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In a complex network, edges between nodes are often distributed non-uniformly, leading to
the formation of hierarchical community structures. However, finding community structure in
dense networks has proven to be a difficult task. We study current community-finding algo-
rithms on a small but dense social network from the California Institute of Technology, formed
on www.thefacebook.com. Using knowledge of the school’s undergraduate Housing system, we assess
the capabilities of modularity-maximizing algorithms, which we find to work decently, and single-
linkage clustering, which we find to work poorly. We also propose a new agglomerative algorithm
for constructing overlapping communities using local shells, and implement methods for visualizing
overlap between communities.

INTRODUCTION

Many real-world systems in the sciences, technology,
and society can be represented by vertices linked to-
gether by edges to form a ‘complex network’. Exam-
ples include food webs, cellular and metabolic networks,
neural networks, electrical power-grids, the World-Wide
Web, the Internet, collaboration networks of research sci-
entists, social networks of acquaintances and friendships,
and more [1]. However, complex networks can be diffi-
cult to analyze due to their many components and sub-
structures [2]. Real-world networks such as these often
require analysis from a holistic point of view, as their col-
lective behavior may not be understood even given the
local properties of their individual parts. Accordingly, a
great deal of recent research has been devoted to finding
quantities that can succinctly characterize and quantify
global structures and dynamics, and to testing new de-
scriptions that might yield better representations of the
relevant internal structures [3].

Knowledge about network structure can be very use-
ful for predicting and explaining the collective behav-
iors of complex systems. For example, research in com-
plex networks has led to improved methods for vaccina-
tion [2], and has helped to explain the “small world ef-
fect”, wherein everyone in a network is linked to everyone
else via a surprisingly short number of connections [2, 4].

In a complex network, vertices represent individual
components (for instance, a person in a social network),
and the edges between them represent various interac-
tions of the components (e.g., a friendship between two
people). One important means of describing a network
is to find the communities to which individual vertices
might belong. This has led to insights into the struc-
tures of Congress [5], biological protein networks [6], and
Amazon.com shopping preferences [7]. For example, a
person’s social groups might be obtained from analyz-
ing the connections between people that he/she knows.
Intuitively, a community would contain a higher density
of internal edges than external edges to other commu-

nities. However, methods for finding and analyzing this
so-called “community structure” are typically computa-
tionally expensive, motivating the search for fast group-
ing algorithms that can reliably find hierarchical struc-
ture within networks [2, 8]. Additional complications
arise when overlaps are allowed between communities, as
community boundaries become less precise [6].

OVERVIEW

In this paper, we discuss several results obtained from
analyzing social networks from the popular college web-
site www.thefacebook.com. On the Facebook, applicants
with valid college emails create self-descriptive profiles
and create links to their friends’ profiles. As an exam-
ple, we analyze the network at the California Institute of
Technology (Caltech), notable for its longstanding under-
graduate housing system and small size (both of which
make it an ideal test network). Students choose a House
at the beginning of their first year and usually retain
membership throughout their undergraduate education.
The Housing system impacts student life enormously,
both socially and academically. We can therefore justify
using knowledge of the students’ self-identified House af-
filiations as an intuitive reference point in comparing the
results of two community finding algorithms: a modu-
larity maximization algorithm [9] and a modification of
single linkage clustering [10]. Facebook networks typ-
ically have a high density of connections [17], thereby
preventing the application of most existing algorithms
due to their prohibitively long computation time. Cal-
tech’s relatively small population helps one to examine
the computational feasibility of various community find-
ing algorithms on dense social networks. Finally, we also
propose alternative visualizations in an attempt to de-
scribe the overlapping structure between communities.
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COMMUNITY STRUCTURE

Community-Finding Algorithms There exist many al-
gorithms for finding communities within complex net-
works [11]. Some, such as the ‘betweenness’ algorithms
of Girvan and Newman [8, 12], in which the most rele-
vant links between communities are iteratively removed,
are termed ‘divisive’ algorithms because they divide the
network into smaller subsections. ‘Agglomerative’ algo-
rithms, on the other hand, form communities by joining
nodes together. Examples include single-linkage cluster-
ing [10] and modularity-based algorithms [9]. The output
of many algorithms can be visualized using a dendrogram
(a tree), in which the order of community splits/joins is
recorded by a position on a time axis, with individual
nodes positioned along the other axis.

A common example used to illustrate community
structure algorithms is the Zachary Karate Club, in
which an internal dispute led to the schism of a karate
club into the formation of two smaller clubs [13]. A plot
showing the connections between members of both clubs
is shown in Fig. 1. The Karate Club network is a useful
test case for community-finding algorithms because we
expect any calculated communities to be very similar to
the actual group memberships. In Fig. 2, we show the re-
sult of a modularity-based approach (described below) in
the form of a dendrogram. The success of the algorithm
is apparent in the two resulting branches that reflect the
actual membership of the clubs. The only exception is
member 10, who is placed in the wrong community. This
might be anticipated, as member 10 has only two con-
nections, one to each of the two clubs. One would expect
non-overlapping algorithms of this type to disagree pri-
mary over ‘peripheral-nodes’ similar to this, in which a
node’s connections connect it weakly to multiple commu-
nities.

Modularity-Maximizing Algorithm As a starting point,
we implemented the “modularity-based” approach de-
scribed in Newman [9] because of its favorable scaling
with network size. A network with n nodes can be repre-
sented with an n-by-n (unweighted) ‘adjacency matrix’,
which has a 1 in the ith row and jth column if nodes i
and j are connected, and a 0 otherwise. Modularity is
defined as

M =
∑

i

(eii − a2
i ), (1)

where eij is the fraction of edges in the network that
connect communities i and j and ai =

∑
j eij . Each eii

represents the number of edges internal to a community,
and a2

i represents the expected value of internal edges
assuming a uniform edge distribution. Thus, modularity
measures the variance in community structure from a
uniformly random graph.

Initially the algorithm starts each node in its own sep-
arate community. It then conducts a greedy search by
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FIG. 1: Plot of the members of Zachary’s Karate Club net-
work [13], using a charge-spring embedder [14], in which nodes
have been colored either red or green depending on their club
affiliation. Note that some members, such as member 10, are
weakly connected to both communities via a single connec-
tion.

273034242825263229  9 31332321191615  1  6  7 1711  5 1220  2 2218  3 10  4 13  8 14
0

5

10

15

20

25

30

FIG. 2: Dendrogram of Zachary’s Karate Club network [13]
using a modularity-maximizing algorithm to group nodes into
communities. Each line is colored red or green depending on
the club with which a particular member aligns. Lines from
nodes joined into communities are colored by the average of
the community’s membership. That the two main branches
of the dendrogram are colored almost exclusively red or green
indicates the success of the algorithm in finding the actual
communities. Member 10 is the only exception, an error that
might be expected due to the weak singular connections to
both clubs (see Fig. 1).

repeatedly joining the two communities that result in the
greatest increase in modularity until all of the commu-
nities are joined into one. The division with greatest
calculated modularity during this search is the output of
the algorithm, with run-times scaling as O(n(m + n)),
where n is the number of nodes and m the number of
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FIG. 3: Dendrogram showing the order in which nodes were
added to communities with the modularity-maximizing algo-
rithm, color-coded by self-identified House affiliation (Page:
light-blue, Lloyd: yellow, Ruddock: navy-blue, Ricketts: ma-
roon, Blacker: black, Dabney: green, Fleming: red, Avery:
purple, unidentified: grey). Areas of primarily one color
indicate strong communities within one House, while areas
of many colors indicate a non-House-based social grouping.
That many colors appear clustered horizontally demonstrates
the strong House-based communities within Caltech. How-
ever, the two spiked areas that occur in the later steps of
algorithm indicate that some students have friends more uni-
formly across Houses. Maximum modularity occurs at step
691 of 697 and is indicated by the dashed horizontal line.
This results in a division with three main communities (see
Fig. 4), while in fact there are eight undergraduate Houses,
so the algorithm seems to overlook some important structural
information. Alternative colorings of the dendrogram are also
possible, and at other colleges factors such as year and major
may be more important in determining social structures.

edges.

Fig. 3 shows a dendrogram that details the order
in which nodes in the Caltech network were joined by
the algorithm (colored by undergraduate House affilia-
tion). The regular grouping and coloring of the den-
drogram confirms our expectations that the Caltech net-
work organizes based upon House affiliation, achieving
a (reasonably high) maximum modularity of .3142 with
7 communities. Note however, that at maximum mod-
ularity (step 691 of 697) some of this structure is lost,
and despite the fact that there are eight undergraduate
Houses, the resulting division contains only three main
groups with several tiny outlier groups. Fig. 4 shows
a cartographic plot [15] of the communities at the max-
imized modularity. In this cartographic representation,
community radius and edge width encode the number
of constituent nodes and connections between communi-
ties, respectively. Communities are drawn as pie-graphs

FIG. 4: Cartographic representation of the communities
found at maximum local modularity using the modularity-
maximizing algorithm, colored as in Fig. 1, and generated
with a charge-spring embedder [14]. Community radius is de-
termined by the number of students, and colored in radial ‘pie-
graph’ sections according to the composition of self-identified
House membership. Link widths indicate the number of con-
nections between communities and are colored according to
the weighted average House-color of students that compose
the link. Grey portions of the communities are unidenti-
fied students and are most likely affiliated with the dominant
House(s) in each community. Of the four smallest communi-
ties, two are shown connected to the three primary communi-
ties, while the other two are unconnected to any other nodes
and are shown as very small circles. This coloring seems to
show the relative friendliness of the students of each House
toward each other. For example, from the Fig. one might
guess that a student from Page House (light Blue) would be
more likely to know more students from Fleming House (Red)
than any other house, while a student in Lloyd House (yellow)
might be more likely to have friends in several other Houses.

according to House composition, with edges colored by
the weighted average of relevant students‘ House colors.
It is important to note that while the House structure
is discernible from the colored dendrogram, without this
outside information it might be assumed that there ex-
ist only three main communities within the Caltech net-
work. It might be expected that the modularity maximiz-
ing approach’s speed comes with a tradeoff of decreased
structural resolution. However, it is also possible that
the increased density of the Caltech network causes the
algorithm to keep joining communities past more intu-
itive stopping points. Perhaps an alternative definition
of modularity could yield better structural divisions while
still realizing the desirable quickness of the algorithm.

Single-linkage Clustering We also implement a agglom-
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erative method using single-linkage clustering [10]. In
this algorithm, a distance measure is defined between
nodes, and each node is joined sequentially to its closest
node’s community. Each node begins in its own commu-
nity, and joins between nodes with smaller distances are
performed first. We use two similar distance metrics,

dij =
∑

k

(niknjk) (2)

dij =
∑

k

δnik,njk (3)

Each nij is the entry in ith row and jth column of the net-
work’s adjacency matrix, and δx2,x1 = 1 if x2 = x1 and
0 otherwise. Equation (2) is essentially the dot prod-
uct of the two nodes adjacency vectors; it counts the
number of connections shared. On the other hand, equa-
tion (3) counts the number of connections shared or ex-
clusively not shared. Thus δnik ,njk = 1 if and only if
nik = njk = 1 or nik = njk = 0. Fig. 5 shows the den-
drograms resulting from the two distance metrics. We
observe much less hierarchical structure than with the
modularity-based approach. While there do appear to
be small clusters which separate according to House, each
House is more evenly distributed of the dendrogram, sug-
gesting a weaker structure. The algorithm seems to have
found closely connected communities on a smaller scale
than that of the Houses. It is possible that this approach
may be better suited to large, sparser college networks
in which social groups are more widely separated from
each other and where the networks‘ size may make other
algorithms less feasible.

Overlapping Communities Most community-finding
methods constrain each node to be contained within only
one community, which is often unrealistic. Intuitively,
many nodes in real-world networks can be grouped as a
member of multiple communities. If allowed in an algo-
rithm, this would produce communities that can contain
overlapping regions. As many Caltech students are ei-
ther members of multiple Houses or often socialize and
collaborate with members of other Houses, it seems that
an approach that realizes overlap might be insightful.

We implement a recent algorithm for finding overlap-
ping communities described in Palla et al. [6]. The al-
gorithm works by finding ‘k-cliques’, defined as sets in
which every node is connected to at least k other nodes
in the set. Increasing the value of k can be interpreted as
increasing the level of connectedness within a community.
Also each k-value results in a collection of communities
that can include common nodes. However, testing the
algorithm on the Caltech Facebook social network indi-
cated that the clique-finding algorithm described in [6]
was not computationally suitable for dense social net-
works [18].
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FIG. 5: Dendrograms for single-linkage clustering using the
two distance metrics defined in equations (2) and (3). While
some large House-based groupings appear, House members
are more uniformly distributed along the dendrogram, dis-
playing a weaker House-based organization in comparison to
the modularity-based algorithm. Single-linkage clustering ap-
pears to find smaller clusters of friends with less hierarchal
structure than the modularity-based approach.

Accordingly, we propose a new method to gain in-
sight into the overlapping structure of communities while
attempting to minimize computational run-time. Re-
call that many agglomerative algorithms begin with each
node in its own separate community, which guarantees a
priori that there will be no overlap. To allow for over-
lap, while still retaining global network structure, we be-
gin each community with a central node and additional
nodes in its local neighborhood. A community-adjacency
matrix [19] is then created that encodes the number of
connections between these local communities. This ma-
trix can be used as input for an agglomerative algorithm,
such as modularity-maximization or single-linkage clus-
tering. As a given node may be initially seeded in mul-
tiple communities, the final result of an agglomerative
algorithm may now contain communities with common
nodes.

There are multiple definitions that can be used to de-
cide a local neighborhood for a given node. Conceptu-
ally, a local definition should be adjustable within some
range, to allow for a variable amount of overlap. In a
sparse matrix, one might consider the ‘l-shell’ definition
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FIG. 6: Communities of the Zachary karate club at t values 10
and 0. Communities are positioned at points on the left axis
(sorted in ascending size) and lines are drawn to membership
nodes along the right axis. Each node is assigned a unique
color based upon the community membership at t = 10, as
shown in (a). Three communities merge into two as t is de-
creased to 0 in (b). Note that nodes 1, 3, 9 and 33 are con-
tained in the intersection of both communities, demonstrating
overlap. Node 10 has switched into the other community, as
might be expected from our previous classification of its am-
biguous connection to both clubs.

of Bagrow and Bollt [16], in which a set of nodes sur-
rounding a central node is expanded to connected nodes
until the ratio of new outgoing edges to previous outgoing
edges falls below a threshold value. However, the small-
est l-shell is just the set of immediately adjacent nodes,
and in a dense network this leads to an almost entirely
filled community-adjacency matrix, which removes most
structural information. As an alternative local metric,
we use the number of triangles that include both nodes
to be a measure of the closeness between nodes. We can
then define a ‘t-shell’ about a central node, such that all
nodes contained in a t-shell will be a member of more
than t triangles that include the central node. In our al-
gorithm, overlapping communities thus have more or less
precise boundary regions, which changes with higher or
lower values of t.

While we use the modularity-maximizing algorithm
to combine communities here, in principle any agglom-
erative algorithm can be employed. To illustrate the
method, Fig. 6 displays the Zachary karate club com-
munities calculated with the maximum and minimum t
values of 0 and 10 respectively. We plot communities on
the left axis and nodes on the right, and draw a line be-
tween each community and its constituent nodes. Nodes
are colored according to their community membership at
t = tmax, in this case at t = 10, thus Fig. 6(a) con-
tains 3 communities whose membership corresponds to
the 3 branches of the dendrogram in Fig. 2. Decreas-
ing t to 0 causes two of the communities (which corre-
spond to the same club) to merge together as shown in
6(b), confirming the intuition that these two communities
are similar. Four nodes are shown as belonging to both

(a)t = 115 (b)t = 80

(c)t = 50 (d)t = 20

FIG. 7: Communities in the Caltech Facebook network at var-
ious t-values, drawn in the same manner as in Fig. 6. Lines
are colored according to the original community membership
at t = 115. We observe that while the three largest commu-
nities retain many of their original nodes, as the minimum
value of t decreases they begin to overlap with each other and
form new communities. The value of t thus controls a variable
amount of overlap.

communities, indicating that these members have more
connections that span the two clubs.

Fig. 7 shows four similar plots using the Caltech Face-
book network, calculated for t-values of 115, 80, 50, and
20. Again, lines are drawn from communities on the left
to the nodes on the right, and colored according to the
community colors of nodes in Fig. 7(a). At t = 115 (the
maximum t-value), each initial community consists of sin-
gle central node, and these are joined into the seven non-
overlapping communities described above (see Fig. 4).
As the minimum value of t decreases, these three com-
munities retain many of their nodes, although a small
percentage of nodes begin to swap communities, follow-
ing which we observe the formation of new communities
and overlap between communities. At t = 20 we observe
four large communities with large amounts of overlap.
Thus, by varying the minimum t-value we can regulate
the amount of overlap between communities.

We can plot the results over many t values as shown
in Fig. 8. We assign each community a unique color
based upon the non-overlapping division with t = tmax,
and color each node according to its community’s color.
We then vary the threshold t value from this maximum
to 0, and record the resulting communities. For each t
value, each community is colored according to the av-
erage color of its constituent nodes. We plot the color
of each node’s community vertically, or, if a node be-
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FIG. 8: Image showing the average community colors at
maximum modularity, with t values ranging from 0 to 115.
Unique initial node colors are assigned based upon community
membership with the maximum t value, resulting in a non-
overlapping structure. Nodes that belong to multiple commu-
nities are randomly assigned one community’s color and node
positions are sorted to preserve areas of common community
membership. Noting the community colors, one can track the
merging of communities at various t values, with regions of
high color variance indicating overlapping regions of distinct
membership. As the minimum t value decreases, communities
contain more nodes and their colors thus approach a homo-
geneous average. For illustrative purposes, we choose four
values of t = 115, 80, 50 and 20 (indicated by dashed vertical
lines), to demonstrate our method of displaying overlapping
structure, and show the resulting communities in Fig. 7.

longs to multiple communities, we randomly choose one
community’s color. The result shows initially distinct
communities that merge and overlap as t decreases to 0.

DISCUSSION AND CONCLUSIONS

Using the Caltech Facebook network, we were able to
assess the effectiveness of agglomerative techniques such
as modularity maximization and single-linkage cluster-
ing. We find that maximizing a network’s modularity re-
veals Caltech’s House-based social structure, though not
at maximum modularity. Subsequent work may focus on
creating a modified version of modularity which can help
highlight structural elements of different sizes. We also
present an algorithm for calculating overlapping commu-
nities and methods for visualizing overlap in networks.

Additionally we obtained a larger Facebook network
containing 100 schools of varying populations (1,000 -
55,000) and connections between schools, which we have
not had time to analyze. We plan to continue researching
this larger network both to assess and improve the per-
formances of community-finding algorithms and to make
comparisons of schools’ social structures that may be rel-
evant to prospective students.
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