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Abstract

I investigated a Bose—FEinstein condensate confined harmonically to 1D, within the framework of
Gross—Pitaevskii mean—field theory. I consider the 1D Gross—Pitaevskii equation with a combined
step in its external potential and nonlinear terms. I generalise solitary wave solutions to the equation
in its nonlinear limit, to take into account a constant potential and nonlinearity. I then generalise an
effective potential theory to take into account the combined step. The theory allows us to predict
the linear stability eigenvalues of the Bogoliubov-de Gennes equations. The theoretical work is
supplemented by numerical investigations of the solitary wave solutions, mainly the effect of varying
the step width on the solitary wave solutions. It is found that dark solitary waves are unstable for
all step widths: either with positive imaginary eigenvalues; or with a complex eigenvalue quartet.
Bright solitary waves undergo a pitchfork bifurcation from stability to instability (or vice—versa,
depending on the sign of the step) as the step width alters. The size of the relevant eigenvalues are
predicted well by the theory, becoming quantitatively less accurate as the step strength is increased,
but maintaining their qualitative accuracy. Finally the time—development of an unstable solitary
wave is shown. It is found that the solitary wave leaves the step region, emitting dispersive waves
as it crosses the step edge. It is hoped that this work will contribute to ongoing investigations into

Bose-Einstein condensates with spatially inhomogenous scattering length.

1 INTRODUCTION

Predicted theoretically by Bose and Einstein in
1924 [1, 2], a Bose-Einstein condensate (BEC) is a
quantum phase entered by a gas of bosons below a
critical temperature, T,.. Below this temperature,
a quantum state of the system is macroscopically
occupied. Following the theoretical suggestions
of Bose and Einstein, it was a long time before
BEC would be achieved experimentally. The first
hints of the phenomena were in super-fluid *He
[3], where the transition temperature was reason-
ably well predicted by an ideal Bose gas theory .
However, the interactions in *He are very strong
(due to high particle density), and thus an ideal
Bose gas theory is not applicable. Another BEC-
like phenomena is superconductivity, which, in the
BCS theory, relies on Cooper pairs of electrons
(which are bosons) forming a macroscopic coher-
ent state [4].

The first true realisation of BEC was in ultra—
cold atoms, due to Anderson et al in 1995 [5], with
87Rb atoms. Since then BEC has been achieved in
gases of 23Na, TLi, 'K, and !33Cs atoms, amongst
others [6, 7, 8, 9, 10, 11]. The atoms are first
trapped in a magneto—optical trap before under-
going laser cooling. These cold atoms are then
further cooled evaporatively (see [5] for further
detail). At the temperatures involved, typically
pK and below, the equilibrium phase is the solid
state. To maintain the gaseous state a dilute gas

is used. In a dilute gas, three-body collisions are
very rare, the lifetime of the gaseous state is thus
long enough to perform experiments [12].

The large inter-particle distances in dilute al-
kali gases lead to weak interactions. The theory of
weakly interacting Bose gases, in the low temper-
ature limit, is built around the Gross—Pitaevskii
(GP) equation. The GP equation arises from a
mean field treatment of the full many body the-
ory, discussed in detail in section 2. Using a highly
anisotropic harmonic trap, it is possible to pro-
duce a ‘cigar’ shaped, 1D condensate, which is de-
scribed by the 1D GP equation:
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The squared modulus of the order—parameter,
¥(z,t), gives the atomic density. The second term
on the right hand side is an external potential
term, the third is a result of inter-atomic interac-
tions. Both external potential and interactions are
experimentally controllable. The external poten-
tial is implemented using magnetic or optical fields
[18], the inter-atomic interactions are manipulated
via Feshbach resonance management. Feshbach
resonances can be exploited to tune the interac-
tions to be attractive, repulsive, or zero, again, by
application of a magnetic or optical field [20, 21].

In the case of Vexy = 0 and ¢ = +1 the GP
equation is known as the non-linear Schrodinger



equation (NLS). Most weakly nonlinear, disper-
sive, energy-preserving systems can be described
by the NLS in an appropriate limit [38]. The NLS
is, therefore, important in many fields, apart from
the study of BECs: Non-linear optics, plasma
physics, fluid dynamics, and spin—waves are a few
examples [22, 23, 24, 25]. The ease with which
the potential and non-linearity can be varied is
one of the main appeals of BECs in the study of
this equation.

An important set of solutions to the NLS equa-
tion are solitary waves, of the form (z,t) =
& (z—vt)exp(i(kz—wt). There are two particularly
important families: bright solitary waves and dark
solitary waves. Bright solitary waves occur in the
attractive case of negative g, and take the form of
traveling, sech—shaped, density increases on zero
background. Dark solitary waves occur in the re-
pulsive case, and exist as traveling density depres-
sions on a constant, non-zero, background [17]. In
the literature, the term soliton is frequently used
interchangeably with solitary wave in this context.
Strictly, these solutions are not solitons, as they
do not behave elastically in a collision (a defin-
ing property of a soliton) [26]. From this point
onwards we will use the term soliton to describe
these solitary waves, to remain consistent with the
literature, and for brevity.

Recently, there has been an explosion of theo-
retical interest in collisionally inhomogenous envi-
ronments [27, 28, 29, 30, 31, 32, 33|, where g varies
in space. This follows the experimental demon-
stration of such an environment in a Yb vapour
[39]. The report to follow will focus on a 1D con-
densate, confined in 2D as explained above, where,
in the unconfined direction, we introduce a square
step/well in both Ve and g (henceforth a com-
bined step). The steps are chosen in a manner
such that they allow a constant density ground
state. The constant density constraint imposes
a relationship between the step parameters; how-
ever, there is still some freedom in the form of the
step. The report to follow will focus on the exis-
tence and stability of soliton solutions in this set-
ting, specifically as the width of the step is varied.
In the literature there have been many studies of
spatially varying non-linearity (cited above), but
far fewer looking at both non—linear and potential
together, [34, §IV.B] provides a summary. The
combined step setting we will investigate is inter-

esting, as it allows us to examine the competition
between the two effects (and their effects on the
solution of the GP equation), whilst still being a
relatively simple setting.

There are techniques in the literature for
analysing the existence and stability of soliton so-
lutions, summarised in [17]: these techniques are
applicable in settings with either spatially vary-
ing non-linearities, external potentials, or both.
I primarily used methods working from the non—
linear limit, where we examine perturbations to a
non-linear equation with a known set of solutions,
in this case the NLS. The method I used involves
forming an effective potential out of the perturba-
tions to Vext and g. Solitons exist at the extrema
of this effective potential, their stability being de-
termined by its curvature. The bright soliton case
has been treated previously in this manner, with a
different form of variation in the non—linearity and
potential [36]. T took these results, and generalised
the dark soliton methods in a similar manner. The
repulsive case is complicated slightly by the need
to adjust for the non—zero background density.

The report to follow will begin with a quick
overview of the derivation of the GP equation
and its validity. Following this, I will introduce
the combined step setting more rigorously, before
looking at what we might intuitively expect our
results to be. Then, the theoretical tools needed
to examine the effects of the step on soliton solu-
tions will be introduced (section 2). These are the
Bogoliubov-de Gennes (BdG) equations, which
give the linear stability of the solutions; along
with the effective potential theory discussed in the
previous paragraph. We then move to numeri-
cal analysis to examine the validity of our theory
(section3): solving the 1D GP equations for sta-
tionary solutions, and finding their stability eigen-
values by numerically solving the BAG equations.
We follow this with a conclusion and suggestions
for future work.

2 THEORY
2.1 Gross—Pitaevskii mean field theory

In this section we will follow through the deriva-
tion of the GP equation (more comprehensive
treatments of the topic being found in any of
[12, 17, 15, 16]), introducing the relevant physi-
cal quantities in more depth. We then derive the
time-independent GP equation which will be im-



portant later in the report.

The derivation of the GP equation begins with
the second quantised Hamiltonian of the full many
body theory:
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where ¥ and U are the boson creation and an-
nihilation operators at a point r, V(r — r’) is the
inter—atomic interaction potential, and Vet is the
external potential mentioned previously. The GP
equation is a mean-—field description of the above
theory. Working now in the Heisenberg repre-
sentation (\i/ is function of space and time), we
replace the field operator in (2) by its expecta-
tion value, plus a small perturbation , \i/(r,t) =
Y(r,t) + ¥ (r,t). The perturbation represents the
non—condensate part of the gas [17, under eqn.(1)].
In a cold, dilute gas, we can replace the interac-
tion potential, V(r — r’), by a delta—function po-
tential of the form ¢(r)d(r —r’). The justification
for this is that, in this regime, only low energy,
two—body collisions are relevant, these are char-
acterised by one physical parameter, the s—wave
scattering length, a, independent of the details
of V(r —r’) [12, 15, 16]. The s—wave scattering
length is obtained by taking only the lowest order
term in a partial-wave expansion (an expansion
in terms of angular momentum eigenstates) of the
two body scattering problem, and corresponds to
low—energy isotropic scattering [35]. The s—wave
scattering length is related to g by g = 4wh%a/m:
Positive g corresponds to repulsive interactions,
negative g to attractive ones. Using the above ap-
proximations for ¥ and V (r—r'), together with the
Heisenberg evolution equation for the field opera-
tor \i!(r, t), gives the following mean—field equation
for the order parameter,
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The first term is a kinetic term, the second is the
external potential term, and the third is the non—
linear term.

The validity of the dilute gas approximation
(which allows us to make the replacement for
V(r —r’) above) is dependent upon the smallness

of the parameter (n)|a|® [12, 17], where (n) is the
average atomic density in the condensate. In typi-
cal experiments this parameter is always less than
1073 [12]. The GP equation is strictly valid when
{’ = 0 and all the atoms are in the condensate,
even at T' = 0 correlation effects can lead to atoms
leaving the condensate. Finite size effects can also
come into play, as the number of atoms is not truly
macroscopic. However, at low temperatures and
with large numbers of atoms (but such that (n)|a|?
is still small), the GP equation provides a good
description of experimentally observed behaviour.
The GP equation can also be derived from the full
many—body problem in a rigourous manner [14]

To reduce the GP equation to a 1D setting,
as described in section 1, we use an harmonic
trap to confine the condensate in two dimen-
sions. The harmonic trap is described by, Voye =
m/2((wzx)? + (wyy)? + (w52)?), where w, . are
the trapping frequencies in each direction. We
confine the condensate to the z axis, which be-
comes the axial direction. We now define the
transverse oscillator frequency, w, = w; = wy.
By using a highly anisotropic harmonic trap as
the external potential, such that w, > w,, it is
possible to reduce the full 3D theory to a quasi-
1D one. The procedure for averaging over the
transverse dimensions is detailed in [37]. The
averaging is performed using a multi-scale tech-
nique which takes advantage of the disparate spa-
tial scales in the two dimensions. The length scale
associated with an harmonic trap is the oscilla-
tor length, a; = (h/mw;)'/2, which implies a ratio
of length scales,a,/a, = (w,/w.)!/2. A possible
trapping ratio would be 5.6 x 10* [12, Fig. 7], giv-
ing a,/a, = 236.6. Performing the averaging gives
the 1D GP equation. We use the rescaled variables
t' =t/w, 2 = z/a,, and |¢'|? = [1|?/2]al, to give
the equation in dimensionless form:
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where g is now rescaled to be £1 for repulsive/at-
tractive interactions'. For the rest of the report we
will neglect the weak trapping in the z—direction,
for simplicity.

'The rescaled variables are taken from [17], but have
been altered for 1D, the paper uses a rescaled density ap-
propriate for a 3D equation.



The GP equation can be reduced to a time-—
independent form by assuming a solution of the
form (z,t) = ¢(z)e” ", substituting gives,
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The GP equation with a time-independent exter-
nal potential has two conserved quantities asso-
ciated with it: number of particles and energy
[17, 12]. The number of particles, N, is given by
N = [dz|y(z,t)|*> which implies that ¢ is nor-
malised to the number of particles. The param-
eter p is a dimensionless chemical potential, and
is set to£1 for the rest of the report: the positive
sign corresponds to the repulsive case, the nega-
tive sign to the attractive one.

2.2 Non-linear and potential step with
constant density solution

The scattering length, and hence the non-—
linearity, can be altered by a process known as
Feshbach resonance management.
process, the atoms involved will have spin struc-
ture. Zeeman splitting in the energy levels, as a re-
sult of the atomic spin, creates a number of chan-
nels (possible routes from input to final states)
which the process can occur in. These channels
can be divided into two types, open and closed
channels. The result of the scattering process can
only lead to atoms whose combined energy in their
final states is less than the energy available, this is
an open channel process. Closed channel processes
are those with final states above the energy avail-
able, the scattering process cannot lead to atoms
output into these final states. If the energy of a
bound state of a closed channel is sufficiently close
to the energy of the scattering state, this state can
mix with the scattering state, leading to a modifi-
cation of the scattering length. Varying the mag-
netic field near one of these resonances allows us
to alter the energy separation of the channels, and
hence allows us to tune the scattering length. We
can now replace g in (5) with g(z) [19].

To create a constant density situation, both
within and external to the potential step, we work
within the Thomas—Fermi (TF) approximation.
The TF approximation consists of neglecting the
second derivative term in the Hamiltonian, see
[12], this is almost exact here due to the constant
density nature of the ground state solution. The
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result is the following equation for the density in
each region,
6> = g7 '~ Vext), Vext <p.  (6)
If we then apply this to both regions, and equate
the densities, we find that
g (n=V1) = g3 (p—1a), (7)
where g1 2 and V; 2 are the non-linearity and po-
tential in the two regions. It is possible for gs to
differ from ¢q, despite our rescaling, because the
density is rescaled in terms of the scattering length
outside the step. We now define v = Ag/AV =
91/(Vi — 1), where Ag = g2 — g1, and similarly for
AV. The step is determined fully by the parame-
ter v, together with A = —AV (this choice of A
gives Ag with the same sign as A). Using 7 as a
parameter is useful, as it makes it clear that the
relative sizes of Ag and AV are not independent.
The step is now controlled by two parameters: the
step width, defined as w, and the step height, A.
Unless stated otherwise, for the numerical section
of the report (section 3) we will take g; and V
to be given by their values in the non—linear limit
(£1 and 0), giving v = —1. We will also impose
a constraint on A, |A| < 1, this prevents g from
changing sign or becoming zero within the step
region (this situation will be discussed in further
work 4).
To avoid having non—smooth behaviour in our
step, we will implement it as two tanh functions,

9 = g1+ Agltanh(z4) — tanh(z-)],
vV =

(8)
Vi + AV [tanh(zy) — tanh(z_)], (9)

with z4 = (z £ z,)/s. This functional form gives
a step with width w = 2z,,, with an edge region
at z,, whose width is characterised by s. The
remainder of the report will primarily be an in-
vestigation of how the step width, w, affects the
soliton solutions at various ‘strengths’, A. This is
a particularly interesting situation when the width
of the step becomes comparable with the width of
the excitation. Using negative values for z, in
eqns (8,9) leads to the same step, but with the
signs of Ag and AV swapped. Henceforth, we
will keep A positive, using negative width to give
negative Ag.



2.3 Soliton solutions to the GP equation

We begin to work towards our setting by first
considering the type of solutions we would expect
far from the step edges. If the solitons have veloc-
ity 0, the functional form of the soliton solutions
are sech and tanh, for bright and dark solitons re-
spectively [17]. The soliton solutions of the NLS
can be generalised to include a constant Vey and
g # 1 (my derivations are in appendix 3):
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with w; = pu — V;. The parameter £ is the soli-
tons centre position. The constraint |A| < 1 en-
sures that w; is the correct sign to give real roots
above. The subscript, i € {1, 2}, refers to different
values of the constant potential /non-linearity, as
defined in section 2.2. These soliton solutions are
derived for an infinite domain, where we do not
have a change in Vi or g. The solution for i =1
corresponds to no step. The solution for ¢ = 2
corresponds to the limit of an infinitely wide step.

If we have a wide, finite, step in the equation,
we expect the solution for ¢ = 1 far outside the
step. The solution for i = 2 is what we would
expect near the centre of the step. We can see
this by considering a soliton located at the origin,
and introducing a wide step: the edges of this step
would be located in a region of constant or zero
density (as they are far outside the soliton), and
thus the kinetic term in (5) will be zero, by relation
(7), we know that the regions either side of the
step allow the same density, thus, the solution is
not altered by the introduction of a step.

The solitons (10,11) reduce to those given by
the NLS for ¢ = 1. When ¢ = 2, the solitons dif-
fer from those which solve the NLS: the parameter
governing the amplitude does not change (because
of eqn. 7), however, the parameter governing the
width does change. The soliton for ¢ = 2 is wider
than the standard NLS soliton when A is the op-
posite sign to u, narrower when A has the same
sign. When the step width becomes comparable
to the width of the non-linear excitation, we can
expect that the solution inside the step may be
perturbed away from either of these limits.

2.4 Effective potential landscapes and
stability analysis

The methods elucidated in the following sec-
tions are a powerful means of investigating the
stability and persistence of soliton solutions to the
GP equation when a perturbation is introduced.
The combined step is introduced as a perturbation
from the non—linear limit, characterised by a small
parameter, €. The procedure we will follow is sim-
ilar to the analysis of equilibrium—points in ODE
systems: finding an equilibrium—point, examining
its stability by looking at small perturbations to
this, and seeing how the stability alters as a pa-
rameter is varied. The PDE case is complicated
in that we are instead looking for stationary solu-
tions, rather than points, and seeing how pertur-
bations to these solutions grow or decay [43]. We
introduce a small perturbation to the excitation
wave function we have found,

bat) = o)
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where u;(z),v¥(2),w; € C are small, and describe
the response to perturbations to ¢ oscillating at
+w;. Substituting (12) into the time-dependent
GP equation, (4), and keeping only first order
terms in the perturbation, we get the Bogoliubov—
de Gennes equations [12, 17]:

Auj(2) + Boj(z) wju;(2),
Avj(z) + B*uj(z) = —wjvj(z), (13)
with
2
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The BdG equations can be used to assess the lin-
ear stability of any state ¢. If an eigenfrequency,
w, solves the above, so also does —w and +w* . A
purely imaginary doublet of eigenfrequencies leads
to exponential growth of the relevant perturba-
tion, and hence implies instability of that state
along one eigendirection. A complex eigenfre-
quency quartet gives oscilllatory growth. Purely
real eigenvalues imply the state is stable, the per-
turbations neither grow nor decay.



The eigenfrequency spectrum of the NLS is
known for both bright and dark solitons. In the
first case, there is a continuous spectrum of real
eigenvalues above a certain minimum value, wy;n,
below this value, there are four eigenvalues at the
origin [48, Fig. 1]. In the latter case the spec-
trum fills the entire real axis, again, there is an
eigenvalue with multiplicity 4 at the origin [49].
The eigenvalues at the origin are particularly im-
portant when considering perturbations from the
non—linear limit, as they are related to the sym-
metries of the GP equation (4), namely phase in-
variance and translational invariance, which lead
to its associated conservation laws[41]. When we
break the translational invariance, by introducing
the step, we cause the two eigenvalues associated
with this symmetry to leave the origin[41]. When
the eigenvalues leave the origin, they can move
either along the imaginary axis, leading to insta-
bility, or along the real axis. When eigenvalues
leave along the real axis they move away symmet-
rically in opposite directions. If a collision with a
member of the continuous spectrum occurs, it can
cause the eigenvalues to leave the axis as a com-
plex eigenfrequency quartet [41, §7.0.2]. Leaving
along the imaginary axis leads directly to instabil-
ity.

We rewrite the GP equation in an appropriate
form to consider perturbations to the potential
and non-linearity characterised by e,

it = = 5es + (ema(2) + (g1 + ena()0I2)(15)

where we have used the subscripts to imply dif-
ferentiation. The quantity en; is the perturbation
to Vi, V. — V4. The quantity eno is the perturba-
tion to g1, g — g1. The energy associated with the
unperturbed part is [17],
I 2 4
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The first term is the kinetic energy term, the sec-
ond is due to the non-linearity, and hence inter-
actions. Note the form of the non-linear energy
term, dependent on the density squared.

We attempt to simplify our initially complicated
problem by realising that we have identified a fam-
ily of solutions to the NLS equation, characterised
by their centre position. When we introduce the
perturbation, €, for certain centre positions there

will exist what is called a continuation from the
solution to the NLS equation, say ¢g(z — &)e
to the solution to the GP equation, ¢.(z—&:)e™"#:
For certain centre positions, soliton solutions will
still exist when the perturbation is introduced. To
find the locations where these soliton solutions
persist, we will follow the procedure outlined in
[40, 41]. In [40, 41] we find that, intuitively, the
locations where solitons persist are at the extrema
of an energy functional for the perturbation. The
stability of these solitons is related to the cur-
vature of this energy functional. We will follow
through the results for the dark soliton, these are
complicated slightly by the presence of the back-
ground, which must be taken into account when
we define our energy functional. The bright soli-
ton result will merely be quoted, but is achieved
in a similar way.

The results of [40] are derived for a potential
which is bounded and decaying, these conditions
are satisfied by our step. We will generalise the
results, following [46, 41], to take into account a
spatially varying nonlinear term, in addition to the
potential term. In the repulsive case, our solution
for the NLS, (11), satisfies the conditions given in
[40, Main results, i]. Combining the result of [40],
for an external potential, and [46], for a spatially
varying nonlinearity, we find the following effective
potential,

e = [ [”’1(2)(7735—%(2—50))
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The prime on n 2 implies derivative with respect
to their argument, that on the M is merely nota-
tional. If 17 is fulfilled for some &g, there exists a
unique solution to the perturbed equation. This
solution is ¢¢(z — &), for & e—close to &y, and is e~
close to ¢o(z — &) in the L>-norm?. The proof is
quite involved,see [40, §2]: essentially, persistence
of a solution upon introducing the perturbation is
shown to be a result of the above condition (17),
but for ¢. rather than ¢g. The condition on ¢,
is less useful as the perturbed solutions are not
known. The technique of Lyapunov—Schmidt re-
duction is used to prove that the above condition

2A measure of similarity between the functions. See ]
for a definition



on ¢q implies the condition on ¢, and hence that
(17) implies persistence of solutions in the per-
turbed equation. Lyapunov—Schmidt reduction is
a technique which allows us to reduce the prob-
lem from an infinite dimensional one, to one with
a small number of parameters [42]. The problem
is reduced to that of dealing with a bifurcation
equation in few dimensions, in our case these are
the parameters € and £. The bifurcation equation
can be solved and yields a correction to ¢g that
is unique, such that the corrected ¢, ¢., satisfies
the conditions mentioned below (17).
To analyse stability, it is necessary to look at,

M) = [
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if M/ (&) < 0, the soliton is unstable with one
imaginary eigenvalue; if M} (&) > 0, the soli-
ton is unstable with a pair of complex eigenvalues.
These unstable eigenvalues appear as part of the
other spectral structure described below equations
(13,14). Given M (&), it is possible to calculate
an approximation to the eigenvalues for small e:

o) = o+ {Mie) (1-5). (19
The root picked is that with Real(iw) > 0 [40].
The above result verifies the assertion in the pre-
vious paragraph regarding stability, more impor-
tantly, it allows us to get a quantitative handle on
the the eigenvalues.

In the attractive case, one determines stabil-
ity in a similar manner, without having to worry
about the background. The resulting equations
for bright solitons are

M = |
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with M] being as above but with double primes
within the integral. For the eigenvalues,

w2 o=

My, (&) +0(e).  (21)
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The simpler eigenvalue spectrum in the attractive
case arises because the NLS spectrum does not

include the origin, here the eigenvalues are imagi-
nary, and hence unstable, for Mys” (&) < 0 whilst
being real, and hence stable, for Ms” (&) > 0.

If, whilst varying a parameter, there is a sudden
change in the qualitative nature of solutions (such
as the number of solutions), as well as their sta-
bility, we say a bifurcation has occurred. We will
find in the numerical sections of the report, 3, that
our system exhibits a pitchfork bifurcation as the
width of the step varies. Pitchfork bifurcations are
common in physical systems [43] and are named
for their shape, which resembles a pitchfork, they
have a central branch which changes stability and
two outer branches leaving the bifurcation point.

3 Numerical computations

We now build on our analytical results us-
ing numerical computations. To solve the time-
independent GP equation, a Newton—Raphson it-
erative method is used. Given an initial guess
which is sufficiently close to the initial solution,
convergence is quick, around 5 iterations. The
analytic solution to the NLS is a good place to
start, as the soliton solution to the GP equation,
if it exists, is usually of a similar form. The BdG
equations are solved numerically by using a combi-
nation of MATLAB’s eig and eigs commands on
a discretised version of the equations, further de-
tails are in appendix B. Finally, to perform time—
evolution simulations, we discretise the spatial
part of the GP equation and use a fourth—order
Runge-Kutta algorithmn to integrate in time. Fi-
nite difference methods are not the most appropri-
ate for use with our equation, the NLS is better
suited to split-step and fourier methods [44], they
are, however, quick to program and easily adapted
to a number of different situations: these are de-
sirable traits given the length of time I had to
approach the investigation.

3.1 Bifurcation diagrams

The functions M'(§) and M" (&) are easy to cal-
culate numerically. Finding the zeros, {&;}, of
M'(€), and the sign of M”(&;), allows us to find
the points at which soliton solutions to the GP
equation exist, along with their associated stabil-
ity. We will look first at bright solitons, as they
exhibit more interesting behaviour. We can sim-
plify the equation for M’ and M” by realising the
potential and non-linear step are just scaled ver-



sions of one another: if nj(z) = An/(z), then
nh(z) = (A/y)n'(z) (see (8,9), n(z) is given by
the tanh functions). We can now replace n} , and
¢o in (20) and simplify,

M) = [ [ - &)

+ g - @)|a =0 @)

:/O;L'(z)m(z —&o)dz, (23)

—0o0

m(x) = 28u (sech? (\/—2ux)

g1

— sech? (v/—2ux)).

Equation (24) defining m(z) is interesting. Alter-
ing any of our parameters only scales m(z) along
one of the axes, it does not alter the functional
form. The implication is that altering any of those
parameters does not change the qualitative nature
of the solutions, their number and stability for ex-
ample, but only changes their centre positions by
a scaling factor. The functional form of n’(z) in
(22) is aproximately two delta—functions, of oppo-
site signs, at £z,: the gradient of the functions
describing the step, (8,9), is zero everywhere ex-
cept at the step edges, where it is large. Substitut-
ing the delta—function form for n’(z) in (22) gives
M' (&) = m(zy — &) — m(—2zy — &), this form is
shown in figure 1 for four step widths. Looking at
the figure, we see that when the width becomes
comparable to half of m(z — &) the contributions
from both sides of the step begin to overlap, this
leads to more interesting structure arising.

I calculated the zeroes, {&;}, of M'(§) for step
widths between -5 and 5. The set of points, {;},
correspond to the centres of solitons that have sta-
bility given by the sign of M"”(&;). We can form
a bifurcation diagram for the soliton centre posi-
tions by plotting the & against width, colouring
the curves according to their stability. The result
is figure 2. At very narrow step widths there are
three zeros of M’(£), these correspond to solitons
centred at 0 or a little outside the step. The cen-
tral soliton is of opposite stability to the external
solitons. As the step widens, the central soliton so-
lution changes stability in a pitchfork bifurcation,
the external solitons also move outwards, but more
slowly than the step widens, eventually meeting
the outer branches of the pitchfork at the step

(24)
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Figure 1: A diagram showing M’(¢) and how this
evolves as the step (shown in red) narrows. The
green line is at zero and helps pick out when M’ (€)
touches/crosses the axis. The black arrows at-
tempt to show the sequence of events described
in the text. The interesting behaviour in this case
is the formation of a further two fixed points which
travel inwards to zero.

edge. When the step is at its widest, the branch
at the origin widens into a region about zero, soli-
tons can exist at any point within this region. Tor
both signs of A (positive and negative width on
the diagram), the stability eigenvalues within the
central region of solutions are vanishingly small:
for unstable eigenvalues the instability develop-
ment will be so prolonged that the solitons can
be considered to be stable.

The positions of the outer soliton solutions at
very narrow widths can be predicted by letting
n(z) tend to a delta—function. Substituting this
into (23) and integrating by parts (to take care of
the delta—function derivative) gives,

3'9) = [ S (v 2l — )

—0o0

_ 2Ap

g1

m'(x) (—(cosh (2z) — 3) tanh (z) sech? (@p)
The zeros of M'(§) are at 0 and £0.623. If we
allow the newton raphson iterator to converge to
a solution for very narrow widths (w = 0.1), we
find solitons just outside the step are centered at
40.634, the prediction from the theory is correct
to within 1.7%.

The discussion of this section has focused on the
attractive case, the reason being that the qual-
itative nature of the solutions for dark solitons
are much simpler: only the centre solution exists
for dark solitons, and no bifurcations occur. The



width

Figure 2: Bifurcation diagram for the bright soli-
ton centre position, calculated for A = 0.1. The
orange regions do not admit soliton solutions, the
light curves indicate the centre positions of unsta-
ble solitons, the dark curves stable ones. Outside
the orange region, far from the step, the rest of
the domain supports soliton solutions. The dot-
ted lines indicate the step edge.

dark soliton branch at the origin is unstable for
negative widths, oscillatory—unstable for positive
widths: there is no change in stability as the step
widens. Again, at very large widths the branch
of solutions widens, becoming a region in which
solutions can exist.

3.2 Soliton solutions and their stability

The previous section has confirmed the ear-
lier intuitive arguments for wide steps (see sec-
tion 2.3): soliton solutions exist, except within
a narrow region about the step edge, in this re-
gion the solution is strongly perturbed. We have
also revealed some interesting structure arising
for narrow steps. To further investigate this be-
haviour we will use our Newton—Raphson iterative
method to find solutions to the time—independent
GP equation (5). Given there is always a branch
of solutions at zero, we can apply a continuation
type approach. Starting with a wide step, a soli-
ton solution is allowed to converge to the correct
solution. This new solution is then passed as the
initial guess for the next width, in this manner, it
is possible to get a set of solutions for all values of
the width, more sophisticated methods are given
in [45]. The BdG equations (13,14) are solved
numerically to give the associated stability eigen-
values for each solution, these are compared with
those given by the theory of section 2

_ 96 Foo” ~ [ ——— width = 4
= o — — — - Width =2
0.4 T =~ ~ — — - Width = —2
O Width = —a
oo :(‘/zf ° No step
o Negative
° Positive
o T
o 0.5 1 1.5 2

Figure 3: Soliton solutions centred at zero for at-
tractive (top) and repulsive (bottom) interactions.
The legend holds for both sets of solutions. The
solid line solution is barely visible in both cases,
as it is overlapped by positive/negative.
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Figure 4: a) Max imaginary part of eigenvalues
against width. b) Typical eigenvalue development
in unstable (top) and stable (bottom) regions.

Figure 3 shows the soliton solutions for a variety
of widths, in both attractive and repulsive cases.
The curves labelled positive and negative corre-
spond to the solitons (10,11) with ¢ = 2, where
positive and negative refer to we = p + A. It can
be seen that these are the limiting forms of the
solitons centred at zero for wide steps. As the
step narrows, the solitons become different from
these limiting forms, but do not tend to the solu-
tion in the absence of the step. Instead, the soli-
tons narrow and grow in amplitude, for positive
width; widen and shrink, for negative. The oppo-
site occurs for dark solitons, but with no change
in amplitude.
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Figure 4a) compares numerical and theoreti-
cal (dashed) values for the imaginary part of the
eigenvalues against width. The previously identi-
fied bifurcations are clearly visible as sudden large
increases in the magnitude of the stability eigen-
value. The theory predicts the eigenvalues very
well, except very near the bifurcation. As the
perturbation size is increased it can be seen that
the numerical values are less well described quan-
titatively, however qualitative agreement is still
good. For both strengths the theoretical predic-
tions are within e of the numerical values, usually
well within this region. With growing perturba-
tion strength the size of the instability also grows.
The insets show the translational eienvalues leav-
ing the origin, along either the real or imaginary
axis. When the eigenvalues move along the real
axis, they do not enter the continuous spectrum
and hence cannot lead to oscillatory instability
through collision (see section 2.4).

Figure 5a), shows the dark soliton case. No-
table differences are the immediate instability at
zero width, the solutions being either unstable, or
oscillatory—unstable, for all widths. As mentioned
in section 2, this is a result of the eigenvalue spec-
trum encompassing the origin. Figures 5b) show
typical eigenvalue development. Note the eigen-
value quartet which results in oscillatory instabil-
ity. Also noticable in the subfigures is the lack of
a gap about the origin, this is markedly different

20 40 60 80 100 120
t

Figure 6: Main figure: unstable soliton leaving
the step. Inset: snapshots of the density at 3
times. Both the counter propagating dispersive
wave, and that infront of the soliton are clearly
visible. Parameters: A = 0.5 with width of —2.

to the bright soliton case (see figure 4b)). Figure
5¢) shows an interesting numerical effect: simulat-
ing the infinite domain on a finite numerical one
(which cannot be avoided) causes the continuous
eigenvalue spectrum to become discrete, a result
of this is that occassionally the oscillatory eigen-
values ‘drop’ back to the real axis when they en-
counter a gap in the spectrum [], this leads to the
‘spikes’ shown. The behaviour we see does not re-
flect the actual physical situation, where the eigen-
values should be a quartet with non-zero imagi-
nary part throughout the region. The subfigure
demonstrates how the effect lessens with increased
domain size, where the gaps in the spectrum be-
come smaller.

In order to study the development of instabil-
ities, we use the Runge-Kutta integrator. The
initial input for the integrator is a solution given
by the Newton-Raphson method. In both cases
unstable solitons move off from the origin after an
amount of time dictated by the strength of the in-
stability. As the soliton leaves the step it emits
two dispersive waves: one travels ahead, one is
counter—propagating behind the soliton. Number
is still conserved, with the soliton decreasing in
amplitude. These dispersive waves are mentioned
in [46, 47|, which both cover piecewise constant pe-
riodic potentials, external and non—linear respec-
tively, where the soliton dissipates constantly to
zero. The emission of dispersive waves is a result
of the soliton moving over a spatially inhomoge-
neous environment, and hence is concentrated at
the step edges. As a result, in our setting the
emission of a wave occurs only once, when leav-
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ing the step, and the soliton is persistent despite
its initial instability. The case shown is that of a
bright soliton, dark solitons behave similarly.

4 Conclusion

I investigated a combined nonlinear and
external-potential step in the 1D GP equation,
arranged to give a constant density ground state.
Due to the simplicity of the setting, it was pos-
sible to investigate how the two effects compete
or combine in a clear way, and the result on soli-
ton solutions to the GP equation and their stabil-
ity. I began by introducing the soliton solutions
to the GP equation, generalising them to take into
account the presence of a constant potential and
nonlinearity. Doing so allowed us to consider the
forms of the soliton solutions far from the edges
of the step. I picked the width as a step parame-
ter to focus on, being interested in the behaviour
of the solution when the step became of similar
width to the nonlinear excitations. I then intro-
duced various theoretical and numerical tools to
investigate the kinds of solutions supported and
their stability.

A theoretical framework was introduced, which
aimed to explain the existence and linear stabil-
ity of soliton solutions via an effective potential
landscape. Solitons persist at the extrema of this
potential landscape, with stability governed by
whether they exist at maxima, or minima, of said
potential. I generalised previous results to ap-
ply to a combined step setting. The linear sta-
bility was given quantitatively by the BAG equa-
tions for the stability eigenvalues, which describe
how perturbations to solutions grow or decay. It
was found that changing the parameters of the
step has little effect on the qualitative nature of
the solutions, only altering the magnitude of the
stability eigenvalues, and shifting the centre po-
sitions of solitons solutions. Bright solitons were
found to exhibit more interesting behaviour as the
width was varied. A pitchfork bifurcation occurs
at narrow widths, as the width increases the outer
branches tend to towards two further branches of
solutions at the edges of the step. Dark solitons
exhibit less interesting behaviour, having only one
branch of soliton solutions. The dark solitons are
unstable for negative width, oscillatory—unstable
for postive width.

We then moved to numerical studies to investi-

11

gate the nature of the soliton solutions supported
in more depth. For wide steps the solitons sup-
ported are those given by the limit of an infinitely
wide step, as the step narrows the solitons alter.
Calculation of the stability eigenvalues, by numer-
ically solving the BAG equations, leads to eigen-
values in very good agreement with those given
by the effective potential theory. In the limit of
very wide steps, solitons centred at the origin, or
in a region well within the step, are either stable
or unstable with exponentially small eigenvalue.
As the step narrows towards the point where the
bifurcation occurs the eigenvalue grows in mag-
nitude, before changing stability at the bifurca-
tion point. The typical development of instability
was then shown, the soliton eventually becomes
mobile, leaving the step and emitting dispersive
waves.

There are several avenues to pursue in fur-
ther study, remaining with our setting in one-—
dimension, moving to higher dimensions or mov-
ing towards a more experimentally feasible setup.
One way forward, is to investigate the relationship
between narrow step states and defect—modes,
which are solutions supported by a delta—function
potential /non-linearity. At narrow step widths,
the form (8,9) for the potential does not ade-
quately represent the step. The limit of narrow
width should be a delta—function, in my setting
the tanh functions overlap, leading to the step
eventually vanishing. It would be interesting to
simulate the very narrow step properly, and in-
vestigate how the states supported by a delta—
function relate to the solitons supported by narrow
steps. A second way forward would be to investi-
gate the solutions in the case where the nonlinear-
ity changes sign within the step, this may have an
interesting effect on the edge states as presumably
the soliton centred at zero would no longer be sup-
ported. It would also be interesting to look at the
setting either in higher dimensions, where other
types of solutions such as vortices are supported,
or to use a better one-dimensional reduction such
as [50].
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A Analytics

Here I derive the form of bright and dark solitons in the GP equation with constant external potential,
V, and a constant nonlinearity, g. The derivation begins with the time-independent GP equation:

2
(<55 —n+V +aloR ) o) = o (26)

The soliton solutions to the NLS are,
Pbs(z — &) = /—2psech(y/—2u(z — ), (27)
and,

(bds(z - 5) = \/ﬁtanh(\/ﬁ(z - g))v (28)

where p is —1 for bright solitons, and +1 for dark solitons. The soliton solutions with constant V and
g can be expected to be similar to those of the NLS, with a new chemical potential w = u — V', and
different constants within and without the sech function.

A.1 Bright soliton

We insert the ansatz,

obs(z) = asech(bz), (29)

into (26) giving,
—iab2(2 cosh? (bz) — 4)sech® (bz) = a(w — ga®sech? (bz))sech (bz) (30)
—E + b?sech? (bz) = w — ga?sech? (bz). (31)

2
Comparing the coefficients in (31) gives b = v/—2w and a = b/y/—g. The final result is (10).
A.2 Dark soliton

We insert the ansatz

¢ds(z) = atanh(bz))v (32)
into (26) giving,
1
—5(—2ab2(1 — tanh? (b2)) tanh (bz) = a(—w + ga®tanh? bz) tanh (bz2) (33)
b —b*tanh? (bz) = w — ga®tanh? (bz). (34)

Comparing the coefficients in (34) gives b = \/w and a = b/,/g. The final result is (11).
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Appendix B.1
function [initial phi,E val,E the,E vec,E con,V,g,x,store,n,dom,width] = GP_statR(u_guess,x0,type)

\%Takes a u_guess for continuation, if this is not required

input 1. The other input is either 'b' or 'd' and selects bright or dark soliton versions.
initial phi is the output, E _val is the eigenvalue spectrum, E the is the theoretical eigenvalue
spectrum,

E vec is a matrix of eigenvectors, E con is a check variable for eigenvalue convergence.

The remaining parameters specify the step.\%

switch type
case 'b'
load('stat par bright.mat');
case 'd'
load('stat par dark.mat');
otherwise
disp('No File');
end

%The above are two files of parameters\%

n = stat par(1);
dom = stat par(2);

%Takes the number of lattice points and the domain size from
the parameter file\%

dx = dom/n;

X_min = -(dom/2);
X_max = (dom/2)-dx;
X = x_min:dx:x_max;

X = X';

%Creates an x vector\%

gl = stat_par(3);
dg = stat par(4);
V1 = stat par(5);
mu = stat _par(6);
width = stat _par(7);
sharp = stat par(8);
win = stat _par(9);

%Takes parameters from the parameter vector and converts them to separate
variables for easier later use. The parameters are the nonlinearity outside
the step, the change in nonlinearity (also Delta), the external potential
outside the step, the chemical potential, the width of the step, the width
of sloped part of the tanh (how sharp the step is), and a parameter for
eigenvalue finding.\%

R = (V1 - mu)/gl;

%Calculates the Vext/non-linearity ratio.\%

dvV = R * dg;

V2 = V1 + dV;

g width = width/2;

g _sharp = sharp;

V width = width/2;

V_sharp = sharp;

g = gl + (dg/2)*(tanh((x + g_width)/g_sharp)-tanh((x - g_width)/g_sharp));

v

V1 + (dV/2)*(tanh((x + V_width)/V_sharp)-tanh((x - V_width)/V _sharp));
%Forms the nonlinear and external potential steps.\%

if u guess == 1



u_guess = (sqrt(-2*(mu)))*sech(sqrt(-2*(mu))*(x-x0));
elseif u guess == -1

u_guess = (sqrt(mu))*tanh(sqrt(mu)*(x-x0));
end
%Provides input if no initial function is passed.\%
v_guess = zeros(n,1);

%Sets the imaginary part of the input to zero.\%

g = [9;9];
vV = [V;V];
w = [u guess;v_guess];

%Manipulates g,V,u guess and v guess into a form that will be required later.\%

sparse(l:n,1l:n,- 2*ones(1 n),
sparse(2:n,1l:n-1,ones(1,n-1)
(E+D+E") ./ (dx"2);

2 =L+ ( sparse([1 n], [1 n], [1 11,n,n) )./(dx*2);

n

N5
N,

);
n);

D
E
L
L
\% Define the finite difference matrix

with boundary conditions that the first derivative

is 0 at boundary of domain (ie x =-> infinity).\%

lim = 10;
k = 1;

%Set initial values to be used in the iteration to follow.\%
while 1im > le-9

%Iteration runs until the RHS of the TIGP equation is le-9.\

o°

if type == 'b'
w(l) = 0;
w(n) = 0;
elseif type == 'd'

-sqrt(mu - V1);

w(l)
w(n) +sqrt(mu - V1);

end
%Further BC's on solution. The wavefunction is ~ zero as x -> infinity
for bright solitons. For dark solitons the solution tends to some background
as given above.\%
J = jacob(w,mu,V,g,dx,n);
%Calculates the Jacobian.\%
F = GP(w,mu,V,qg,L2,n);
%Finds the value of the GP equation LHS with w(n).\%
delta = J\F;
F2 = GP(w-delta,mu,V,qg,L2,n);
%Finds the value of the GP equation LHS with w(n+1).\%
w =w - delta;
%sIterates w(n) to w(n+1)\%
1im = max(abs(F2))

%Checks the size of the LHS of the GP equation post iteration, this
is tested against the criterion lim>le-9



store(:,k) = w(l:n);

%Stores values of u throughout in order to examine convergence.\%

k = k +1;

% Increments a counter to show number of iterations. Also useful if

need to stop iterating before convergence (ie if solution doesn't
converge and you want to examine behaviour, set a maximum K).\%

end

u=w(l:n);

v = w(n+l:2%n);
V = V(1l:n);

g =g(l:n);

phi@ = u + li*v;

%Creates the output by conbining real and imaginary parts of phi 0. Also
takes V and g back to their original forms.\%

[E val,E vec,E con] = BdG(phi®@,q,V,n,mu,L2,dx,win,type);

%Calculates the eigenvalues and eigenvectors of the stationary solution in
the BdG equations. Also outputs a check on convergence\%

E the = eig pred(g,V,mu,dx,L,x,type,gl);
%Calculates the theoretical values of the eigenvalues.

initial phi = phi0;

function J = jacob(w,mu,V,g,dx,n)

%The function below calculates the jacobian of F, the program only puts variables
into a previously worked out Jacobian, it does not differentiate etc.\%

u=w(l:n);
v = w(n+l:2%n);
u2= [u;ul;
v2= [v;V];

A= (1/dx™2 - mu) + V + g.*((u2.72 + v2.72)+(2*w."2));
A(l) = A(1) -1/(2*%dx"2);
A(n) = A(n) -1/(2*dx"2);

A(n+1l) = A(n+l) -1/(2*dx"2);

A(2*n) = A(2*n) -1/(2*dx"2);

B = [0;(-1/(2*%dx”2))*ones(n=-1,1);0; (-1/(2*dx"*2))*ones(n-1,1)1;
C = [zeros(n,1);2*g(1l:n).*u.*v];

J = spdiags([B C], [1 nl,2*n,2*n);

J=31+13";

J =] + spdiags(A,0,2*n,2*n);

function F = GP(w,mu,V,g,L2,n)

%The function below calculates the value of the LHS of the GP equation with our
present initial solution\%

u=w(l:n);
v = w(n+l:2%n);
u2= [u;ul;
v2= [v;v];

L22 = [L2 O0*L2;0*L2 L2];

-
1]

-0.5*%L22*%w - mu*w + V.*w + g.*(u2.72 + v2.72).%w;



function [E val,E vec,E con] = BdG(initial,g,V,n,mu,L2,dx,win,type)

%For bright solitons computational time is saved by calculating the eigenvalues on
a restricted domain, this does not affect the results, so long as the domain is
sufficiently larger than the step region.\%

if type == 'b'

p_window = win;

p_max = n/2 + floor(p_window/dx);
p_min = n/2 - floor(p_window/dx);
phi®@ = initial(p min:p_max);
p_num = p max - p_min + 1;

V=V(p_min:p_max);
g=g(p_min:p_max);

%Restrict the part of the the stationary solution to be analysed in order
to reduce computational complexity.\%

al =V + 2*g.*(abs(phi®).”2) - mu*ones(p _num,1);
bl =g .* (phi® .” 2);
b2 = g .* (conj(phi@) .”~ 2);

b = spdiags(bl,0,p_num,p_num);

bc= -spdiags(b2,0,p_num,p _num);

a = (-0.5*%L2(p_min:p max,p min:p max)) + spdiags(al,O,p _num,p _num);
A = [a,b;bc,-al;

%Form a finite-difference version of the BdG equations.

[E _vec,E] = eig(full(A));

%Finds the eigenvalue of the discretised BdG equations

C
C

A*E _vec - E_vec*E;
max(C);

E con = C*;

%E_con is a check on eigenvalue accuracy.\%
E val = diag(E,0);
elseif type == 'd'

phi® = initial;

%For dark solitons reducing the computational domain adversely affects results.
Instead we use eigs, which is appropriate for large sparse matrices.\%

al
bl

V + 2*g.*(abs(phi@).”2) - mu*ones(n,1l);
g .* (phio .7~ 2);

g .* (conj(phi@) .7~ 2);
spdiags(bl,0,n,n);

-spdiags(b2,0,n,n);

(-0.5*%L2) + spdiags(al,O,n,n);
[a,b;bc,-al;

b2
b
bc
a
A

%Form a finite-difference version of the BdG equations.\%
[E vec,E] = eigs(A,175,0.01);
%Finds the 175 smallest eigenvalues of the discretised BdG equations.\%

C
C

A*E_vec - E vec*E;
max(C);

E con = C';



%E_con is a check on eigenvalue accuracy.\%

E val = diag(E,0);

end

function [P] = eig pred(g,V,mu,dx,L,x,type,gl)

%Numerically calculates the values of M''(x) and uses this to calculate theoretical
values for the eigenvalues.\%

if type == 'b'

initial = sqrt((-2*mu)/-gl)*sech(sqrt(-2*mu)*x);
disp('moose")

- 1*(g-91);

v;

nl
n2

S = 0.5%(L*n2).*((initial).”2) - 0.25*%(L*nl).*((initial).”4);

S = (-1/sqrt(-2*mu))*sum(S).*dx;

P(1) = sqrt(S);
P(2) = -sqrt(S);
elseif type == 'd'
initial = sqrt(mu/gl)*tanh(sqrt(mu)*x);
nl =g - gl;
n2 =V;
S =L*2 .* (mu"2 - initial.”2) + 0.5*L*nl .* (mu”™4 - initial.”4);
S = (1/16)*sum(S) .*dx;
P(1l) = S*(1l+sqrt(1-4/S));
P(2) = S*(1-sqrt(1-4/S));

end



Appendix B.2
function [mod u plot] = soliton gW(n,dom,t,tf,u,g,V,mu,width)

\%Function to calculate evolution of an initial u, also specify all

parameters such that input can come directly from the stationary solutions

finder (Newton-Raphson). tf allows correction to the time step for larger domains,
such the the RK4 algorithm converges dt must be less than ~ dx squared\%

tic
dx = dom/n;
X_min = -(dom/2);

X_max = (dom/2)-dx;

X = X_min:dx:x_max;
n = numel(Xx);
X = X";

%Define x grid

D = sparse(l:n,1l:n,-2*ones(1l,n),n,n);
E = sparse(2:n,1:n-1,0nes(1,n-1),n,n);
S = E+D+E"';

F = sparse([1 n],[1 n],[1 1],n,n);

%Define the finite difference matrix with Dirichlet BCs\%

L2
L2

S+ F;
L2./(dx"2)

\% Set up variables to count etc and preallocate storage matrix. dt is
timestep, kk is a counting value, t is the time solved until. dt disp is
determines when values are taken to plot.\%

dt (le-3)/tf;
kk 1;

t max = t/dt
dt disp = (1)/dt

initial width = size(u,1);
initial h = int32(t _max/dt disp);

um = zeros(initial width,initial h);
%Initialise waitbar to provide indication of progress through computation.\%

1 = waitbar(0, 'Computation in progress...');

%Run main for loop for computation.\%
tic
for m = 1:t max

%Runge-Kutta on u to get u at t + dt, the if statement takes values
every 10 timesteps to output.\%

u = rk4(u,x,dt,Vv,qg,L2,m);
if mod(m-1,dt disp)==

um(:,kk) = u;
kk = kk+1

end
%Update waitbar.\%

frac = m/t_max;
waitbar(frac)



end

close(1)
toc

%0utputs mod square of u for plotting at times t and points x.\%
mod u = abs(um).”2;

%Checks that number is conserved\%

number = sum(abs(um(:,1l:kk-1)).72)*dx;

figure

plot(number);

toc

number (end) -number(1)
mod u plot = mod u;

%Function to compute u at time m+1l, given u at time m, the time and space
steps, along with initial u at time m.\%
function utdt = rk4(utl,x,dt,V,g,L,m)

t = (m)*dt;

kl = dt*finitedifference(utl,x,V,q,L,t);

ut2 = utl + 0.5%k1;

k2 = dt*finitedifference(ut2,x,V,qg,L,t+0.5*%dt);
ut3 = utl + 0.5*%k2;

k3 = dt*finitedifference(ut3,x,V,qg,L,t+0.5*dt);
utd = utl + k3;

k4 = dt*finitedifference(ut4,x,V,qg,L, t+dt);

utdt = utl + (1/6)*(kl+ (2*k2) + (2*k3) + k4);

%Takes a given u and works out the finite difference at spatial lattice
points. Outputs this as f.\%

function f = finitedifference(u,x,V,qg,L,t)

f= -1i*((-0.5).*%(L)*u + V.*u + (g).*(abs(u).”2).*u);



