j(φj(t)− φi(t)) =
K

M
sin(φj(t)− φi(t)), (4.2)

with the coupling strength K. Hence, the governing equation becomes

φ̇i(t) = ωi +
K

M

M∑
j=1

sin(φj(t)− φi(t)), i = 1, . . . ,M. (4.3)

Kuramoto defined the natural frequencies ωi to be randomly distributed with a probabil-

ity density function p(ω), which he assumed to be unimodal and symmetric with a mean

frequency Ω. Without loss of generality, one can assume Ω = 0 because of the system’s

global rotational symmetry. This is equivalent to considering the oscillators as rotating

points on a unit circle, which itself rotates with angular velocity Ω contrary to the oscil-

lators. Kuramoto introduced an order parameter to measure the degree of synchrony in

the system by

reiψ =
M∑
i=1

eiφi . (4.4)

The variable ψ is the average phase of the system, while r contains information of how

synchronised the oscillators are. A value of r near 1 indicates a high level of synchrony –

all the oscillators move in unison. If r is close to 0, the oscillators are spread all over the

circle, as the different phases tend to cancel each other out.

When simulating this model with a fixed probability distribution p(ω) and different

coupling strengths K, one can see an interesting phase transition. If K is smaller than a

critical value KC , no synchronisation is obtained and r → 0 as t→∞. However, with a

coupling above the critical value, synchronisation is obtained and r → r∞ > 0 as t→∞,

where r∞ grows with K.

4.2 Agents as oscillators

The system of coupled oscillators we consider here is the multi-agent system described

in Chapter 2. In what sense can the agents be interpreted as oscillators? We saw that

an agent can take 1 of 4 different states (Standing, Walking, Resting, Eating) and that

31

4 Synchronisation

the transition between states is driven mainly by the variables ai and bi that represent,

respectively, the desire to eat and rest. These variables both oscillate between the values

0 and 1. As we mentioned in Section 3.4.3, the model can only be used for predictions

regarding the resting pattern, which is why we will concentrate on the oscillation of the

variable bi.

The system of oscillating agents is coupled through the avoidance rule explained in

Section 2.2. Whenever one agent enters the zone of repulsion of another agent, it influences

its movement and therefore its behaviour. A special case of this influence occurs when

one agent forces another one to get up from resting by entering its sleeping zone. We

consider the coupling between the agents to be weak, because one agent cannot actively

enforce its resting cycle on another one.

The problem of measuring synchrony in this system is more difficult to address than in

the abstract oscillator models. We will now introduce three different order parameters.

The first one provides an ad-hoc approach to measure synchrony in a real barn, while the

second one is inspired by the order parameter used in the Kuramoto model. The third

possibility is adapted from the statistical analysis of multiple choice surveys.

4.2.1 Ad-hoc approach to measure synchrony

The simplest idea on how to measure synchrony in a barn is to measure the amount of

time when all cows are lying down together [8, 19]. The higher the amount of mutual

lying time, the higher is the synchrony between the different animals. This approach can

be adapted and generalised for the agent-based model: we define the order parameter

αp, p ≥ 0 to be the fraction of the total simulated time T during which the fraction

of cows currently lying is at least p. If we define the time Tp to be the amount of time

satisfying this condition, then αp can be calculated using the equation

αp =
Tp
T
. (4.5)

The advantage of this order parameter is that it can be directly compared to data gathered

from video footage. A disadvantage is that only lying cows are considered and that the

32

4 Synchronisation

measure does not consider the difference between cows that just started resting and those

that have already been resting for a while.

4.2.2 An abstract measure of synchrony

A second way to measure synchrony is adapted from the order parameter used by Ku-

ramoto in his analysis of weakly coupled oscillators. In order to use this approach, we

first need to define the phase of an agent. We want to understand the phase φi ∈ [0, 2π] of

an agent as the position on its standing-resting cycle. This phase depends on the current

state si(t) and the current desire to rest bi(t) in the following manner

φi(t) :=

 2π bi(t)Trest

Tstand+Trest
, si(t) = Resting ,

2π
(

1− bi(t)Tstand

Trest+Tstand

)
, si(t) = Standing .

(4.6)

Because we chose bi(t) to evolve linearly in time, φi also passes through all values in [0, 2π]

linearly if the standing-resting cycle of the agent is undisturbed. However, if the cycle

is disturbed by another agent or the agent becoming hungry while resting, the phase φi

contains a discontinuity at the change between standing and resting, which will also cause

a discontinuous behaviour of the order parameter defined by formula (4.4). If we want to

obtain a single number as a synchronisation measure, we can average r(t) over the time

period [Tsettle, T], where Tsettle is the time that we allow the system to settle down after

the initialisation. For a continuous r(t), this averaging can be done as follows:

r =
1

T − Tsettle

∫ T

Tsettle

r(t)dt. (4.7)

Because the simulation of the agents is done in a time-discrete manner, the averaging

has to be done using a summation rather than an integration. Hence, let L be the total

number of simulation steps and Ls = LTsettle/T the number of steps we allow the system

to settle. We now define the order parameter β by

β :=
1

L− Ls

L∑
l=Ls+1

r(tl). (4.8)

One problem with this order parameter was already mentioned earlier: it can incorporate

rapid changes from the possible jumps in the phases φi. Another disadvantage is that it

33

4 Synchronisation

is a theoretical expression and cannot be measured on real cattle, as there is no way to

measure the current desire to rest. A third problem can occur when all agents constantly

disturb each others’ lying cycle. In this case, bi(t) takes a value near 0 at all times and for

all cows and r(t) takes a value near 1, which suggests a high level of synchrony. We can,

however, detect these events using the average phase ψ(t) of the system. If ψi(t) stays

nearly constant around 0 for a long time, we expect the agents to constantly disturb each

other. In order to identify these events, we define the average phase displacement ψ by

ψ :=
1

L− Ls

L∑
l=Ls+1

|ψ(tl)|, (4.9)

where ψ(tl) ∈ [−π, π]. A very small value of ψ, which we choose to be ψ < 0.1, indicates

a constant disturbance in the multi-agent system. This case is most likely to happen if

the lying area fails to provide enough space for all agents to rest at the same time.

4.2.3 Fleiss’ Kappa statistics

Kappa statistics were first described by Cohen in [5] as a way to measure the agreement

between the categorical ratings done by a set of raters. In 1971, Fleiss generalised that

idea to obtain a measure for the extent of agreement between a number of N subjects rated

into k categories by n raters [10]. The idea of such statistics is to count the number of

agreeing ratings and compare them with the agreement expected by chance. The general

formula takes the form

κ :=
P − P e

1− P e

, (4.10)

where P is the observed probability of agreement and P e is the probability of agreement

expected by chance. A positive value of κ indicates synchrony, with perfect unison for

κ = 1. If we now understand every rater as an individual time tl and classify the agents in

the classes “Resting” and “not Resting”, we can use the value κ to measure the synchrony

between the agents’ behaviour. Let us therefore denote by prest the probability that an

individual agent is resting and by pstand := 1 − prest the probability that it is standing.

At every time tl, we can observe a number Nl,stand of standing agents and a number

Nl,rest := N−Nl,stand of resting agents. The agreement measure at every time step is then

34

4 Synchronisation

defined by

Pl :=
1

N(N − 1)
[Nl,rest(Nl,rest − 1) +Nl,stand(Nl,stand − 1)] . (4.11)

These probabilities can now be averaged to calculate P . We again allow a number of Ls

steps for the system to settle down and obtain

P :=
1

L− Ls

L∑
l=Ls+1

Pl. (4.12)

The probability of agreement by chance can be calculated using the a priori probabilities

pstand and prest by

P e := p2
stand + p2

rest. (4.13)

4.3 Simulations and results

In the next step, we want to investigate how the different synchrony measures interact

and how their combination can be used to detect synchrony. Additionally, we will try to

obtain in our simulations the results observed by Færevik et al. in [8].

4.3.1 Færevik et al.’s experiments

Færevik et al. performed a set of experiments with groups of calves housed in pens with

different sized bedding areas. They used a relatively simple barn layout (see Figure 8).

Again, the green area indicates the food trough and the grey area indicates the bedding.

The values for the length x of the bedding area can be found in Table 7. In all cases, the

pen housed 5 animals of the same age.

Configuration Small Medium Big

x 1.25 m 2.08 m 2.92 m

Table 7: Length of the bedding area used by Færevik et al.

In the experiments, Færevik et al. showed that a bigger bedding area leads to a higher

synchrony, which they measured by the amount of time all cows rest simultaneously.

35

4 Synchronisation

5m

3
m

x

Figure 8: General barn layout used by Færevik et al.

Additionally, they concluded that the difference in synchrony between the configurations

Small and Medium is higher than that between Medium and Big.

4.3.2 Simulation results

In order to investigate the synchronisation properties, we conducted simulations that

mimicked the experiments done by Færevik et al. For similar reasons as during the

validation process, we used τ = 0.1. Because every one of Færevik et al.’s experiments only

needs a single simulation, we can allow more simulation steps than during the validation

process and therefore used L = 200, 000 steps for each of the three configurations. In order

to ensure that results are not biased by random behaviour, we performed 50 repetitions

for each of the configurations and calculated ensemble averages of the order parameters.

These averaged order parameters can be seen in Table 8. We show distribution plots of

the different order parameters for each of the three configurations in Figure 17 and 18 in

Appendix D.

Configuration Small Medium Big

α0.7 0.29 0.28 0.25

β 0.89 0.81 0.77

ψ 0.31 0.36 0.40

κ −0.01 −0.11 −0.13

Table 8: Order parameters for the simulations of Færevik et al.’s experiments

Generally, we can see that synchrony can occur, which is indicated by α0.7 > 0 and the

high values of β. However, we see that for all three of the order parameters the course

36

4 Synchronisation

is opposite to the one found by Færevik et al. during their experiments - the highest

values occur for Small, the second highest for Medium and the lowest for Big. For α0.7

we also have to take into account that the difference between the values for the three

configurations is negligible.

Another problem that appears in these experiments is that κ is negative in all cases,

which generally indicates no synchrony. In the simple configuration used here with only

5 cows, the number of cows doing the same thing at a time needs to be 4 or 5 in order

to lift κ to a positive value. However, the nature of the model makes it unlikely that 4

or even all 5 agents rest at the same time in the relatively small bedding area. Hence,

a negative value of κ does not necessarily mean that no synchronisation occurs at all,

but again a combination of the 3 measures has to be used to judge the synchrony of the

system. This negative value of κ could also indicate that κ is not an appropriate way of

measuring synchrony, at least not for such a small number of agents.

In order to evaluate the relations between the different order parameters, we calcu-

lated the correlation between them for all three configurations. A short introduction to

the calculation of correlation coefficients can be found in Appendix C. The correlation

coefficients are shown in Table 9 - 11.

α0.7 β ψ κ

α0.7 – 0.14 0.50 0.66

β 0.14 – −0.56 0.09

ψ 0.50 −0.56 – 0.59

κ 0.66 0.09 −0.59 –

Table 9: Linear correlation coefficients for Small

α0.7 β ψ κ

α0.7 – 0.12 0.67 0.73

β 0.12 – −0.18 0.22

ψ 0.67 −0.18 – 0.80

κ 0.73 0.22 0.80 –

Table 10: Linear correlation coefficients for Medium

37

4 Synchronisation

α0.7 β ψ κ

α0.7 – 0.14 0.68 0.77

β 0.14 – 0.27 0.53

ψ 0.68 0.27 – 0.83

κ 0.77 0.53 0.83 –

Table 11: Linear correlation coefficients for Big

From these tables we see that the three parameters α0.7, ψ and κ have a strong positive

correlation between them in all three configurations. This comes as a surprise if one

considers the fact that ψ is not directly an order parameter but was introduced to detect

queueing at the food troughs. However, the synchrony measure β that we adapted from

the Kuramoto model does not correlate with the other two order parameters α0.7 and κ,

which suggests that β is not an appropriate order parameter.

38

5 Barn optimisation

5 Barn optimisation

After investigating different ways of measuring synchrony in the multi-agent system, the

next step is to develop an algorithm that finds barn configurations that favour the oc-

currence of synchronisation. This optimisation shall be done with respect to a maximum

budget b available for the design of the barn. We assume that a unit square of feeding

area costs cf and a unit square of bedding area cr. Hence, the condition that has to be

satisfied by the barn configuration is

crAr + cfAf ≤ b, (5.1)

where Ab and Af are the size of the bedding and feeding areas, respectively. These sizes

are measured in unit squares. Additionally, we assume that the general shape of the

barn is fixed and given by the set B ∈ R2 similarly to all earlier considerations. Other

inputs are the possible feeding and bedding areas Fposs, Rposs ⊆ B, which we assume to

be disjoint. The algorithm shall calculate sets R and F that represent the bedding and

the feeding areas, respectively, and which satisfy the inequality (5.1). In this algorithm,

we do not allow changes in the pen shape, as the farmers do not intend to rebuild their

barns.

In the first section of this chapter, we describe the algorithm we developed to solve

this optimisation problem. The second section shows the result of the algorithm for an

example.

5.1 Algorithm

A pseudo-code of the developed algorithm can be seen in Algorithm 3. Every step of this

pseudo-code will be described individually below.

39

5 Barn optimisation

Algorithm 3: Optimisation algorithm

Input: cf , cr, b, B, Fposs, Rposs

Output: B, F

Tiling of the barn;1

Find initial solution;2

for i = 1, . . . , Noptsteps do3

Make changes to the barn;4

if new barn is better than current best barn then5

Overwrite current optimal barn with new barn;6

end7

end8

5.1.1 Tiling of the barn

In the first step of the algorithm, we tile the barn with nx × ny rectangular tiles (see

Figure 9). During the whole algorithm we will use these tiles as units that build up the

feeding and bedding areas. In Figure 9, we can also see some problems this sort of tiling

implies. Some of the tiles are only partly inside the barn and some are even completely

outside the barn. Because we later want to measure the size of feeding and bedding areas

exactly, we need to calculate the area of each tile that overlaps with the barn. Because the

barn can have a general polygonal shape, we have to perform a polygon clipping algorithm

first. We chose to use a specialised version of the Sutherland-Hodgman clipping algorithm

[26], which is explained in Appendix B.2. The area of the clipped polygon can then be

calculated by the formula explained in Appendix B.3.

For each of the tiles Ti,j, we now calculate if it could be a bedding tile, a feeding tile,

or none of these. If the tile Ti,j lies completely inside the possible bedding area Bposs, it

is considered a possible bedding tile. Similarly, it is a potential feeding tile if it lies inside

Fposs. Because we required Bposs and Fposs to be disjoint, a tile cannot be both. In order

to test whether a tile lies entirely inside one of the polygonal regions Bposs or Fposs, we

40

5 Barn optimisation

Figure 9: Tiling of the barn (light green - Fposs, dark green - possible feeding tiles, light

grey - Rposs, dark grey - possible bedding tiles)

can again use the clipping algorithm explained in Appendix B.2. If the clipped polygon

differs from the tile, the tile does not lie inside the polygonal region.

In Section 2.3, we mentioned that the simulation needs all sets in a polygonal form.

Hence, this form needs to be obtained from the chosen tiles for both the feeding and

bedding areas. The algorithm we used to attack this problem is explained in Appendix

B.4.

5.1.2 Initial solution

After the tiling is performed and we know for every one of the rectangular tiles whether

it can be used for a feeding area or a bedding area, we want to find an initial barn

configuration to start the optimisation process. A pseudo-code version of this can be seen

in Algorithm 4. In this algorithm, the random choices of tiles are always done uniformly.

41

5 Barn optimisation

Algorithm 4: Calculate initial solution for optimisation

Input: Ft,p = {Ti,j|Ti,j is possible feeding tile },

Bt,p = {Ti,j|Ti,j is possible bedding tile }, cf , cr, b

Output: Initial solution

Choose Ti0,j0 from Ft,p randomly as initial feeding tile;1

Choose Tk0,l0 from Bt,p as tile with maximum Manhattan-distance2

|i0 − k0|+ |j0 − l0| from initial feeding tile as initial bedding tile;

while Inequality (5.1) holds do3

if random > 0.5 then4

Add Tim,jm from Ft,p randomly to feeding area, if possible choose tile5

neighbouring to current feeding tiles;

else6

Add Tkm,lm from Bt,p randomly to bedding area, if possible choose tile7

neighbouring to current bedding tiles;

end8

end9

Delete last added tile to ensure that (5.1) holds;10

To make this and further parts of the algorithm more effective, the possible feeding and

bedding tiles area stored in a list, with the actually used tiles first, the tiles neighbouring

at least one used tile second, and the other tiles after that. This allows every update step

to happen in constant time. When a tile is chosen as a feeding or bedding tile, it is moved

in the list to its newly appropriate position. Also, the 4 neighbouring tiles have to be

updated and possibly moved as well.

5.1.3 Test if new barn is better

In order to evaluate if the new barn configuration has a higher tendency to favour syn-

chronisation than the currently best one, a simulation of the agents in the new barn is

performed and the results are compared. The goal of the optimisation algorithm is to find

a barn configuration with the best possible synchronisation properties. As mentioned in

42

5 Barn optimisation

Chapter 1, higher synchrony between the cows indirectly leads to a higher growth rate

and welfare of the cows, which is in the mutual interest of farmers and cows. Hence, we

will use a combination of the order parameters developed in Section 4.2 to compare the

different barns.

First, the algorithm checks if constant disturbance occurs. Because this is an unwanted

effect, barns that lead to the agents disturbing each others’ resting cycles are dismissed

immediately. For this test, the average phase displacement ψ defined in Section 4.3 is used.

If this value is very small (again, if ψ < 0.1), we assume that the agents constantly disturb

each others’ lying periods and that the barn is insufficient for further considerations.

If the new barn is not dismissed by the disturbance criterion, the 3 synchronisation

measures are compared directly to the ones of the current configuration. If at least 2 of

the 3 measures indicate a higher synchronisation during the simulation, the new barn is

accepted.

5.1.4 Perform changes in the barn

During the optimisation process, new tiles are chosen to be part of the feeding or bedding

area, while other tiles are deleted from those. In every one of those steps, we will delete

one bedding and feeding tile and add different tiles as long as the budget is not exceeded.

In order to identify whether the feeding or bedding area should be bigger than before, a

set of heuristics can be used. These heuristics evaluate data gathered from the simulation.

The first main idea is to investigate whether the bedding area is to small to allow for

regular resting periods. One way to determine this is to use the average phase displace-

ment defined in Section 4.3. If the value ψ is small, we assume that the agents constantly

disturb each others’ lying periods and that a larger bedding area is required.

Similarly, if queueing at the feeding area turns out to be a major issue during the sim-

ulation, we decide to enlarge the feeding area. As a measure for the amount of queueing,

we use the average time an agent stays in the state bi(tl) = 0, which represents hunger.

43

5 Barn optimisation

Large values of this average length can indicate queueing for food.

To decide which of the old tiles is deleted from the feeding and bedding areas, one can

measure the average time agents spend in each tile. The tiles with the lowest average

time should be most likely to be removed.

5.2 Simulation

We now illustrate the algorithm using an example. In Figure 10, we can see the general

shape of the barn along with the possible feeding and bedding areas in green and grey

respectively. We used 10 agents for this barn.

Figure 10: Possible feeding and bedding areas

The tiling divides this barn into 10 × 10 rectangular tiles. The costs were chosen in a

way that every full tile of feeding costs 0.8 units and every full tile of bedding costs 0.5

units. Hence, all possible areas together would require an amount of about 30 units. In

order to allow about two thirds of the tiles to be used, we chose the budget b to be 20

units. The parameters of the agents were chosen as calculated in the validation process

(see Table 6). For similar reasons as during the validation process, we choose the number

of steps to be 100, 000 and τ = 0.1.

In Figure 11, we show the initial solution of the algorithm. Here, we can clearly see

that both the feeding and the bedding area feature pathologies like holes or not connected

44

5 Barn optimisation

tiles. The synchronisation measures for this barn are α0.7 = 0.23, β = 0.81 , ψ = 0.21

and κ = 0.06.

Figure 11: Initial solution of optimisation algorithm

The final solution of the optimisation process can be seen in Figure 12. Here, the

synchronisation measures are α0.7 = 0.31, β = 0.9, ψ = 0.37 and κ = 0.23. All of the

order parameters improved significantly from the initial solution. For the final solution,

we can also see that both the feeding and the bedding area are much more compact than

for the initial solution.

Figure 12: Final solution of optimisation algorithm

45

6 Conclusions and future work

6 Conclusions and future work

In this dissertation, we developed an agent-based animal behaviour model that we used

to examine the behaviour of beef cattle in a barn. The model generalised the work of

Couzin et al. [6] by forcing the agents to eat and rest regularly. The changes between

these different states were governed by a finite state machine based on the agents’ desire

to eat and rest. In order to determine the parameters used in the model, we implemented

an optimisation algorithm based on simulated annealing. The data for this was gathered

from video footage of different barns. We were able to find parameter sets that allowed

a good match with the data. However, when repeating the validation process, we saw

that the outcome was somewhat inconsistent, as very different parameter sets were found

to match the data reasonably well. This effect arose mainly from the incompleteness of

the data. For further investigation, we therefore suggest that more data is gathered with

special care of complete day and night data. Additionally, the cameras should be installed

in a way so they cover the whole barn and all animals. The shapes of the pens should be

stored exactly. With such data, one could perform a more thorough and accurate model

evaluation by using cross-validation techniques for the different barns. Here one would

fit the model parameters to the data obtained from of a subset of the barns. Afterwards

one could test the validity of the model using the rest of the data.

We then investigated the effect of spontaneous synchronisation emerging from the rules

that the agents follow. Inspired from research on weakly coupled oscillator systems,

we developed 3 different ways of measuring synchrony between the agents. Using these

order parameters, we performed numerical experiments similar to the experiments with

real barns done by Færevik et al. in [8]. We were able to show that a small amount

of synchrony occurs in these experiments. However, opposing to the results in [8], the

simulations showed that a larger bedding area leads to lower synchronisation in the multi-

agent system. For further research, we suggest to carry out more simulations to investigate

the ability of the different order parameters to indicate synchrony in more detail. One

could also perform experiments with actual herds by changing the sizes of bedding and

feeding areas. This data could be compared to simulation results to examine the validity

46

6 Conclusions and future work

of the model regarding synchronisation effects.

The last step was the development of an algorithm to optimise the design of pens. We

assumed that the general shape of the pens was fixed and that only a certain amount of

money was available to build the feeding and bedding areas. We then illustrated the work

of the algorithm using an example barn. It might be beneficial to again combine this

algorithm with simulated annealing to potentially find a configuration closer to the global

optimum. Additionally, one could perform a cost-benefit analysis with different budgets to

weigh the amount of money it is worth spending or allow changes in dimension and shape

of the pen. Again, long-term experiments could be conducted in a special barn where the

growth rate of the cattle can be measured on a regular basis. These experiments could

then show whether the change in the pen configuration actually influenced the outcome.

A completely different direction one could take with this model or a simpler version

of it is mathematical analysis rather than simulations. In a more abstract setting the

emergence of synchrony could be investigated in mathematically exact terms and one could

try to prove that a certain amount of synchrony has to occur. However, the mathematical

investigation of spontaneous synchronisation requires techniques that are presently only

suited to analyse relatively simplistic models. This implies that the model presumably

had to be simplified in order to allow this type of analysis.

More interesting for farmers would be to refine the model to improve the resemblance

of the agent dynamics to actual cattle behaviour. Possibilities in this direction include

an additional state of drinking or the consideration of more complex social interactions.

The latter could be used to analyse the coupling strength between agents in order to

examine whether the assumption of weak coupling is reasonable. One could also add

external effects to the model, such as different types of food, fixed feeding times, and

a day-night cycle. Probability models based on Markov-chains could perhaps be used

instead of the finite state machine. In these models, the state of the agent changes with

certain probabilities depending on external facts, whereas in the existing model such state

changes are entirely deterministic.

47

A Graphical user interface

A Graphical user interface

One long-term goal of the investigations in this project is to provide advice to farmers on

how to design their barns to optimise cattle welfare and growth rate. In order to give them

the opportunity to easily experiment with different configurations on the computer, we

designed a graphical user interface (GUI). This is also helpful to visualise the simulation

results and get an overview of the agents’ behaviour during the process of this project.

A screenshot of this interface can be seen in Figure 13. A special colour-coding was

used to symbolise the current status of each of the agents. An agent coloured in grey

means it is currently resting. A shading from red (ai = 0) to blue (ai = 1) shows the state

of hunger. The grey area in the background represents the bedding and the green area the

feeding. The configuration of the barn and the number of agents can be read through an

XML-file. The shape of the barn, feeding areas and bedding areas can be simple polygons

or circles. For the barn, it is also possible to use a rectangle with periodic boundary

conditions. Here, agents that move out on one end of the barn return on the opposite

end. This possibility can be useful during a more abstract inspection of the system, as

the absence of walls simplifies the analysis substantially.

i

B Polygon algorithms

Figure 13: Screenshot of graphical user interface

B Polygon algorithms

In the present section, we explain and give additional references to the polygon algorithms

that we used. In all of these algorithms, we understand a polygon as an ordered set of

n ≥ 3 points P0, P1, . . . , Pn ∈ R2 with P0 = Pn. The points Pi, i = 0, . . . , n are called the

nodes of the polygon. The x- and y-coordinates of the points Pi, i = 0, . . . , n are denoted

by xi and yi respectively.

B.1 Check if point is inside polygon

The standard algorithm for checking whether a point lies inside a polygon or outside is

the so-called Ray-casting-algorithm [21]. In this algorithm, a ray is shot starting from the

test point in a fixed direction (usually the positive x-direction). One counts the number

of intersections between this ray and the boundary lines of the polygon. A point is found

to lie inside a polygon if and only if its ray has an odd number of intersections with the

polygon boundary. A pseudo-code implementation of this algorithm can be found in [21,

ii

B Polygon algorithms

Section 2.2]. The algorithm takes O(n) computational time, because it iterates through

every edge of the polygon.

Some special cases of this algorithm have to be considered separately. If the ray goes

directly through one of the nodes, Pi say, this has to be seen as a single intersection, even

though the ray shares common points with the two edges leaving Pi. Another special

case occurs, if one of the polygon lines is parallel to the ray, and they lie on top of each

other for a finite distance. This is only counted as a single intersection, even though the

ray passes through two nodes. An additional test can be added to determine whether the

tested point lies on the boundary of the polygon. This can also be done in O(n) time by

simply iterating through every line of the polygon and testing whether the point lies on

it.

In Figure 14, we show a polygon with two test points A and B. Point A lies inside

the polygon and its ray has 3 intersections with the the edges of the polygon. The ray

starting from point B has 4 intersections with the polygon and hence B is rightly ruled

not to be in the interior.

bC bC bC

A

bC bC bC bC

B

Figure 14: Point inside polygon

B.2 Polygon clipping

Polygon clipping is the process of clipping one polygon to the area defined by another

one. A standard algorithm for this problem is the Sutherland-Hodgman algorithm [26].

During the barn optimisation, we need a special case of polygon clipping, where the

clipping polygon is a rectangle. In Figure 15, we show the result of the clipping process.

iii

B Polygon algorithms

Figure 15: Polygon clipping

The main idea of the algorithm is to iterate through all edges of the clipping polygon

and to clip the original polygon with respect to the current edge. During each of those

line clippings, all points of the original polygon that lie on the side of the line facing

away from the clipping polygon are deleted. All intersection points between the original

polygon and the clipping edge are added as new points to the polygon. One weakness

inherent in this algorithm is that the clipping polygon has to be convex to ensure the

correct results. Because we only use rectangles as clipping polygons, this problem does

not diminish the suitability of the algorithm in this case. This algorithm takes O(n) time

if the clipping polygon is a rectangle, because it iterates through all points of the current

polygon for each of the 4 edges of the rectangle. The number of nodes in the clipped

rectangle cannot be more than 3n, because every edge of the original polygon can only

produce 2 intersection points with the rectangle.

B.3 Area of a polygon

During the optimisation algorithm, we need to calculate the fraction of each of the tiles

that lies inside the barn polygon. Therefore, we need a way of calculating the area of a

regular but not necessarily convex polygon. A formula is given by the following theorem.

Theorem B.1. The area of a polygon given by the points P0, . . . , Pn ∈ R2 with P0 = Pn

and the coordinates Pi(xi, yi), i = 0, . . . , n can be calculated using the so-called surveyor’s

formula given by

A =
1

2

n−1∑
i=0

(xiyi+1 − xi+1yi). (B.1)

Proof. To prove this result, we use Green’s Theorem for planar areas. In [14, Ch. 20.3,

iv

B Polygon algorithms

Theorem 1], Green’s Theorem is given in the following form∫∫
Ω

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∮
∂Ω

Pdx+Qdy, (B.2)

where P and Q are continuous with continuous first partial derivatives in an open disk

containing the simply connected region Ω ⊆ R2. We define the region Ω to be the interior

of the polygon given by P0, . . . , Pn. The area of this polygon can be calculated by

A =

∫∫
Ω

1dxdy.

Hence, if we define the functions P and Q so that

1 =
∂Q

∂x
− ∂P

∂y
.

Then we can use Green’s Theorem to get a formula for the area A of the polygon. We

choose P = −1
2
y and Q = 1

2
x and get

A =
1

2

∮
∂Ω

xdy − ydx.

Here, the boundary ∂Ω is represented by the path P0P1 . . . Pn around the polygon. Thus,

we can split the integral into integrals along the lines PiPi+1, i = 0, . . . , n− 1 to get

A =
1

2

n−1∑
i=0

∫
PiPi+1

xdy − ydx. (B.3)

Let us now define the curve γi(t), i = 0, . . . , n− 1 by

γi(t) := (1− t)

 xi

yi

+ t

 xi+1

yi+1

 , i = 0, . . . , n− 1.

The integrals in equation (B.3) can now be calculated as follows:

A =
1

2

n−1∑
i=0

∫
PiPi+1

 −y
x

 dγi

=
1

2

n−1∑
i=0

∫ 1

0

 −yi − t(yi+1 − yi)

xi + t(xi+1 − xi)

 · dγi
dt
dt

=
1

2

n−1∑
i=0

∫ 1

0

 −yi − t(yi+1 − yi)

xi + t(xi+1 − xi)

 ·
 xi+1 − xi

yi+1 − yi

=

1

2

n−1∑
i=0

(xiyi+1 − xi+1yi).

v

B Polygon algorithms

This result can also be proved using simpler geometric considerations, shown in [20,

Theorem 1.4.3].

B.4 Polygon gathering

In the last step of the optimisation algorithm we need to obtain a polygon representation of

the feeding and bedding area from their representation as used tiles. This algorithm starts

with a finite setM⊆ {Ti,j} of tiles that define the simply connected set M :=
⋃
Ti,j∈M Ti,j.

Since M was created from rectangular tiles, its boundary can be described as a polygon.

The algorithm first finds a tile Ti,j ∈ M on the boundary of M and uses an edge of Ti,j

that points to the outside of M as the starting point. From this edge, the algorithm

traverses the boundary of M by always taking the leftmost way at every lattice point of

the tiling. Because the set M is finite, this algorithm is guaranteed to terminate.

vi

C Correlation

C Correlation

The idea to calculate correlations between two random variables X and Y was first in-

troduced by Sir Francis Galton in 1877 [11]. For a set of sample values X1, . . . , Xn and

Y1, . . . , Yn of the random distributions X and Y , he defined the correlation coefficient rXY

as follows: (see also [22, Section 7.5.4])

rXY =
1

(n− 1)sXsY

n∑
i=1

(Xi −X)(Yi − Y), (C.1)

where sX and sY are the standard deviations of the sets {X1, . . . , Xn} and {Y1, . . . , Yn},

respectively. These standard deviations can be calculated using

sX =

√√√√ 1

n− 1

n∑
i=1

(Xi −X)2. (C.2)

The value X is the mean of the sample set {X1, . . . , Xn}, which is defined by

X =
1

n

n∑
i=1

Xi. (C.3)

Equations (C.2) and (C.3) are explained in more detail in [22, Section 1.5.2].

vii

D Additional plots

D Additional plots

Additional plots for the validation process explained in Chapter 3 are shown in Figure 16.

In Figure 17 and 18, we can see the distributions of the order parameters obtained from

the simulations explained in Section 4.3.

0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

Distribution for T
rest

/T
stand

T
rest

/T
stand

(a) Trest/Tstand

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

5

10

15

20

25

Distribution for T
h,s

/T
h,r

T
h,s

/T
h,r

(b) Th,s/Th,r

0 0.002 0.004 0.006 0.008 0.01 0.012
0

5

10

15

20

25

30

Distribution of e
1

Error e
1

(c) e1

0 0.005 0.01 0.015
0

10

20

30

40

50

60

70

80

Distribution of e
2

Error e
2

(d) e2

Figure 16: Additional distribution plots for the validation process

viii

D Additional plots

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

14

Distribution of α
0.7

 for Small

α
0.7

(a) α0.7 for Small

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94
0

2

4

6

8

10

12
Distribution of β for Small

β

(b) β for Small

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

14

16

Distribution of α
0.7

 for Medium

α
0.7

(c) α0.7 for Medium

0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9
0

2

4

6

8

10

12
Distribution of β for Medium

β

(d) β for Medium

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

2

4

6

8

10

12

14

Distribution of α
0.7

 for Big

α
0.7

(e) α0.7 for Big

0.65 0.7 0.75 0.8 0.85 0.9
0

2

4

6

8

10

12
Distribution of β for Big

β

(f) β for Big

Figure 17: Distributions of order parameters α0.7 and β in synchronisation simulations

ix

D Additional plots

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

7
Distribution of ψ for Small

ψ

(a) ψ for Small

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

2

4

6

8

10

12

14
Distribution of κ for Small

κ

(b) κ for Small

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0

1

2

3

4

5

6

7

8

9

10
Distribution of ψ for Medium

ψ

(c) ψ for Medium

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

1

2

3

4

5

6

7

8

9

10
Distribution of κ for Medium

κ

(d) κ for Medium

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

2

4

6

8

10

12

14
Distribution of ψ for Big

ψ

(e) ψ for Big

−0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

2

4

6

8

10

12

14
Distribution of κ for Big

κ

(f) κ for Big

Figure 18: Distributions of order parameters ψ and κ in synchronisation simulations

x

E Sample data

E Sample data

In this section we explain the data used during the model evaluation in more detail and

show samples of it.

E.1 Lying data

Below, we can see the first entry in one of the Lying data files. This entry represents

exactly one of the lying events explained in 3.1.1. It starts with an integer (0 in this case),

which represents a numbering of the entries in the file. The two numbers following that are

the time when lying starts t1 and the time of getting up t2 respectively. Thereafter, 4 real

numbers give the position of the resting cow. The first two are the x- and y-coordinate of

the head and the next two are the x- and y-coordinate of the tail. After that, an integer

indicates the number of visible standing cows at the time t1. The positions of these cows

follow in a similar format to the position of the lying cow. The same is repeated for the

time t2.

0 7285 8197.74

0.114041 1.39079 0.069155 1.79707

5 0.337741 0.415522 0.623464 0.410706

0.289616 0.206006 0.564482 0.0623421

0.90663 0.454256 0.722778 0.143268

0.299985 0.57927 0.64284 0.569142

1.15566 0.497808 0.960707 0.664036

5 0.523665 0.163361 0.765882 0.065669

1.2181 1.24214 1.36934 1.56161

0.99963 1.2119 1.21644 1.45404

0.885585 1.37389 1.12734 1.64357

0.679697 1.41685 0.927193 1.68001

In some of the Lying data files, the time t1 was found to be 0, which is a signal for the

fact that the cow has already been resting at the start of the video. In this case, no

xi

E Sample data

information about standing cows is available. Similarly, if the cow kept lying through the

end of the video, the time t2 is set to be −1. As mentioned in 3.1.5, during the night

time, no marking of lying events was possible. To cover this case, t2 is also set to −1 if a

cow is resting at the start of the night. If a cow is found to be lying after the darkness is

over, a new lying event is started at this time.

E.2 Housing data

One of the Housing data files generated during the image processing is shown below. It

consists of 5 different segments. Every such segment starts with a type number 2, . . . , 6

that identifies the kind of information in this segment. The meaning of these numbers can

be seen in Table 12. After that, the number of polygons for this object type is printed, as is

the number of points per polygon. Every segment ends with the pointwise representation

of each of the polygons. The nodes are stored using their x- and y-coordinates.

2 Visible part of the pen

3 Bedding area

4 Barriers and walls

5 Food trough

6 Water trough

Table 12: Meaning of the respective signalling values in housing files

2 1 8

-0.204943 2.75468

-0.179362 2.20451

-0.0624029 -0.0493521

0.00884045 -0.0290205

0.73337 0.00840731

1.13937 -0.0204204

1.41418 0.00387694

1.99681 1.81331

3 1 7

-0.192388 2.72375

xii

E Sample data

-0.169466 2.18299

-0.0583764 -0.0424812

0.00925619 -0.0257272

0.736722 0.00769238

1.14432 -0.018075

1.55466 -0.0056717

4 1 2

0.189696 0.959446

0.240176 0.0722235

5 0 0

6 1 8

0.243845 0.0751758

0.74122 0.0109375

1.2322 0.0537562

1.78703 1.67549

-0.14707 2.17651

5.30215e-005 1.02862

0.192761 1.00004

0.217316 0.404681

E.3 Standing data

In these data files, the positions of all visible standing cows were recorded. An entry was

made every 30 seconds. Below, we can see two lines of one of the Standing files. The first

two numbers in every line represent a counter and the time in seconds. After that, an

integer indicating the number of visible standing cows is printed. Thereafter the positions

of the standing cows are shown in the same format as for the Lying data.

0 0

4 0.277938 0.303527 0.532531 0.282211

0.256219 0.545228 0.454572 0.392473

0.433045 0.624252 0.596778 0.48531

0.0750349 1.27841 0.271132 1.49574

1 30

5 0.301417 0.270732 0.570441 0.257352

xiii

E Sample data

0.486766 0.706365 0.553359 0.444493

0.261975 0.681475 0.500011 0.505321

0.273419 0.519185 0.490327 0.385477

0.0605419 1.78491 0.226548 1.49743

xiv

References

References

[1] Emile Aarts and Jan Korst. Simulated Annealing and Boltzmann Machines. Wiley,

1989.

[2] J. L. Albright and C. W. Arave. The Behaviour of Cattle. CAB International,

Wallingford, 1997.

[3] Nino Boccara. Modeling Complex Systems. Springer, 2004.

[4] Černý, V. A thermodynamical approach to the travelling salesman problem: An

efficient simulation algorithm. Journal of Optimization Theory and Applications,

45:41 – 51, 1985.

[5] Jacob Cohen. A coefficient of agreement for nominal scales. Educational and Psy-

chological Measurement, 20:37 – 46, 1960.

[6] Iain D. Couzin, Jens Krause, Richard James, Graeme D. Ruxton, and Nigel R.

Franks. Collective memory and spatial sorting in animal groups. Journal of Theo-

retical Biology, 218:1 – 11, 2002.

[7] Charles Darwin. On the Origin of Species by Means of Natural Selection. John

Murray, 1860.

[8] Gry Færevik, Kari Tjentland, Stine Løvik, Inger Lidse Anderson, and Knut Egil Bøe.

Resting pattern and social behaviour of dairy calves housed in pens with different

sized laying areas. Applied Animal Behaviour Science, 114:54 – 64, 2008.

[9] A. D. Fisher, G. A. Verkerk, C. J. Morrow, and L. R. Matthews. The effects of feed

restrictions and lying deprivation on pituitary adrenal axis regulation in lactating

cows. Livestock Production Science, 73:255 – 263, 2002.

[10] Joseph L. Fleiss. Measuring nominal scale agreement among many raters. Psycho-

logical Bulleting, 76:378 – 382, 1971.

[11] Francis Galton. Typical laws of heredity. Proceedings of the Royal Institute of Great

Britain, 8:282 – 301, 1877.

[12] Martin Gardner. The fantastic combinations of John Conway’s new solitaire game

“Life”. Scientific American, 223:120 – 123, October 1970.

[13] Arthur Gill. Introduction to the Theory of Finite-State Machines. McGraw-Hill,

1962.

xv

References

[14] Stanley I. Grossmann. Calculus. Academic Press, Inc., third edition, 1984.

[15] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simulated

annealing. Science, 220:671 – 680, 1983.

[16] Primrose McConnell and Richard J. Soffe (ed.). Primrose McConnel’s The Agricul-

tural Notebook. Blackwell, 20th edition, 2003.

[17] Alistair Merrifield. Models for Animal Group Movement, Using Classi-

cal and Statistical Approaches. PhD thesis, University of Sydney, 2006.

http://ses.library.usyd.edu.au/handle/2123/1132.

[18] John Von Neumann and Arthur W. Burks (ed.). Theory of Self-Reproducing Au-

tomata. University of Illinois Press, 1966.

[19] Lone Harder Nielsen, Lisbeth Mogensen, Christian Krohn, Jens Hindhede, and

Jan Tind Sørensen. Resting and social behaviour of dairy heifers housed in slat-

ted floor pens with different sized bedded lying areas. Applied Animal Behaviour

Science, 54:307 – 316, 1997.

[20] Joseph O’Rourke. Computational Geometry in C. Cambridge University Press, 1993.

[21] Franco P. Preparata and Michael I. Shamos. Computational Geometry: An Intro-

duction. Springer, 1985.

[22] Fred L. Ramsey and Daniel W. Schafer. The Statistical Sleuth: A Course in Methods

of Data Analysis. Duxbury, second edition, 2002.

[23] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorithmic, Game-

theoretic, and Logical Foundations. Cambridge University Press, 2009.

[24] Steven H. Strogatz. From Kuramoto to Crawford: Exploring the onset of synchro-

nization in populations of coupled oscillators. Physica D: Nonlinear Phenomena,

143:1 – 20, 2000.

[25] Steven H. Strogatz. SYNC: The Emerging Science of Spontaneous Order. Penguin,

2004.

[26] Ivan E. Sutherland and Gary W. Hodgman. Reentrant polygon clipping. Communi-

cations of the ACM, 17:32 – 42, 1974.

[27] P.J.M. van Laarhoven and E.H.L. Aarts. Simulated Annealing: Theory and Applica-

tions. D. Reidel Publishing Company, 1988.

xvi

References

[28] David Vanderbilt and Steven G. Louie. A monte carlo simulated annealing approach

to optimization over continuous variables. Journal of Computational Physics, 56:259

– 271, 1984.

[29] Michael Wooldridge. An Introduction to MultiAgent Systems. Wiley, 2002.

xvii

