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ABSTRACT

This dissertation is concerned with the study of solitary wave structures in Quasi

1D Bose Einstein condensates(BEC). Here we study the exist and stability proper-

ties of bright and dark matter wave solitons in the presence of a piecewise constant

nonlinearity. This work largely is an duplication of results presented in [2] as well

as following to a limited degree some of the extensions suggested there in. The cal-

culations performed in this dissertation, in the context of Hamiltonian perturbation

theory and the numerical simulations which accompany them are my own independent

calculations although the results are presented in [2]. We also make some suggestions

for methods which extend the work given in [2].
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1. INTRODUCTION AND FORMULATION OF THE MODEL

In 1925 Satyendra Nath Bose discovered bose statistics (with application to photons)

which determine the distribution of the number of indistinguishable bosons (This is

a fundamental type of particle, the other being a fermion. Any number of bosons can

occupy a given state at the same time where as only one fermion at can occupy a

given state at a time) in each state over a given energy range in thermal equilibrium

[13]. Bose communicated his work to Albert Einstein who applied the statistics to

atoms and found that if the atoms were bosons too then at a critical temperature Tc

near absolute zero (0K where K is the unit of Kelvin’s) all the atoms collapsed into

the same ground state (hence the atoms have the same ground state energy).This was

the discovery of a new state of matter which is called a Bose-Einstein Condensate

(BEC).

Seventy years later in 1995 Eric Cornell and Carl Wieman from the University of

Colorado in Boulder produced one of the first BECs using a gas of rubidium atoms

[8] at the NIST/JILA lab. Also in that same year BECs were produced with sodium

atoms and Lithium atoms [8].

The theoretical study of BECs takes place within the framework of Quantum field

theory. The model which is formulated in this framework using the mean field ap-

proximation introduced by Bogoliubov in 1947 is the Gross-Pitaevskii (GP) equation

[8]. The GP equation is a variant of the nonlinear Schrodinger equation were the

nonlinearity term is introduced by taking into account the interatomic interactions

in the formulation of the model. The strength of the nonlinearity is governed by the

s-wave scattering length ( this is the length scale in which the interaction potential

looks spherically symmetric to leading order [11]) and the interactions can be either

attractive or repulsive depending on whether the s-wave scatter length is negative or

positive [2]. These types of interactions lead to the formation of solitary wave struc-

tures (which I will call solitons, but technically they are not the same)in the BEC

which in the regime with attractive interactions, create bright matter wave solitons
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and repulsive interactions create dark matter wave solitons(I simply refer to matter

wave solitons as solitons in the following discussions) respectively.

These interactions which cause the nonlinear dynamics of the BEC can be con-

trolled and manipulated with experimental tools such as the confining magnetic trap

of the BEC or optical Feshbach resonances [2]. Both temporally and spatially (col-

lisionally inhomogeneous) dependent methods of manipulating the interactions have

been employed and it is the later which was studied in [2] for the particular case

of a piece-wise constant nonlinearity (See [2] for a description of the possible exper-

imental setup for this type of nonlinearity). There they gave the bright and dark

soliton profiles initially for a collisionally homogenous BEC(constant nonlinearity)

and then introduced the piecewise constant term as a perturbation of the original

integrable equation. They then determined the stability/instability of the respective

perturbed solutions within the frame work of Hamiltonian perturbation theory and

then confirmed their finds with linear stability analysis and direct numerical simula-

tions. They also gave a method to semi analytically stitch a bright solition with the

view of obtaining analytical results as opposed to just numerical simulations.

The outline of this dissertation is as follows. First we shall formulate the full 3D

model following the details given in [8]. Then we shall reduce the dimension of the full

3D model to a Quasi 1D limit following the reasoning given in [3].Then we introduce

the piecewise constant nonlinearity and find the bright and dark matter wave soliton

solutions of which only the results and not the details are given in [2]. Then we shall

give the stitching method for bright solitons from [2] and the suggest a correspond-

ing method for dark solitons. Next we reproduce the stability analysis(Hamiltonian

perturbation theory and suggest a way to solve the BdG equations in Matlab) results

given in [2]. Follow the derivation of the extended periodic solutions to the Quasi 1D

GP equation as in [1]. Finally, we suggest a method for the stitching of attractive

elliptic function solutions and then present the conclusions and possible extensions

1.1 Formulation of the model

A BEC contains millions of particles [1] and this results in a formidable many-body

problem in which tens of thousands of interactions take place for each particle. This

is an intractable problem to solve due to the number of particles present if we used
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linear quantum mechanics. In order to overcome this issue, we consider all the inter-

actions that a single particle experiences and replace these with an effective interac-

tion. This assumption of the validity in replacing the many interaction experienced

by a single particle with an effective interaction makes the analysis tractable. The

fundamental equation in the study of BECs which we need to solve parallels the

role of the Schrodinger equation in linear quantum mechanics it is called the Gross-

Pitaveski(GP) equation. The GP equation governs the evolution of the macroscopic

wave function ϕ(r, t)1(in this case the amplitude of the macroscopic wave function

gives particle density at a point in space, instead of a probability density of being a

particular point in space as in quantum mechanics)which allows us to determine all of

the dynamical quantities of interested for a BEC such as the momentum distribution,

energy distribution etc as well as the stability/instability of nonlinear wave structures

induced in the BEC.

BECs can be treated as a quantum field [1] so an appropriate framework in which

we will work is that of Quantum field theory (QFT). This is an efficient choice because

QFT can easily handle systems with an infinite number of particles and so is a general

framework suitable for larger sizes of BECs as well as ours.

When deriving the evolution equation for a dynamical system such as a BEC we

start by writing down the Hamiltonian of the system (which represents the energy

contained in the BEC considered in this dissertation) which is given in equation (1.1)

Ĥ =
∫
drφ̂(r, t)

′
Ĥ0φ̂(r, t) +

1

2

∫
drdr

′
φ̂(r, t)

′
φ̂(r

′
, t)
′
V (r− r

′
)φ̂(r

′
, t))φ̂(r, t)

(1.1)

where H0 = (h̄2/2m)∇2+Vext(r, t) is the single particle Hamiltonian(with external

trapping potential Vext(r, t) and V (r− r
′
) is the single particle interatomic potential.

We can interpret equation (1.1) as the ’sum’ of the Hamiltonians and interactions of

all the particles in the BEC. Equation (1.1) is not a ordinary sum because we are

treating the collection of particles of the BEC as a field instead of the aggregate of

single particles.

If we now assume that the temperature of the gas is well below the critical tem-

perature Tc, a significant fraction of the particles will be in the same ground state

1 r is a three dimensional spatial variable and t is time
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i.e. the BEC constitutes a significant volume of the condensed gas and there will be

a negligible volume of particles still excited and forming an enveloping gas cloud. In

1947 Bogoliubov used this idea of a central core of particles making up the BEC with

a negligible surrounding gas cloud in the construction of a zeroth order mean field

approximation of a BEC by making the assumption that the bosonic field operator

φ̂(r, t) (which creates a state with wave function φ(r, t) out of the vacuum [11] ) in

this regime could be written as in (1.2)

φ̂(r, t) =
〈
φ̂(r, t)

〉
+ φ̂(r, t)

′
(1.2)

where the first term on the right of equation (1.2) is the mean field approximation

which for convenience we will just write as φ(r, t) and can be thought of as the mean

number of particles in a state with wave function φ(r, t)(The second term on the

right in equation (1.2) is the bosnic field operator which creates the excited states

in the enveloping gas cloud around the BEC).The interpretation of the macroscopic

wave function(I will refer to it simply as the wave function of the BEC ) is different

from that of linear quantum mechanics. Here |φ(r, t))|2 should be interpreted as the

particle density at (r, t) as opposed the probability of finding a particle there at time t.

Now we consider an important constraint which follows from this is the conservation

of particle number in the BEC. This is given below in (1.3) and has been normalized

for convenience [1] ∫
Ω
dr |φ(r, t))|2 = 1 (1.3)

Where Ω is the region of space occupied by the BEC. The next step is to consider

the evolution equation for (1.2) in the Heisenberg picture. This evolution equation is

given in equation (1.4)

ih̄
∂φ̂(r, t)

∂t
= [φ̂(r, t), Ĥ] (1.4)

Where [∗, ∗] is the commutator which has the property that for two field operators

Â, B̂ [Â, B̂] = ÂB̂ − B̂Â and h̄ = h/2π where h is Planck’s constant. If we then

substitute (1.1) into (1.4) and simplify we arrive at (1.5) [8]

ih̄
∂ ˆφ(r, t)

∂t
=
[
Ĥ0 +

∫
dr
′ ˆφ(r, t)′V (r− r

′
) ˆφ(r′ , t))

]
ˆφ(r, t) (1.5)
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As the BEC is dilute and ultra cold we can reasonably assume that the majority of

interactions will be two bodied with very low energy. Therefore we can use a delta

function V (r − r
′
) = gδ(r − r

′
) to represent the interaction potential in a two body

collision where r is the position vector of one of the particles involved in the collision

and r
′

is the position vector of the other particle. If r 6= r
′

then V = 0 and there

is no interaction where as if r = r
′

then V = g i.e. g represents the strength of

the interaction. The constant g is given by g = 4πh̄2a/m where a is the s-wave

scattering length, and m is the mass of the particles. The sign of a and hence the

sign of the constant g determines whether an interaction is attractive (g < 0) or

repulsive (g > 0) and hence determines the nonlinear dynamics of a BEC. Using the

delta function interaction potential and the mean field approximation (1.2) we get

to zeroth order the following model for a BEC called the 3D Gross-Pitaveskii(GP)

equation

ih̄
∂φ(r, t)

∂t
= − h̄2

2m
∇2φ(r, t) + Vext(r)φ(r, t) + g |φ(r, t)|2 φ(r, t) (1.6)

1.2 Quasi 1D Model

The external trapping potential Vext(r, t) is used to confine and manipulate the be-

havior of a BEC(which could be an electric or magnetic field whose geometry can be

manipulated to change the dynamics of a BEC ). Here we consider the first type of

trap used on BECs in 1995 which were the magnetic traps and the external potential

has the form [3].

Vext(r, t) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (1.7)

This is a harmonic oscillator type potential and the three harmonic confining frequen-

cies ωx, ωy and ωz are in general different and can be varied to set the length scales

and hence the physical size of a BEC. These experimentally fixed length scales are

called characteristic length scales and are given by ai =
√
h̄2/mωi where i = x, y, z[3].

Another important length scale involved with BECs is the healing length ξ. This is

the distance over which the density of a BEC grows from 0 to ρ.If we are in a regime

in which the confining frequencies are such that ωx = ωy = ωr >> ωz( r is the radial

distance in the xy plane from the origin)and the transverse oscillator length is such
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that ax,y < ξ, then the density of the BEC in the transverse directions is bounded

by ρ and is much smaller than density variations in the remaining z direction. We

therefore have a tightly constrained condensate along the z axis which is a ’cigar’

shaped BEC. This is not a true 1D regime since the density variation in the trans-

verse directions is not zero. We therefore refer to this model as a Quasi 1D model

[3].

To demonstrate how we obtain the quasi 1d model, we decompose the 3D wave

function as follows[3] (using polar variable r as instead of x, y for simplicity)

φ(r, t) = ψ(z, t)ϕ(r, t) (1.8)

The second factor in equation (1.8) is given by ϕ(r, t) = ϕ0(r)eiµt which is the steady

transverse wave function where µ is the chemical potential(this is defined to be the rate

of change of the Gibbs function with respect to the change in the number of moles of

a particular constituent[12] ) of the BEC. The steady transverse wave function ϕ(r, t)

also satisfies the auxiliary 2D harmonic oscillator problem

h̄2

2m
∇2
rϕ0 −

1

2
mω2

rr
2ϕ0 + µϕ0 = 0 (1.9)

where ∇2
r = (1/r)∂/∂r(r∂/∂r).The steady transverse wave function ϕ(r, t) is always

in the ground state since the regime is quasi 1D, so the ground state solution of (1.8)

is ϕ(r, t) = π−1/2a−1
r e−r

2/2a2
r+iµt[3]. Now we substitute equation (1.8) into (1.6) to get

equation (1.10)

ih̄ϕ
∂ψ

∂t
+ ih̄ψ

∂ϕ

∂t
= − h̄2

2m

∂2ψ

∂z2
− h̄2

2m
ψ∇2

rϕ+ Vextψϕ+ g |ψ|2 |ϕ|2 ψϕ (1.10)

Note that in equation(1.10) we have split the Laplacian up as ∇2 = ∂2/∂z2 +∇2
r.If

we use the ground state wave function of equation (1.9) in equation (1.10) and then

multiply by its complex conjugate ϕ(r, t)∗(this cancels factors of eiµt in each term)

we can integrate with respect to r from 0 to ∞ to obtain the Quasi 1D model given

by equation (1.11)[3]

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂z2
+ Vextψ + g1D |ψ|2 ψ (1.11)

where g1D = g/2πa2
r = 2ah̄ωr(remember that g = 4πh̄2a/m ) and Vext(z) = (1/2m)ω2

zz
2.

This reduction is also valid for many other types of potentials (such as elliptic func-

tion potentials [4]) and leads to the same quasi 1D model. We shall assume here from
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this point onwards that we have constant external potential and in such a case we can

then take Vext(z) = 0.We make this assumption in order to be able to study solutions

of the Quasi 1D model in the presence of a piecewise constant nonlinearity without

any other mechanisms influencing the dynamics such as a nonzero potential(we can

introduce a potential after the analysis of the regime without it).

1.3 NonDimensionalisation

Now we generalize the collisionally homogenous s-wave scattering length which we

now denote by a0 so that it can be spatially dependent i.e. a = a(z). As a result, the

nonlinearity coefficient in equation (1.11) becomes spatially dependent (we also drop

the subscript 1D on g1D and just write it as g). Now we nondimensionalise the Quasi

1D model by rescaling z, t and the wave function ψ such that z = arz̃,t = ω−1
r t̃ and

ψ =
√

2 |a0|ψ̃. Then equation (1.11) reduces to the form (1.12) after dropping tildes

i
∂ψ

∂t
= −1

2

∂2ψ

∂z2
+ g |ψ|2 ψ (1.12)

Where the nonlinearity coefficient (which we have assumed can be spatially depen-

dent) is given by g(z) = a(z)/a0. If g < 0 then we have an attractive BEC and if

g > 0 we have a repulsive BEC. Note that as a result of this nondimensionalisation, if

we have a collisionally homogenous attractive/repulsive BEC which s-wave scattering

length ∓a0, the nonlinearity coefficient becomes g(z) = ∓a0/a0 = ∓1.



2. INTEGRABILITY AND HAMILTONIAN STRUCTURE OF
THE QUASI 1D MODEL

For constant g equation (1.12) is integrable which means that it can be completely

integrated twice to yield a closed form solution. Equation (1.12) is equivalent to the

variational problem of extremising the integral in (2.1) which is the Hamiltonian for

a collisonally homogeneous BEC. This indicates that equation (1.12) with constant g

has a Hamiltonian structure [2].

H =
1

2

∫ ∞
−∞

(|∂zψ|2 + g |ψ|2)dz (2.1)

The new contribution made in [2] is the introduction of a spatially piecewise

constant g(z). The nonlinearity coefficient g in this case has the form g(z) = g0 +

∆g(z) (we show the form of ∆g(z) in fig(2.1)) given in equation (2.2)

∆g(z) = ∆g0

n=∞∑
n=−∞

(Θ(z − [nL+ L1])−Θ(z − [n+ 1]L)) (2.2)

where g0 is the homogeneous nonlinearity coefficient, ∆g0 = g1 − g0 is the in homo-

geneity strength, L1 and L are the spatial periods(which for numerical simulations

we take to be L1 = 2 and L = 4) which determines which value for the nonlinearity

coefficient g is used in each region, and Θ is the Heaviside side step function. For

convenience in later discussions I also state in equation (2.3) the 1D GP equation

with a piecewise constant nonlinearity given by g(z) = g0 + ∆g(z).

i
∂ψ

∂t
= −1

2

∂2ψ

∂z2
+ g(z) |ψ|2 ψ (2.3)

The introduction of this piecewise constant g(z) destroys the integrability of equa-

tion (1.12). However since the result perturbations induced by equation (2.2) are also

equivalent to the variational problem associated with (2.4) for bright solitons and
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(2.5) for dark solitons

H1 =
∫ ∞
−∞

∆g(z)

2∆g0

|ψ|4 dz (2.4)

H1 =
∫ ∞
−∞

∆g(z)

4∆g0

(|η|4 − |ψ|4)dz (2.5)

Where ε = ∆g0,the perturbations are also Hamiltonian and so we can find conditions

under which localized bright( these are associated with attractive BECs with nonlin-

earity coefficient g=-1) and dark soliton (these are associated with repulsive BECs

with nonlinearity coefficient g=+1) solutions of the unperturbed equation (1.12) per-

sist under the induced perturbation caused by (2.2) [2].

and Settings/Thomas Mooney/My Documents/MATLAB/deltag.jpg

Fig. 2.1: The piecewise constant nonlinearity

.



3. PHASE PLANE ANALYSIS AND SOLITON SOLUTIONS

We now construct the phase plane of the Quasi 1-D model with stationary solutions

given by ψ(z, t) = f(z)eiµt. We are interested in stationary solutions because when

these are linearly stable they provide structures (solitary waves) that would have

potential applications, such as in the construction of atom lasers [2]. Substituting the

stationary solution ansatz ψ(z, t) = f(z)eiµt into equation (1.12)and cancelling the

exponentials we arrive at equation (3.1)(when we also include boundary conditions

with equation (3.1) we have a standing wave equation and solving this is equivalent

to determining the stationary solutions of the corresponding time dependent equation

(1.12))

d2f

dz2
= 2µf + gf 3 (3.1)

If we set p = df
dz

then equation (3.1) reduces to the first order system

d

dz

(
f
p

)
=

(
p

2µf + 2gf 3

)
(3.2)

The critical points of this system are (0, 0) and (0,±
√
µ/g). The linearized systems

can be straightforwardly found by using the substitutions f = η, p = ν for the critical

point (0, 0) and f = η ±
√
µ/g, p = ν for the critical point (0,±

√
µ/g) then we keep

only the leading order terms. We are then left with a 2 × 2 stability matrix system

Ax = b and in each case we proceed to find the eigenvalues of A. Depending on their

type (i.e. real and distinct, pure imaginary) the critical points can have a number of

different stability properties i.e. they could be saddles, centres, nodes etc. I carried

out this procedure and I show the phase portrait for negative nonlinearity only in fig

(3.1)

As we can see there are both periodic and aperiodic solutions. The aperiodic

solutions are both spatially stable and unstable and as we shall see these correspond

to localized soliton solutions. Then there are the periodic solutions which are not
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and Settings/Thomas Mooney/My Documents/MATLAB/sech portrait.jpg

Fig. 3.1: The phase portrait for solutions of the Quasi 1D GP equation with negative non-
linearity

localized i.e. extended spatially, and these as we shall see are expressible as Jacobi

elliptic functions. We shall derive these solutions systematically. What determine’s

each of them are the initial conditions and boundary conditions because different

initial conditions put us on one of the trajectories shown in the phase portraits.

3.1 Soliton Solutions

In the following subsections we derive the bright and dark soliton solutions for at-

tractive (g < 0) and repulsive BECs (g > 0) as well as the corresponding stationary

solutions to equation (1.12). I am reproducing the solutions given in [2] although the

details are not given there and I am performing the calculations myself.

3.1.1 Bright Soliton Solutions

For collisionally homogenous attractive BECs the nonlinearity coefficent may be taken

as g = −1.The equation we then need to solve is

d2f

dz2
= 2µf − 2f 3 (3.3)
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With associated boundary conditions given by f(z)→ 0 as z → ±∞. Multiply (3.3)

by df
dz

and then integrating gives eqn (3.4)(
df

dz

)2

= −(ηf)2 − 1

2
f 4 + f0 (3.4)

Where η2 = −2µ and f0 is a constant of integration. The boundary conditions imply

the additional property that df(z)
dz
→ 0 as z → ±∞ and so by applying this condition

and the boundary conditions we see that f0 = 0. Then if we rearrange the resulting

equation and take the integral we obtain equation (3.5)∫
dz =

∫ df

f
√
η2 − f 2

(3.5)

To transform the integrand of equation (3.5) to a form that is readily integrable we

can use the substitution f = ηsechx. Equation (3.5) then leads to equation (3.6)

z − z0 = −x
η

(3.6)

Although we have used the boundary conditions already to determine f0, is lo-

calized and so the soliton is automatically zero at infinity. Therefore we may leave

the second constant of integration unknown as it is arbitrary. This is due to this

property of being localized (This second constant of integration z0 can play the role

of the centre of the bright soliton). Finally, inverting the transformation f = ηsechx

leads us to the bright soliton solution in equation (3.7)

f(z) = ηsechη(z − z0) (3.7)

which satisfies the boundary conditions and equation (3.3).In addition a last step

we attach back the time dependence factor eiµt and the time dependent solution to

equation(1.12) is equation (3.8)

ψ(z, t) = ηsech [η(z− z0)] eiµt (3.8)

3.1.2 Dark Soliton Solutions

Repulsive BECs are associated with a positive nonlinearity coefficient which can be

set to g = +1.The equation we need to solve in this regime is equation (3.9)

d2f

dz2
= 2µf + 2f 3 (3.9)
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With associated boundary conditions given by f(z) → ±η as z → ±∞ (again there

is the implication that df(z)/dz → 0 as z → ±∞) and the transformation used to

evaluate the resulting integral is f = η tanhx. Here η2 = µ. The resulting dark

soliton solution to equation (3.9) and which satisfies the boundary conditions is given

in equation

f(z) = ηtanhη(z − z0) (3.10)

Again we can find the stationary solution to equation (1.12) by attaching the

factor eiµt to equation (3.10) which leads to equation (3.11)

ψ(z, t) = η tanh(η [z − z0])eiµt (3.11)



4. STABILITY ANALYSIS OF SOLITON SOLUTIONS

4.1 Stability of perturbed bright solitons solutions via Hamiltonian
perturbation theory

The stationary bright soliton solution of equation (1.12) was found in section (3.1).

It will remain a solution of perturbed equation (2.3) if it is an extremum/critical

point of the perturbation Hamiltonian H1 given in equation (2.4)[2]. The perturbed

solution will be an extremum/critical point of (2.4) if it is located at the centre of

a region with nonlinearity coefficient g0 or g1 where g1(g1 < 0) (we haven’t fixed

g1 yet but we will do so for numerical simulations)[2]. The numerical solutions to

equation (2.3) are given in the next section in figures () and (). Now that we know

the conditions under which we the soliton solution of equation (1.12) survives, the

next step is to find the stationary solutions to equation (2.3). We have to find the

solutions to equation(2.3) numerically as it is not integrable due to the introduction

of the aforementioned perturbation given in (2.4)[2].

Now we consider whether numerical solutions to equation (2.4) are stable or unsta-

ble and what type of instability (i.e. exponential growth, oscillatory instability etc) is

present if they are unstable. If we consider equation (0.12) with constant nonlinearity

and apply the following transformations to z and ψ(which are called translational and

gauge transformations)

z → z
′
+ a (4.1)

ψ → eiφψ
′

(4.2)

Where a is a constant, we find that it is invariant under both these transformations

(i.e. these are symmetries of equation (1.12) with constant nonlinearity), that is

i
∂ψ

∂t
= −1

2

∂2ψ

∂z2
+ g |ψ|2 ψ → i

∂ψ
′

∂t
= −1

2

∂2ψ
′

∂z′2
+ g

′
∣∣∣ψ′∣∣∣2 ψ′ (4.3)

When we introduce the perturbation given by equation (2.2) we break the transla-

tional symmetry (as (2.2) is not translationally invariant for all translations along
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the z axis). The gauge symmetry corresponding to the invariance of equation (1.12)

under the transformation (4.2) is preserved even after the introduction of the per-

turbation (2.2) and so this will not affect the stability/instability of the numerical

solutions as all the eigenvalues related to this symmetry remain zero [2].Instability

can only arise in our numerical solutions to equation (2.3) if we break the symmetry

corresponding to (4.2)[2]. After the breaking of this symmetry, instability will arise

if there are translational eigenvalues() with nonzero imaginary part i.e. im() 6= 0.

These translational eigenvalues are related to the eigenfrequencies of equation (2.3)

through the relation ω2 = −λ2[2].We will investigate the stability of the perturbed

solitons by locating the eigenfrequencies (find the eigenfrequencies indicates if there

are unstable eigenmodes in the Fourier decomposition of the soliton) which we will

display in the spectral plane(the spectral plane is where the eigenfrequencies of a

PDE/system of PDEs are located and spectral planes are used in the stability analy-

sis of such equations)of equation(2.3) with [2].However, if all the eigenfrequencies for

equation(2.3) have zero imaginary part then the numerical solution will be stable and

we expect that all the eigenfrequencies to lie on the real line in the spectral plane[2].

We take advantage of the fact that equation (2.3) is Hamiltonian so that we can use

the framework of Hamiltonian perturbation theory to determine the eigenfrequencies

and hence the stability/instability of the perturbed soliton solutions.

To start with ω is determined in the case of attractive BECs from equation (4.4)[2]

det(εM− ω2D) = 0 (4.4)

The matrices M and D have the following structure

M =

(
∂
∂z0

〈
δH1

δψ∗
, ∂ψ
∂z0

〉
0

0 0

)
(4.5)

D =

 〈
∂ψ
∂z
,−zψ

〉
0

0 −
〈
ψ, ∂ψ

∂η

〉  (4.6)

Where 〈∗, ∗〉 is the inner product given by

〈f, g〉 =
∫ ∞
−∞

f ∗gdz (4.7)

and δH1/δφ
∗ is a functional derivative given by[9]

δH1

δψ∗
=

∂F

∂ψ∗
− d

dz

(
∂F

∂(∂zψ)

)
+ ... (4.8)
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where we take F to be the integrand of the perturbation Hamiltonian given by (2.4).

The two terms of D can be easily calculated (I reproduced the calculations here for

d11 and d22 which are given in the appendix. My calculation of d22 led to the discovery

of an error in an intermediate equation in [2] although the final result is the same

once the correct intermediate equation is used.) and the results are d11 = η and

d22 = −1/η. We give the details for m11 as this is not obvious to integrate. Firstly

the functional derivative of the integrand of (2.4) is (we treat the fields ψ and ψ∗ as

though they were ordinary variables in order to calculate the functional derivative)

F =
n=∞∑
n=−∞

(Θ(z − (nL+ L1))−Θ(z − (n+ 1)L))ψψ∗ψ (4.9)

and the partial derivative of equation (3.8) with respect to the center z0 is

∂ψ

∂z0

= η2sech[η(z − z0)] tanh[η(z − z0)]eiµt

(4.10)

Substituting (4.9) and (4.10) into the inner product (4.7) and interchanging the order

of summation and integration (we assume this is valid) we find

〈
δH1

δψ∗
,
∂ψ

∂z0

〉
=

n=∞∑
n=−∞

∫ ∞
−∞

(Θ(z − (nL+ L1))− ... (4.11)

Θ(z − (n+ 1)L))η5sech4[η(z − z0)] tanh[η(z − z0)]dz =

η5
n=∞∑
n=−∞

∫ ∞
nL+L1

sech4[η(z − z0)] tanh[η(z − z0)]dz −

∫ ∞
(n+1)L

sech4[η(z − z0)] tanh[η(z − z0)]dz

where we have used the property of the Heaviside step function Θ(x) = 1 for x ≥ 0

and Θ(x) = 0 for x< 0. We then integrate this and take the partial derivative with

respect to z0 inside the summation sign. The result can be rewritten as in [2] and the

final result is

m11 = −η5
n=∞∑
n=−∞

sech5[η((n+ 1)L− z0)] sinh[η((n+ 1)L− z0)]−



4. Stability Analysis of Soliton Solutions 22

(4.12)

sech5[η(nL + L1 − z0)] sinh[η(nL + L1 − z0)]

Using the values of the matrices M and D just calculated, we find that to leading

order the eigenfrequencies of the perturbed soliton are given by

εm11 − ω2η = 0 (4.13)

According to [2] the series in (4.13) converges rapidly due to the exponential factors

in the terms of the series so we only need to consider the terms for which n = −1, 0, 1

and these give results accurate to 10 decimal places. Carrying out this calculation in

Matlab (for parameter values µ = −1.0 and ∆g0 = −0.5 as given in [1], and where

the bright soliton is centered at a maximum of piecewise nonlinearity) shows that

there are in fact a pair of eigenfrequencies which are complex conjugates to each

other. Their imaginary part is given by Im(ω) = ±0.3973 which shows that this

configuration is unstable. When the bright soliton is centered in a region of minimum

piecewise nonlinearity with ∆g = +0.5 and µ = −1.0, Im(ω) = 0 and hence this

configuration is stable.

4.1.1 Dark soliton solutions

A necessary condition for the dark soliton solution to equation (1.12) to survive this

perturbation, the following integral must vanish [2](this is the analogous condition

that the condition that the bright soliton solution remains an extremum/critical point

of (2.4)[4] )

M
′
(s) =

1

2

∫ ∞
−∞

d∆g(z)

dz
[η4 − ψ4(z − s)]dz (4.14)

where ψ(z−s) is the dark soliton solution to (1.12) which has been translated to z = s

in equation (4.14).This requirement is equivalent to the condition of the perturbed

solution being centered in a region with nonlinearity coefficient g0 or g1[2].Solving

equation (4.14) for s (which gives two roots as there are just two different types of

regions) we then proceed to determine the sign of εM
′′
(s), where ε = ∆g0(in homo-

geneity strength) and M
′′
(s) is the derivative of (4.14) with respect to s. The follow-

ing cases are possible with the respective type of instability. Firstly if εM
′′
(s) > 0
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then there is instability and exactly one eigenfrequency quartet (four eigenvalues with

nonzero imaginary part) and secondly if εM
′′
(s) < 0 then there is again instability

but this time there is one eigenfrequency pair[2] (two eigenvalues with nonzero imag-

inary part).These conditions are related to the eigenvalues again through the relation

ω2 = −λ2. We can calculate the leading order eigenfrequencies using equation [2]

(4.15)

ω2 − iεM
′′
(s0)

8
ω +

εM
′′
(s0)

16
= 0 (4.15)

where s0 = s1, s2 are the roots of M
′
(s) = 0 and we have used the relation ω2 = −λ2

to transform the equivalent equation in [2] to the one given in (4.15). Now we will

calculate the roots of M
′
(s).The calculation given here duplicates the results that

were presented in [2]. Equation (4.14) becomes, noting that the derivative of the

Heaviside step function is the delta function (Θ
′
(z) = δ(z))

M
′
(s) =

∆g0

2

n=∞∑
n=−∞

∫ ∞
−∞

δ(z − (nL1 + L))− δ(z − (n+ 1)L)[η4 − ψ4(z − s)]dz

=
∆g0

2

n=∞∑
n=−∞

[η4 − ψ4(nL1 + L− s)]− [η4 − ψ4((n+ 1)L− s)]

=
η4∆g0

2

n=∞∑
n=−∞

tanh[η(nL1 + L− s− z0)]− tanh[η((n+ 1)L− s− z0)](4.16)

Now M
′
(s0) = 0 if and only if s + z0 = nL + L/2 + L1/2 (just set the general term

in (4.14) equal to zero and solve for s + z0 for all n to find the roots). Also we

know that the solution needs to centered at that center of a region with nonlinearity

coefficient g0 or g1 so we need to take z0 = −L1/2 or z0 = −L/2 . Hence the roots

are s1 = nL+L/2 +L1 and s2 = nL+L1/2.Next we find the first derivative of (4.14)

with respect to z and then evaluate it at these roots. So the first derivative of (4.14)

is

M
′′
(s) =

∆g0

2

n=∞∑
n=−∞

∫ ∞
−∞

δ(z − (nL1 + L))− ..

δ(z − (n+ 1)L)

(
−4ψ3(z − s)∂ψ

∂s

)
dz
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= −20

n=∞∑
n=−∞

∫ ∞
−∞

δ(z − (nL1 + L))− ..

δ(z − (n+ 1)L) tanh3 η(z − s− z0)sech2η(z − s− z0)dz

= −2∆g0

n=∞∑
n=−∞

tanh3 η(nL+ L1 − s− z0)sech2η(nL+ L1 − s− z0)−

tanh3 η((n+ 1)L− s− z0)sech2η((n + 1)L− s− z0)

Now we can use the two roots of M ′(s) found before to determine M
′′
(s1,2) which

are (in order to simply the result we use the hyperbolic identity 1− sech2z = tanh2 z)

M
′′
(s1) = 4η5

p=∞∑
p=−∞

tanh3 η(pL+ L1/2)− tanh5 η(pL+ L1/2) (4.17)

M
′′
(s2) = 4η5

p=∞∑
p=−∞

tanh3 η(pL+ 2L1)− tanh5 η(pL+ 2L1)

(4.18)

4.2 Bogoliubov linear stability analysis of Soliton solutions

In this section we introduce Bogoliubov de Gennes linear stability analysis in order

to confirm the results of our calculations previously via Hamiltonian perturbation

theory and also so that we can analyze the stability of elliptic function solutions

given later (We cannot use the Hamiltonian perturbation theory that we used for

perturbed soliton solutions as that used the assumption that the solution to (1.12)

with constant g was localised ). This results in the Bogoliubov de Gennes (BdG)

equations which provide us with two ordinary coupled differential equations for the

eigenmodes u and v and the eigenfrequencies ω. To obtain the BdG equations we

add an order ε perturbation to the ground state solution (solitonic, extend periodic

or a general ground state solution) of equation (1.12) with constant nonlinearity and

this results in the perturbed wave function given in equation (for solitons we know

that this perturbed wave function is again either a bright or dark soliton with the

perturbation that we use) (4.19)

ψ(z, t) = ψ0(z)eiµt + ε(u(z)ei(−ω+µ)t + v∗(z)ei(ω
∗+µ)t) (4.19)
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Then substitute equation (4.19) into equation (1.12) and take the leading order terms

in ε and this gives us the BdG equations for a general ground state ψ0 [3](
−1

2

d2

dz2
− µ− 2g(z)ψ2

0

)
u− g(z)ψ2

0v = ωu (4.20)(
−1

2

d2

dz2
− µ− 2g(z)ψ2

0

)
v − g(z)ψ2

0u = −ωv (4.21)

Discretising equations (4.20) and (4.21) get equations (4.22) and (4.23)

−1

2

ui+1 − 2ui + ui−1

δz2
− µui − 2g(zi)ψ0(zi)

2ui − g(zi)ψ0(zi)
2vi = ωui (4.22)

−1

2

vi+1 − 2vi + vi−1

δz2
− µvi − 2g(zi)ψ0(zi)

2vi − g(zi)ψ0(zi)
2ui = −ωvi (4.23)

where δz is the spatial step size. We can rewrite the discretized system (4.22) and

(4.23) as a matrix equation Ax = ωb where x has components ui and vi and then

solve for the eigenfrequencies ω which are eigenvalues of the system. To do this we

would have used the Matlab function eig.

4.3 Numerical simulations Soliton solutions

In this section we show the numerical simulations performed with matlab for bright

and dark solitons. The numerical simulations show that the analytical predictions

for the eigenvalues agree with the observed behavour and also the type of instability

predicted. In fig (4.1) we see the onset of an oscillating instability at approximately

the same time in the simulation as that given in [2](t ≥ 80). In fig (4.2) we see again,

agreement with the results given in [2]. Hamilitonian perturbation theory predicted

that this solution would be stable and the numerical simulations confirm this at least

up to the time the simulation was run. In fig (4.3) we again see instability which

is again in agreement with [2] although here we have not explicitly calculated the

eigenfrequencies.
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and Settings/Thomas Mooney/My Documents/MATLAB/sechoscillation.jpg

Fig. 4.1: Contour plot showing the oscillational instability of the stitched bright soliton
solution of equation (2.3) centered in a region with maximum nonlinearity as it
evolves. The parameters are the same as given in [2] but the scales are different.
It can be seen the instability sets in a approximately the same time as that given
in [2] which was t ≥ 80

and Settings/Thomas Mooney/My Documents/MATLAB/sechstable.jpg

Fig. 4.2: plot of the evolution of stitched bright solition centered in a region with a minimum
nonlinearity
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and Settings/Thomas Mooney/My Documents/MATLAB/tanhoscillation.jpg

Fig. 4.3: Contour plot of a stitched dark soliton. We can see that again in this case the
predicted instability sets in and is of the type suggested by the eigenfrequencies i.e.
oscillating an instability. The parameter values here are µ = 1.0 and ∆g0 = −0.5
Although the plot looks different(in terms of colour) to the one presented in [2]
this is due to the fact that I have used a different mesh and possible a different
algorithm.



5. SEMI-ANALYTICALLY STITCHED SOLITON SOLUTIONS

5.1 Stitched bright soliton solutions

The major purpose of the introduction of a piece-wise constant nonlinearity by [2] is

to obtain semi-analytical approximations to the perturbed soliton profile instead of

just numerical simulations. One reason for this is so that further theoretical results

can be obtained and this can also aid experimentalists by given them more control

over their experiments. The procedure involves stitching the wave function and its

first partial derivative with respect to z at the interface Z between two neighboring

regions but in which g is takes two different values. Firstly we can find an explicit

bright soliton solution for each value of the nonlinearity coefficient g. We also know

that the bright soliton profile extending over all the regions persists following the

introduction of the perturbation given in equation (2.2) and so we may write down

an analytical expression for the spatial part of the wave function in equation (5.1)

ψs(z) =
ηs√
gs

sechηs(z − zs) (5.1)

where ηs is the sth amplitude, zs is the sth centre and gs is the sth value of the

nonlinearity(of which there is only two values here but this can be extended to include

more than too) in the sth region. If we also introduce the variable Zs which is the

point of intersection between region s and s+ 1 then matching the solutions (5.1) in

the respective regions at these points as well as their first partial derivatives results

in the follow relations between ηs, zs ,ηs+1 and zs+1 where ηs+1 and zs+1 are to be

determined.

ηs√
gs

sech[ηs(Zs − zs)] =
ηs+1√
gs+1

sech[ηs+1(Zs+1 − zs)] (5.2)

− η2
s√
gs

sech[ηs(Zs − zs)] tanh[ηs(Zs − zs)] = (5.3)

−
η2
s+1√
gs+1

sech[ηs+1(Zs+1 − zs+1)] tanh[ηs+1(Zs+1 − zs+1)]
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If we then divide (5.2) into (5.3) then we get equation (5.4)

tanh ηs+1(Zs+1 − zs+1) =
ηs
ηs+1

tanh ηs(Zs − zs) (5.4)

and then, if we take the inverse of equation (5.4) arrive at equation (5.5)

ηs+1(Zs+1 − zs+1) = arctanh

(
ηs
ηs+1

tanh ηs(Zs − zs)
)

(5.5)

You can use a nonlinear solver on equations (5.2) and (5.3) such as Newton’s

method or if (ηs, zs) and ηs+1 are known then you can use (5.5) to find zs[2]. This

system of nonlinear equations is over determined because ηs is determined also by µs

and gs. However it gives reasonably accurate results [2].

5.2 Semi Analytical Stitched Dark Soliton Solutions

Repulsive BECs (positive nonlinearity) which possess dark soliton also persist if they

are centered in a region with nonlinearity coefficient g0 or g1 and so we can also semi

analytically stitch these profiles too as in section (0.11). We can again write down

the analytical form for the dark soliton solution in the sth region as

ψs(z) =
ηs√
gs

tanhηs(z − zs) (5.6)

Using the same matching conditions in section (0.11) we get the corresponding rela-

tions between the sth amplitudes ηs and the sth centres zs in equations (0.51) and

(0.52)

ηs√
gs

tanh[ηs(Zs − zs)] =
ηs+1√
gs+1

tanh[ηs+1(Zs+1 − zs)] (5.7)

η2
s√
gs

sech2[ηs(Zs − zs)] = (5.8)

η2
s+1√
gs+1

sech2[ηs+1(Zs+1 − zs+1)]

Equations (0.51) and (0.52) are equivalent as can be seen via the identity 1−sech2z =

tanh2z and so we have two unknowns and one equation relating them. One possibility

to solve this problem could be the use of the method of least squares. This has not

been done in this dissertation.
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5.3 Numerically stitched bright and dark solitons

Here we give the numerically stitched bright and dark soliton solutions to the Quasi

1D GP equation. We can see in fig (5.1) that the numerically stitched bright soliton is

indistinguishable from the corresponding bright soliton for a collisonally homogeneous

BEC given in [2]. The dark soliton in fig (5.2) is in agreement with the corresponding

figure in [2].
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pictures/brightsoliton1.jpg

Fig. 5.1: Numerically stitched bright soliton

pictures/darksoliton1.jpg

Fig. 5.2: Numerically stitched dark soliton



6. EXTENDED PERIODIC SOLUTIONS IN TERMS OF JACOBI
ELLIPTIC FUNCTIONS

In the following subsections we shall give a brief introduction to the theory of Jacobi

elliptic functions which can be used to represent the extended periodic solutions

to equation (1.12) with constant g. Then after this we shall derive solutions to

equation (1.12) with constant g, for attractive and repulsive BECs with box and

periodic boundary conditions. In section (6.2) we derive the attractive solution to

equation (1.12) with box boundary conditions from the first principles. This method

is described in [1] but is given for repulsive solutions where as we give it for attractive

solutions (the corresponding paper for attractive solutions uses an ansatz directly to

find the solutions there in) and the calculation here is not exactly the same. We also

reproduce the constraints on the parameters s (the Jacobi elliptic modulus) and j

(this is an integer that appears when we make the ansatz in the following sections

satisfy the particular boundary conditions for that case) given in [1] but the details

of the calculations were not given.

6.1 Brief Introduction to Jacobi Elliptic functions

The J.E.Fs used in this dissertation are sn(x, l),cn(x, l) and dn(x, l) where l satisfies

0 ≤ l ≤ 1 [9]. JEFs are a general class of functions which include trignometric(t = 0

and cn(x, 0) = cos x) and hyperbolic(l → 1− and cn(x, 1−)= sech x) functions as

limiting situations. If we fix l = l0 where l0 is constant, then this picks out a particular

JEF i.e. cn(x, l0) for example. To define them analytically we first define equation

(6.1)

x =
∫ φ

0

dθ√
1− l sin2 θ

(6.1)

where φ is called the Jacobi amplitude[9]. From (6.1) we can define the JEFs used in

this dissertation[9] by

cn(x, l) = cosφ (6.2)
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sn(x, l) = sinφ (6.3)

dn(x, l) =
√

1− lsn2(x, s) (6.4)

The period of these functions is 4K(l) (which corresponds to the period 2π of sin and

cos or if l→ 1− the infinite period of a hyperbolic function) where

K(m) =
∫ π/2

0

dθ√
1− l sin2 θ

(6.5)

6.2 Attractive elliptic function Solutions

Here we shall derive solutions for the attractive case (i.e. g < 0) where again we take

g = −1. We shall derive two types of solutions here where we have box boundary

conditions (f(0) = f(1) = 0) and periodic boundary conditions (f(0) = f(1) and

f
′
(0) = f

′
(1)).

6.3 Attractive elliptic function solutions satisfying Box boundary
conditions

Firstly we multiply (3.3) by f
′

as we did before and integrate to get (3.4) again.

However now we factorize the quartic and assume for simplicity that it has the fac-

torization given in (6.6)( If it has four distinct factors then we may apply a linear

fractional transformation to the integrand and then another transformation to reduce

it to the case given here using methods described in [10])

(f
′
)2 = (f1 − f 2)(f2 − f 2) (6.6)

Rearranging (6.6) to give (6.7)

dz =
df√

(f1 − f 2)(f2 − f 2)
(6.7)

We can then use the substitution f 2 = f1 sin2 θ to put (6.7) in the form (6.8).We

can then integrate to get

αz + κ =
∫ f/
√
f1

0

dθ√
1− l sin2 θ

(6.8)

Where l = f1/f2. So by using the defintion of the cn function given in the previous

section we can see that the most general extended periodic solution to (3.3) is

f(z) = Acn(αz + κ) (6.9)
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Where A, α and κ are constants of integration to be determined from the box bound-

ary conditions. Substituting (6.9) into equation (3.3) we get

µAcn =
1

2
α2Acndn2 − 1

2
α2lAcnsn2 − A3cn3 (6.10)

Using identities (1) an (2) for elliptic functions given in the appendix we reduce (6.10)

to powers of cn only and obtain the following identity

µAcn =
1

2
α2(1− 2l)Acn + (α2lA− A3)cn3 (6.11)

Equating like powers of cn we obtain the following relations for A and µ

µ =
1

2
α2(1− 2l) (6.12)

A = α
√
l (6.13)

Applying box boundary conditions to (6.9) we find that cn(α+ κ) = cn(κ) = 0 from

which we determine that α = 2jK(l) and κ = −K(l) where j ∈ {1, 2, 3, ....} because

cn(jK(l)) = 0 where j is odd. Hence solution and chemical potential are

f(z) = 2jK
√
lcn(K(2j(z − z0)− 1)) (6.14)

µ =
1

2
(2jK)2(1− 2l) (6.15)

We need to constrain (equation (1.3) provides the constraint) equation (6.14) so

that the normalized particle number is conserved and so that the equation (6.14)

is physically meaningful [1]. This constraint will restrict our freedom in choosing

certain pairs for the parameters (l, j)(If we just wanted to satify equation (3.3) with

box boundary conditions without modeling an attractive BEC we would be free to

choose any values for l and j). Applying (1.3) to equation (6.14) we find that (note

that as cn is translationally invariant under the transformation z → z − z0 we may

leave out z0 without loss of generality)

4j2K(l)2l
∫ 1

0
cn2(K(2jz − 1))dz = 1 (6.16)

Next if we use the substitution x = K(2jz − 1) (6.16) becomes

2jKl
∫ K(2j−1)

−K
cn2xdx = 1 (6.17)
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to simplify (6.17) so that it involves only functions of l(the quarter period K(l)

and the complete elliptic integral of the second kind E(l) =
∫ π/2
0

√
1− l sin2 θdθ)

and j we use the identity 1− sn2 = cn2 to give (6.18)

2jKl − 2jKl
∫ K(2j−1)

−K
sn2xdx = 1 (6.18)

Then if we use another substitution given by snx = sin θ we find that the limits for

θ θ = 0 and θ = π/2 (remember that snx = sinφ so that to find the limits for θ we

solve the equations sin θ = sin 0 and sin θ = sinπ/2). The differential dx becomes

dx =
cosθdθ√

1− sin2 θ
√

1− l sin2 θ
(6.19)

Substituting all this into the integral in (6.18) we find that∫ K(2j−1)

−K
sn2(x)dx = (6.20)∫ π/2

0

cosθ sin2 θdθ√
1− sin2 θ

√
1− l sin2 θ

=
∫ π/2

0

sin2 θdθ√
1− l sin2 θ

=
1

l

∫ π/2

0

1− (1− l sin2 θ)dθ√
1− l sin2 θ

=
1

l

∫ π/2

0

1√
1− l sin2 θ

− 1− l sin2 θ√
1− l sin2 θ

dθ

=
1

l
(K(l)− E(l))

Substituting equation (6.20) into equation (6.18) we get the constraint on equation

(6.14)

2jK(E − (1− 2jl2)K) = 1 (6.21)

6.3.1 Attractive elliptic function solutions satisfying Periodic Boundary conditions

The derivation here follows that given in [1]. The ansatz used is again

f(z) = Acn(αz + κ) (6.22)

Where the parameters A, α and κ are parameters to be determined from the con-

straints imposed by having to satisfy equation (3.3), the boundary conditions f(0) =
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f(1) and f ′(0) = f ′(1) and the constraint (1.3). Substituting the ansatz into (3.3)

and using various derivatives of elliptic functions and identities given [9] we arrive at

the follow identity

µAcn =
1

2
α2(1− 2l)Acn + (α2lA− A3)cn3 (6.23)

Comparing like powers of cn we obtain the relations for the parameters

µ =
1

2
α2(1− 2l) (6.24)

A = α
√
l (6.25)

We still have to determine α and κ from the boundary conditions to satisfy f(0) =

f(1) we need cn(κ) = cn(α+κ). This can be easily satisfied if we take α to be integer

multiples of the period 4jK and κ is then seen to be arbitrary, which for simplicity

I will take to be 0. Finally in order to get unique, physically meaningful solutions,

we need f(z) to satisfy the constraint (1.3). This will constrain the elliptic modulus

l and integer pairs (l, j) that are available to us and will also be useful slightly later

when constructing stitched solutions as the stitched solution will also need to satisfy

this condition (in this case there are 2j nodes). The constraint of f(z) following from

(1.3) in this case can be found in exactly the same way as the section (6.3.1) and is

in this case

16j2K(E − (1− l)K) = 1 (6.26)

6.4 Repulsive elliptic function solutions

These types of solutions for repulsive BECs are characterized by a nonlinearity with

g > 0 which we take here to be g = 1 (homogeneous case). The equation we solve in

this case is

d2f

dz2
= −2µf + f 3 (6.27)

with the corresponding box boundary conditions (f(0)=f(1)=0) and periodic boundary

conditions (f’(0)=f’(1) and f(0)=f(1)). The following subsections follow the same

method given in [1] although the intermediate steps have been carried out here to

obtain the results presented in [1].
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6.4.1 Box boundary solutions

The ansatz used in this case is

f(z) = Asn(αz + κ) (6.28)

If we substitute (6.28) into equation (6.27) and use the derivatives identities given by

[9]we can reduce the result to include only powers of sn we get

µAsn =
1

2
α2A(1 + l)sn− (lα2A + A3)sn3 (6.29)

Equating equal powers of sn we find that

A = α
√
l (6.30)

µ =
1

2
α2(1 + l) (6.31)

applying f(0) = f(1) = 0 we find that sn(κ) = sn(α + κ). This shows that α =

2jK(m) and κ = 0. The constraint on f(z) following from equation (1.3) results in

4j2K2
(

1− E

K

)
= 1 (6.32)

6.4.2 Periodic Boundary solutions

These types of solutions found using the same ansatz as the previous subsection but

with periodic boundary conditions f(0) = f(1) and f ′(0) = f ′(1). I will just state

the solution to equation (6.27) in this case along with the corresponding chemical

potential

f(z) = 4jK(m)
√
lsn(4jKz) (6.33)

µ =
1

2
(4jK)2(1 + l) (6.34)

The constraint on f(z) gives the relation (0.84) between l and j

16j2K2
(

1− E

K

)
= 1 (6.35)



7. STITCHED ATTRACTIVE ELLIPTIC FUNCTION
SOLUTIONS SATISFYING PERIODIC BOUNDARY CONDITIONS

Here we shall consider a method by which we can semi analytically stitch attractive

elliptic function solutions satisfying periodic boundary conditions to the Quasi 1D GP

equation. The same procedure can be considered to apply to box boundary conditions

as well. Firstly we shall match the function values and gradients at the interfaces

Z like the soliton case. Doing this we get the following relations (Note that again,

here we denote with a subscript s, the various parameters specifying a solution in the

region s )

4jsKs

√
lscn(4jsKs(z − zs)) = 4js+1Ks+1

√
ls+1cn(4js+1Ks+1(z − zs+1)) (7.1)

−(4jsKs)
2
√
lssn(4jsKs(z − zs))dn(4jsKs(z − zs)) (7.2)

= −(4js+1Ks+1)2
√
ls+1sn(4js+1Ks+1(z − zs+1))dn(4js+1Ks+1(z − zs+1))

If we set α1 = 4jsKs

√
lscn(4jsKs(z − zs)), and α2 = −(4jsKs)

2
√
lssn(4jsKs(z −

zs))dn(4jsKs(z − zs)) then we can square equations (8.1) and (8.2) and using α1,2

we can eliminate the elliptic functions to get a relation between α1,2,ms+1, Ks+1, js+1

which is

α2
2 = (ms+1(4js+1Ks+1)2 − α2

1)((1−ms+1)(4js+1Ks+1)2 + α2
1) (7.3)

Now looking at equation (8.3) we might obviously assume that we have three param-

eters to determine plus a fourth parameter zs but this is not the case if we remember

the two facts. Firstly, in order to obtain physically meaningful solutions to (3.3)

subject to periodic boundary conditions, we had to constrain the possible pairs (l, j)

to satisfy equation(6.26).The second fact is that the choice of elliptic modulus l dic-

tates the value of the quarter period K. Therefore we can see that we have only

two parameters that need to be determined by the relation (8.3) and equations (8.1)
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and (8.2) which are ls+1 and zs+1. The strategy to find ls+1 from relation (8.3) is to

search through the possible range of values for ls+1 which all lie in [0, 1) and then to

determine js+1, Ks+1 from the relations (6.26) and (6.5). Then we test to see whether

these satisfy (8.3) in which case they will give the correct parameters for the stitch-

ing. This is not as difficult or time consuming as you would imagine as there are few

choices for the pairs (l, j) which lay in the middle ground between l = 0 and l→ 1−.

However as we approach l = 0 we can see that there are many choices for l and this

is where the search might take time.



8. CONCLUSIONS AND EXTENSIONS

In this dissertation we have reproduce most of the results which were first obtained

in [2]. We have rederived the Quasi 1D GP equation. We then carried out a simple

phase plane analysis for attractive nonlinearity, to show why we would expect both

solitonic and extend periodic solutions (expressible as elliptic function solutions). We

found these solutions of the integrable 1D equation and then introduced a piecewise

constant nonlinearity coefficent(just for the soliton solutions) as in [2] which breaks

the integrability. We described conditions under which soliton solutions for constant

coeffiecents remained solutions of the perturbed equation via Hamiltonian pertur-

bation theory without showing the corresponding conditions on extended periodic

solutions(we cant use that type Hamiltonian perturbation theory used for the soli-

tons here as the extended periodic solutions are not localised solutions which was

an assumption of the theory used for solitons) we calculated them numerically(for 3

cases with soliton solutions only) and showed that they survived the perturbation.

We then proceded to reproduce the calculation in [2] to find the stability eigenfre-

quencies for soliton solutions via the Hamiltonian perturbation theory. We described

how to use the BdG equations to confirm the results we obtain from Hamiltonian

perturbation theory, but we did not carry out the analysis(solving the system of

equations, however correspondence with Dr A.S. Rodrigues who performed the calcu-

lations in [2] confirms that this was the method used to produce the spectral planes in

[2]).We found that when the bright soliton solution is centered at max[g(z)] it is stable

and when centered at min[g(z)] it is unstable and we found an eigenfrequency mode

with positive imaginary part which indicated the instability would be present.We

arrived at the final stage in the calculation of the eigenfrequencies for dark solitons

but did not calculate them. We did however simulate the evolution of a numerically

stitched dark soliton and found that it was unstable in agreement with [2] and with

the predicted type of instability.



8. Conclusions and extensions 41

Then we described the method to semi analytically stitch together bright soliton

[2] (and carried out the stitching numerically) and attractive extended periodic so-

lutions(carried out numerically in case where the elliptic moduls l and the integer j

where approximately equal in each region) by requiring that the function values and

gradients matched at the interfaces between adjacent regions were the nonlinearity

coeffcient is constant.In the bright soliton case it was straight forward to carry out

this stitching but in the extended periodic case it was more difficult because now we

have two more parameters and we were effectively matching different types of func-

tions across interfaces in contrast to soliton solutions were all the functions were a

transformed sech function. This difficulty in suggesting a method was overcome by

the fact that we required the parameters to satisfy a constraint(conservation of par-

ticle number etc) in order to obtain physically meaningful solutions. We could then

proceed to search for the correct parameters which would satisfy all the constraints

and hence possibly give us our stiched solution although this was not performed.

Extensions which could be followed are, we could perform the stitching for elliptic

function solutions which was suggested in this dissertation. We could run numeri-

cal simulations to examine the numerical stability of the elliptic function solutions

in the presence of a piecewise constant nonlinearty. We could then carry out the

linear stability analysis using the BdG equations on Matlab. We could consider an

fourier representation for the periodic piecewise-constant nonlinearity and examine

the behaviour of soliton solutions as the number of terms is taken to infinity. A

further suggestion given in [2], is to examine the same problem studied in [2] but in

2Dimensions.
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