
Legislatures as spin glasses

Abstract

I present a method for partitioning legislatures into
subsets of legislators that vote in a similar fashion
by modelling legislatures as Potts spin glasses. I ap-
ply the method to find partitions of the UK House
of Commons and the US Senate. I explain how the
method is related to methods designed to find par-
titions of networks into densely connected subsets of
nodes.

1 Introduction

Particles possessing a magnetic moment are often
known as spins [1]. A spin may interact with other
spins, and depending on the interaction energy, the
interaction may be ferromagnetic, in which case spins
attempt to align, or antiferromagnetic, in which case
spins attempt to anti-align. A spin glass is a sys-
tem of interacting spins that receive conflicting rela-
tive ordering instructions due to the presence of both
ferromagnetic and antiferromagnetic interactions [2].
The term ‘spin glass’ is derived from the fact that
below a freezing temperature, spin glasses exhibit
non-periodic freezing of spins into clusters reminis-
cent of the amorphous freezing of atoms in a con-
ventional glass [1]. A commonly studied spin glass
is Cu1−xMnx with x � 1, where the magnetic Mn
ions (the spins) are distributed randomly throughout
the non-magnetic Cu lattice. The interaction energy
between Mn ions is a function of the distance of sep-
aration, so that some pairs of ions interact ferromag-
netically, whilst others interact antiferromagnetically
[10].

Spin glasses exhibit several interesting behaviours:
frustration, the inability to minimize the interaction
energies between all spins simultaneously; slow dy-
namics at low temperature due to the development of
a complicated ‘energy landscape’; and a sharp ther-
modynamic phase transition despite the mixed inter-

actions [2]. There has been much interest in theo-
retical models that capture one or more of these be-
haviours [3, 4]. Several other types of systems fea-
turing interacting agents have been modelled as spin
glasses in order to take advantage of theoretical tech-
niques developed in the study of spin glasses, includ-
ing economic and social systems [5, 6], prebiotic evo-
lution [7], and neural networks [8, 9].

A legislature is a body made up of legislators that
vote on bills. Examples include the UK House of
Commons (where the legislators are Members of Par-
liament or MPs) and the US Senate (where the legis-
lators are senators). It is of some interest to find par-
titions of legislatures into subsets of legislators such
that members of a subset vote in a similar fashion.
The partitions might highlight legislators who are
voting more similarly to members of another party
than their own [13], or be used to coarse-grain the leg-
islature to simplify political analysis [12]. Formally,
a partition P of a set X is a set of nonempty sub-
sets of X such that every element in X is in exactly
one subset [14]. A partition of the set {1, 2, 3} is
{{1}, {2, 3}}, with the other possible partitions be-
ing {{1}, {2}, {3}}, {{1, 2}, {3}}, {{1, 3}, {2}} and
{{1, 2, 3}}.

The problem of partitioning legislatures has re-
cently been tackled by modelling legislatures as net-
works. A network consists of a set of nodes (or
vertices) connected by edges [15]. In [13], the au-
thors constructed networks from legislation cospon-
sorship data in the US Congress by letting nodes rep-
resent legislators and setting the edge weights equal
to the number of cosponsored bills. They proceeded
to recursively partition the network into densely con-
nected subsets of nodes, or communities. In both
the Senate and House of Representatives, they found
that the initial partition into two communities placed
Republicans in one community and Democrats in an-
other, with the exception of a few known moderate
legislators.
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Recently it was pointed out that several commu-
nity detection methods (methods designed to find
partitions of networks into densely connected subsets
of nodes) solve a problem equivalent to finding the
ground state of a particular type of spin glass [16].
The partitions of nodes into communities correspond
to partitions of spins into clusters.

Inspired by this identification and the success of
the network partitioning scheme in the US Congress
[13], I explain a method for partitioning legislatures
into subsets of legislators that vote in a similar fash-
ion by modelling legislatures as spin glasses. In the
model, spins represent legislators, the interaction en-
ergies between spins are determined by the similarity
of the voting records of legislators, and the partitions
of the legislature correspond to the partitions of spins
into clusters in the ground state of the spin glass.

The paper proceeds as follows. In section 2, I ex-
plain the method in more detail and discuss its re-
lationship to community detection methods. In sec-
tion 3 I demonstrate the application of the method
to some model systems. In section 4 the method is
applied to find partitions of two real legislatures, the
UK House of Commons and US Senate, and to dis-
cover factions within a political party. In section 5 I
offer some concluding remarks.

2 The method

2.1 Potts spin glasses

Specifically, we shall model legislatures as Potts spin
glasses. In a q-state Potts spin glass, spins exist in any
one of q spin states (point in any one of q directions)
such that the interaction energy between spins i and j
is −Jij if the spins are in the same spin state (point in
the same direction) and zero otherwise [16]. We refer
to the quantity Jij as the coupling between spins i and
j and the matrix J with elements Jij as the coupling
matrix. The Hamiltonian (or energy) of the system is
the sum over all interaction energies, and is a function
of the partition P of spins into (a maximum of q) spin
states. Assigning spins in the ith spin state a quantity
σi , the Hamiltonian can be written

H(P ) = −
∑
ij

Jijδ(σi, σj) (1)

where δ(σi, σj) = 1 if σi = σj and zero otherwise.
If Jij > 0 we say there is a ferromagnetic interac-
tion between spins i and j, and the interaction en-
ergy is minimized by the spins existing in the same
spin state (aligning). If Jij < 0 we say there is an
antiferromagnetic interaction between spins i and j,

 

1 
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Figure 1: Frustration in a Potts spin glass. Arrows
represent spins with the direction of an arrowhead
indicating the spin state. The dotted line represents
an antiferromagnetic interaction whilst the solid lines
represent ferromagnetic interactions. In an attempt
to minimize the energy of the system, spins 1 and
2 take different spin states, leaving spin 3 unable to
minimize both its interaction energies. No partition
of spins into spin states exists such that all interaction
energies are minimized simultaneously so the system
exhibits frustration.

and the interaction energy is minimized by the spins
existing in different spin states (pointing in different
directions). If Jij = 0, we say that spins i and j
are non-interacting, and the interaction energy is the
same whether the spins exist in the same spin state
or different spin states.

In general, no partition P exists such that all in-
teraction energies are minimized simultaneously i.e.
a Potts spin glass exhibits frustration (figure 1) [22].
Nevertheless, there will be a partition of least energy
(the ground state). We refer to the spin states (sets
of spins with the same σi) in the minimum energy
partition of a Potts spin glass as clusters. Spins inter-
acting ferromagnetically have an incentive to belong
to the same cluster, whilst spins interacting antiferro-
magnetically have an incentive to belong to different
clusters.

2.2 Legislatures as Potts spin glasses

The method for partitioning legislatures into subsets
of legislators that vote in a similar fashion may be
outlined as follows:

Imagine the n legislators of a legislature as spins in
a n-state Potts spin glass1. Introduce ferromagnetic
interactions between pairs of legislators that vote sim-
ilarly, so that they have an incentive to belong to the
same cluster, and introduce antiferromagnetic inter-
actions between pairs of legislators that vote dissimi-

1We set q = n so that it is possible for each legislators to
belong to a cluster on their own.
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larly, so that they have an incentive to belong to dif-
ferent clusters. Find the minimum energy partition
of legislators into clusters.

We now seek to formalise the method, which we
sometimes refer to as the spin glass partitioning
(SGP) method. We assume that we have voting data
of a legislature in the form of a voting matrix V ,
where

Vij =


1 if legislator i voted yes on bill j,
−1 if legislator i voted no on bill j,
0 if legislator i did not vote on j.

(2)

From this we wish construct a similarity matrix S
such that the element Sij is a measure of the simi-
larity of the voting records of legislators i and j. We
define

bsame
ij =

∑
k

δ(Vik, Vjk)δ(|Vik|, 1)δ(|Vjk|, 1) (3)

which is the number of bills on which legislators i and
j both voted and voted the same way, and

bij =
∑

k

δ(|Vik|, |Vjk|)δ(|Vik|, 1)δ(|Vjk|, 1) (4)

which is the number of bills on which legislators i and
j both voted. We then let

Sij =

{
bsame
ij /bij if bij > 0,

0 otherwise.
(5)

The matrix S is symmetric with ones on the diagonal
and elements in the range 0 ≤ Sij ≤ 1. We define the
elements of the coupling matrix J of the legislature
as

Jij = Sij − λ, (6)

where we have introduced a parameter λ so that J(λ).
Pairs of legislators with Sij > λ interact ferromag-
netically and have an incentive to belong to the same
cluster, whilst pairs of legislators with Sij < λ in-
teract antiferromagnetically and have an incentive to
belong to different clusters. Stated in words, pairs
of legislators that voted the same way on more (less)
than a fraction λ of the number of bills on which they
both voted interact ferromagnetically (antiferromag-
netically).

2.3 Connection to community detec-
tion methods

We can view the matrix S as an adjacency matrix,
or a matrix that represents a network. The element
Aij of an adjacency matrix A is the weight of the

edge running from node i to node j. If the network is
undirected, Aij = Aji, and if the network has no self
edges, Aii = 0. The matrix S therefore represents
an undirected network with self edges of unit weight,
with nodes corresponding to legislators.

A popular approach to partitioning a network into
densely connected subsets of nodes, or communities,
is to look for the partition that maximizes a quality
function called modularity [21], defined as the sum
over all subsets of the difference between the actual
sum of edge weights between nodes in a subset minus
the expected sum of edge weights between nodes in a
subset, divided by sum of all edge weights:

Q(P ) =
1
W

∑
i

wi − [w]i (7)

Here P denotes a partition of nodes into subsets, wi is
the actual sum of edge weights between nodes in the
ith subset, [w]i is the expected sum of edge weights
between nodes in the ith subset and the sum runs
over all subsets. The variable W is the sum of all
edge weights in the network and plays no part in
the maximization of Q as it is the same for all parti-
tions. We define [w]i by picking a null model against
which to compare our network. A subset will con-
tribute positively to the modularity only if the sum
of edge weights between nodes in the actual network
is greater than expected from the null model.

Assigning nodes in the ith subset a community in-
dex ci and defining gci

as the set of nodes with the
same ci, the modularity can be rewritten as

Q(P ) =
1

2W

∑
ij

(Aij − pij)δ(ci, cj) (8)

where now the sum runs over all nodes in the net-
work and we have assumed that the network has
no self edges so that wk =

∑
ij∈gck

Aij/2, [w]k =∑
ij∈gck

pij/2 and W =
∑

ij Aij/2. The term pij is,
by definition, the expected weight of the edge running
from node i to node j. The most common choice
of pij (and the one used to detect communities in
networks constructed from legislation cosponsorship
data in the US Congress [13]) is pij = kikj/2W ,
where ki =

∑
j Aij is the degree of node i. This

choice of pij corresponds to a null model in which the
edge weight of the network is distributed randomly
subject to the constraint that the degrees of nodes in
the null model are the same as those in the network
[21]. Several other null models have been considered
[16, 17, 19, 20].

Comparing equations (1) and (8), we see that the
modularity Q is related to the Hamiltonian of a Potts
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spin glass H by

H(P ) = −2WQ(P ) (9)

with the choice σi = ci and

Jij = Aij − pij . (10)

This connection, pointed out in [16], means that the
partition of nodes into communities that maximizes
the modularity is the same as the partition of spins
into spin states that minimizes the energy of a Potts
spin glass with the couplings (10). The coupling be-
tween nodes is ferromagnetic where the weight of an
edge is greater than expected and antiferromagnetic
where the weight of an edge is less than expected.

Recalling our choice of couplings (6), we see that
the method we have described for partitioning leg-
islatures is equivalent to detecting communities by
modularity maximization in a network described by
the matrix S with the choice pij = λ. This choice
of pij corresponds to a non-standard null model in
which every node is connected to every other node by
an edge of weight λ.

2.4 Finding the minimum energy par-
tition

If we are to apply our method, we need a way of find-
ing the minimum energy partition of the Hamiltonian
(1) with the couplings (6).

We consider the minimum energy partition in dif-
ferent domains of λ. For λ < 0, all interactions are
ferromagnetic and the minimum energy partition con-
sists of a single cluster of n legislators, whilst for
λ > 1, all interactions are antiferromagnetic and the
minimum energy partition consists of n clusters each
with a single legislator. For 0 ≤ λ ≤ 1, the mini-
mum energy partition depends on the precise form of
J(λ), and to be sure we have found the ground state
we must trial every possible partition of spins into
clusters 2 [23].

The number of ways of partitioning a set of n el-
ements into nonempty subsets is given by the Bell
number Bn ≈ 1013 for n = 20 [24]. The Bell num-
bers increase at least exponentially in n which means
finding the minimum energy partition by an exhaus-
tive search over all possible partitions takes at least
an exponential amount of time [23].

2This is not quite true: we can be sure that spins interacting
only antiferromagnetically should end up clusters on their own,
whilst spins interacting with only one other spin by means of a
ferromagnetic interaction should end up in the cluster of that
spin. There is no need to trial partitions not satisfying these
conditions.

The problem is one of a class of problems in combi-
natorial optimization, or problems where we are look-
ing for the best possible solution from a finite set
of feasible solutions. Various approximate methods,
or heuristics, have been developed that sacrifice the
guarantee of finding the optimal solution for the sake
of getting good solutions in a significantly reduced
amount of time [25]. Several of these have been imple-
mented in the context of modularity maximization,
including spectral bisection [21], greedy optimization
[23, 36], tabu search [17], simulated annealing [16]
and genetic [35] algorithms. In this report we look for
ground states using the following greedy algorithm3,
which can be viewed as a generalization of [36] to any
form of couplings.

The algorithm relies on an expression for the energy
change of moving a spin z from a subset X to a subset
Y that can evaluated quickly. Before the move, the
energy of the system is

Hbefore = −
∑
ij∈X

Jij −
∑
ij∈Y

Jij , (11)

where we have neglected the contributions from sub-
sets other than X and Y . After the move, the energy
is

Hafter = −
∑

ij∈X\{z}

Jij −
∑

ij∈Y ∪{z}

Jij , (12)

where X \ {z} is the set difference of X and z and
Y ∪ {z} is the union of Y and {z} [14]. We have∑

ij∈X\{z}

Jij =
∑
ij∈X

Jij−
∑
i∈X

Jiz−
∑
j∈X

Jzj +Jzz (13)

and∑
ij∈Y ∪{z}

Jij =
∑
ij∈Y

Jij +
∑
i∈Y

Jiz +
∑
j∈Y

Jzj +Jzz (14)

so that the change in energy ∆H = Hafter − Hbefore

from moving spin z can be written

∆H =
∑
i∈X

Jiz +
∑
j∈X

Jzj

−
∑
i∈Y

Jiz −
∑
j∈Y

Jzj − 2Jzz.
(15)

This expression involves no set algebra (no unions nor
differences) and involves sums over just two subsets
X and Y . It can thus be evaluated extremely quickly.

The algorithm (coded in MATLAB) starts by plac-
ing each spin in a spin state on its own. The energy

3A greedy algorithm is an algorithm that always takes the
best immediate, or local, solution while finding an answer [37].
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Figure 2: Plot of the Jaccard distance DJ between successive minimum energy partitions Pλi−1 and Pλi
of (a)

the artificial legislature featuring parties and coalitions described by (18) (b) the artificial legislature with no
political organization described by (19).

of this partition is −
∑

i Jii. We consider the energy
change (15) that would result from placing spin i in
a subset with spin j for all spins j satisfying Jij > 0.
The spin i is moved to the subset for which the de-
crease in energy is maximized, unless no move can
result in a decrease in energy in which case spin i is
not moved. This process is applied repeatedly and
sequentially as in [36] until no moves of a single spin
can result in a decrease in energy.

Labelling the partition at this point P , we con-
struct a new coupling matrix J ′ with elements

J ′
ij =

∑
l∈Xi,m∈Xj

Jlm (16)

where Xi is the ith subset of P . By applying the first
part of the algorithm to this coupling matrix, we de-
termine whether the energy can further be reduced
by merging entire subsets of spins. This process is
also iterated. The algorithm stops when no merg-
ing of subsets can reduce the energy. In subsequent
sections, when reference is made to the ‘minimum en-
ergy partition’, it is understood that this refers to the
partition of least energy of the partitions returned by
the greedy algorithm described above and the spec-
tral bisection algorithm introduced in [21] (also coded
in MATLAB).

3 Artificial legislatures

In equation (6) we defined the coupling matrix J(λ)
up to a constant λ. There is no single proper value
of λ, and to take full advantage of the method, one
should find minimum energy partitions throughout
the range 0 ≤ λ ≤ 1. Outside this range, the mini-
mum energy partitions are known (and uninteresting)

as discussed in section 2.4. Minimum energy parti-
tions that persist over a range of λ are of particular
interest, as they correspond to partitions of the legis-
lature that do not break up as the incentives for legis-
lators to belong to the same cluster decrease and the
incentives for legislators to belong to different clus-
ters increase. Several authors have proposed similar
techniques for finding partitions of networks corre-
sponding to different hierarchical levels [16, 17, 18].

To pick out persistent minimum partitions, we need
some way of comparing the similarity of different par-
titions of the same set. Several indices have been de-
signed for this purpose [26]. In this paper we use the
Jaccard distance DJ(A,B), defined as

DJ(A,B) =
rA!B + rB!A

rA!B + rB!A + rA&B
(17)

where rA!B is the number of pairs of elements in the
same subset in the partition A and in different subsets
in the partition B and rA&B the number of pairs of
elements in the same subset in A and the same subset
in B. Smaller values of DJ indicate greater similarity
of the partitions A and B, with DJ(A,B) = 0 when
A = B.

We demonstrate the application of the method on
two ‘artificial’ legislatures where we directly define
the elements of the similarity matrix to simulate dif-
ferent types of political organization. The first arti-
ficial legislature consists of 64 legislators L1 . . . L64,
sixteen political parties R1 . . . R16 and four coali-
tions C1 . . . C4. Each political party is made up of
four legislators, Ri = {L4i−3 . . . L4i}, and each coali-
tion consists of the union of four political parties,
Ci = {R4i−3 ∪ . . . R4i}. The elements of the simi-
larity matrix Sij for i ≥ j are defined as
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Figure 3: Projections of the positions of legislators in the first artificial legislature onto the principal components
of the similarity matrix (a) coloured by coalition (b) coloured by party.

Sij =


1 i = j,
0.75 + r Li, Lj ∈ Rk, i 6= j,
0.5 + r Li, Lj ∈ Ck, Li, Lj 6∈ Rk,
0.25 + r Li, Lj 6∈ Ck.

(18)

We then set Sij = Sji for i < j so that S is symmetric
with ones on the diagonal as is the case for similarity
matrices constructed from voting data. Here r is a
random number taken from a uniform distribution
on the interval [−0.125, 0.125]. We shall show that
by varying λ one can recover both the partitions P =
{R1, R2 . . . R16} and P = {C1, C2, C3, C4}.

Figure 2a shows a plot of the Jaccard distance
DJ between successive minimum energy partitions
Pλi−1 and Pλi

for i = 0, 1, 2 . . . 100, λi = i/100. For
λ > 0.86, the minimum energy partition consists of
each legislator in a cluster on their own so that there
are no pairs of legislators and DJ is undefined.

We observe three regions where DJ = 0 so that
there are three persistent minimum energy partitions.
The transitions between the persistent partitions oc-
cur when λ ≈ 0.25 and λ ≈ 0.5, reflecting the con-
struction of the similarity matrix (18). The first
persistent partition is a continuation of the parti-
tion of legislators into a single cluster that occurs
for all λ < 0. The second persistent partition is
P = {R1, R2 . . . R16}, the partition of legislators into
parties, whilst the third is P = {C1, C2, C3, C4},
the partition of legislators into coalitions. The par-
titions in the transitional regions around λ = 0.25
and λ = 0.5 consist of a mix of persistent partitions.

As λ is increased above λ = 0.75, most of the inter-
actions between legislators are antiferromagnetic and
clusters consist of fewer and fewer legislators until at
λ = 0.86, every legislator is in a cluster on their own.

The second artificial legislature also consists of 64
legislators but this time we suppose that there is no
political organization, defining the elements the sim-
ilarity matrix for i ≥ j as

Sij =

{
1 i = j,
r otherwise.

(19)

As before, Sij = Sji for i < j but now r is a
random number taken from a uniform distribution
on the interval [0, 1]. The plot of DJ(Pλi , Pλi−1) for
i = 0 . . . 100, λi = i/100 is shown in figure 2b. This
time we observe no regions where DJ = 0 apart from
the initial stretch corresponding to a partition into a
single cluster.

3.1 Visualising legislatures

We can imagine the rows of an n×n similarity matrix
as defining the coordinates of legislators in a n dimen-
sional space. The coordinate of the ith legislator on
the jth axis is Sij , so that legislator i has a coordinate
of unity on the ith axis (Sii = 1) and all legislators
appear in the first (hyper)quadrant (Sij ≥ 0). It
would be useful to have some way of visualizing the
n-dimensional system to be able to make predictions
about the number and nature of persistent minimum
energy partitions.
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Figure 4: Projections of the positions in legislators in the 108th US Senate onto the principal components of the
similarity matrix (a) coloured by party (b) coloured by the minimum energy partition for 0.42 ≤ λ ≤ 0.72.

We perform (statistical) dimensional reduction into
two dimensions by projecting the coordinates of leg-
islators on to the first two principal components.
The principal components are the (orthogonal) lead-
ing eigenvectors of the covariance matrix [27]. The
first principal component is the direction of maximum
variance, and it is the best fit line in the sense that
it minimizes the sum of squares of perpendicular dis-
tances between the data points (here the positions of
legislators) and the line4. The second principal com-
ponent is the direction of maximum variance perpen-
dicular to the first principal component. Projections
should be treated with caution, for although legisla-
tors that appear close together are close in the direc-
tions of greatest variance, they may still be far apart
in several other directions.

The projection of the artificial legislature described
by the similarity matrix (18) is shown in figure 3a. In
this figure, legislators are coloured by coalition and
the coalitions are easily distinguishable. However,
colouring the legislators by party as in figure 3b, we
see that the party structure of the legislature is not
at all obvious. This example acts as a warning that
projections onto the principal components can hide
relevant structure [38].

4In fact in least squares fitting it is more common to mini-
mize the sum of squares of vertical distances between the data
points and the line.

4 Real legislatures

In this section we shall apply the SGP method to
partition the US Senate and the UK House of Com-
mons into subsets of legislators that vote in a similar
fashion. Each legislator in these legislatures is mem-
ber of one of a small number of political parties. We
would expect legislators of the same party to cluster
together for two reasons. Firstly, legislators belong-
ing to the same party tend to share similar political
opinions which should translate into similar voting
habits. Secondly, members of parties in these legis-
latures are ‘whipped’ (told how to vote by the party
leadership) [28, 29].

The US Senate is the upper house of the United
States Congress. The 108th Senate (the legislative
session between January 2003 and December 2004)
featured 100 senators, 51 belonging to the Republican
Party (Rep), 48 belonging to the Democratic Party
(Dem) and 1 independent (Ind). We base our analysis
on a voting matrix obtained from [30] of the recorded
votes (roll-call votes) of the 100 senators voting on
675 bills. From this voting matrix we construct a
similarity matrix following the process described in
section 2.2.

From the fact that almost all legislators belong to
one of two political parties and the parties them-
selves have different political ideals, we might expect
a single persistent minimum energy partition approx-
imately equal to {{Rep}, {Dem}}. This assertion is
supported the projection of the legislature onto the
first two principal components (figure 4a), in which
we observe that most legislators are relatively close to
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Figure 5: Plot of the Jaccard distance DJ between
successive minimum energy partitions Pλi−1 and Pλi

of the 108th US Senate.

members of their own party and relatively far away
from members of the other party. A notable excep-
tion is the Democrat placed firmly amongst the Re-
publicans: this is Zell Miller, whose anomalous voting
behaviour is well known [39].

Figure 5 shows a plot of the Jaccard distance DJ

between the minimum energy partitions Pλi−1 and
Pλi for λi = i/100, i = 0, 1, 2 . . . 100. As expected,
there is a single persistent minimum energy partition
of the legislature corresponding closely to {{Rep},
{Dem}}. This partition, occurring for 0.43 ≤ λ ≤
0.72, is shown in figure 4b. As λ is increased above
λ = 0.72, senators begin to break off from the two
main clusters. The first three senators to leave the
main clusters are labelled in figure 4b. All three were
placed in communities predominantly made of up sen-
ators from the opposing party in the network study
of legislation cosponsorship data [13]. As expected,
by λ = 1 all legislators form clusters on their own.

Next we turn to UK House of Commons, the lower
house of the Parliament of the United Kingdom. We
consider voting data from the amalgamation of the
five parliamentary sessions between June 2001 and
April 2005 (Tony Blair’s second term as Prime Min-
ister) over which time 657 MPs recorded their votes
on 1246 bills. We construct the similarity matrix from
a voting matrix of the recorded votes obtained from
[31].

Figure 6 lists the abbreviations used to refer to the
parties and shows a pie chart illustrating the relative
numbers of MPs belonging to each party. The few
MPs that switched parties over the period are as-
signed to the first party of which they were members.
We see that in this period the Commons featured
three large parties (Lab, Con, LD) in contrast to the
two-party system in the 108th Senate. The largest
party, Labour, was the governing party. Armed with
this knowledge, we may predict the existence of two

 

Labour (Lab)

Conservative Party (Con)

Liberal Democrats (LD)

Ulster Unionists (UU)

Scottish National Party (SNP)

Democratic Unionist Party (DUP)

Plaid Cymru (PC)

Social Democratic and Labour Party (SDLP)

Health Concern (KHHC)

Figure 6: Pie chart showing the proportion of MPs
from each party in the UK House of Commons 2001
– 2005. The party abbreviations are used in the text.
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Figure 7: Plot of the Jaccard distance DJ between
successive minimum energy partitions Pλi−1 and Pλi

of the UK House of Commons 2001 – 2005.

persistent minimum energy partitions: first, a parti-
tion that separates the three major parties, {{Lab},
{Con}, {LD}}; second, a partition {{Lab}, {Con,
LD}} corresponding to the Conservatives and Liberal
Democrats uniting against the majority Labour gov-
ernment. We have neglected minor parties in these
predictions, and it is of interest to see how they fit in
to the partitions.

To obtain a further idea of the minimum energy
partitions we can expect to find, we study a projec-
tion of the positions of legislators onto the first two
principal components coloured by party (figure 8a).
The projection backs our prediction of a partition ap-
proximately equal to {{Lab}, {Con}, {LD}} and is
not inconsistent with the prediction of a coarser par-
tition approximately equal to {{Lab}, {Con, LD}}.
The location of legislators belonging to minor parties
in the projection suggests that in these partitions,
the minor parties are likely to be included in clus-
ters along with the major ones rather than forming
separate clusters.

Figure 7 shows a plot of the Jaccard distance DJ

between successive minimum energy partitions for
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Figure 8: Projections of the positions of legislators in the UK House of Commons 2001 – 2005 onto the principal
components of the similarity matrix (a) coloured by party (b) coloured by the minimum energy partition for
0.15 ≤ λ ≤ 0.68 (c) coloured by the minimum energy partition at λ = 0.70 (d) coloured by the minimum energy
partition at λ = 0.85.

λi = i/100, i = 0, 1, 2 . . . 100. We are able to pick
out two persistent minimum energy partitions. The
first of these, for 0.15 ≤ λ ≤ 0.68, is {{Lab, SDLP},
{other parties}}, shown in figure 8b. This partition
matches the prediction of a partition approximately
equal to {{Lab}, {Con, LD}}. We may explain the
presence of the SDLP MPs in the ‘government’ cluster
by noting that over this period, the SDLP informally
accepted the Labour whip (SDLP MPs agreed to vote
with Labour) [32].

The second persistent partition is not truly persis-
tent but changes very little across 0.70 ≤ λ ≤ 0.80.
This partition, shown in figure 8c, matches our other
prediction and the partition hinted at by figure 8a.
We note that the Scottish and Welsh nationalist

parties (the SNP and PC) align with the Liberal
Democrats whilst the Irish parties (DUP and UU)
align with the Conservatives.

The partition for λ = 0.85 is shown in figure 8d.
By this point, the SDLP have separated from Labour,
the SNP and PC have formed a cluster on their own
and, interestingly, a group of Labour MPs have bro-
ken away from the bulk of the party. Upon investiga-
tion, this group turns out to consist of known rebel
Labour MPs including Jeremy Corbyn, Bob Marshall-
Andrews and John McDonnell [33].
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Figure 9: Histogram of the mean similarity s̄i of mem-
bers of the UK Labour Party 1997 – 2001. There are
100 bins of equal width between s̄i = 0.92 and s̄i = 1.

4.1 Intra-party voting blocs

We now apply our method to a slightly different prob-
lem: the identification of intra-party voting blocs, or
factions. We attempt to identify factions within the
Labour Party in the UK House of Commons during
the first Blair government, May 1997 – May 2001.

In a previous study on this topic [12], Quinn and
Spirling (Q&S) introduced and applied a nonpara-
metric statistical model based on Commons voting
data to find nine sizeable factions of MPs within the
party. By a combination of statistical and political
analysis, they rated one faction (that included several
members of the left-wing Socialist Campaign Group
[34]) as by far the most rebellious and a second faction
as some deal more rebellious than the others.

We construct a similarity matrix from the recorded
votes of 423 Labour MPs on 1279 bills over the pe-
riod, using data obtained from [31]. Following Q&S,
we exclude the two MPs that switched parties and
one that never voted. This time, the minimum en-
ergy partition consists of a single cluster all the way
up to λ ≈ 0.9. This may be explained the distribu-
tion of mean similarities of MPs (figure 9), the mean
similarity defined as the quantity

s̄i =
1
n

n∑
j=1

Sij (20)

The peak is of the distribution is at s̄i = 0.99,
indicating that only values of λ close to unity can
induce antiferromagnetic interactions between legis-
lators and produce interesting partitions. For this
reason, we consider minimum energy partitions Pλi

for λi = 0.9 + i/100, i = 0, 1, 2 . . . 100. Figure 10
shows a plot of the Jaccard distance DJ between the
minimum energy partitions Pλi−1 and Pλi

, where we
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Figure 10: Plot of the Jaccard distance DJ between
successive minimum energy partitions Pλi−1 and Pλi

of the UK Labour Party 1997 – 2001. Note that here
λi = 0.9 + i/100.

have restricted the range of the vertical axis to better
show the structure of the plot for λ < 0.995.

In contrast to the plots for the US Senate and the
UK House of Commons, there are no sharp peaks sep-
arating regions of small DJ that would suggest tran-
sitions of significant numbers of MPs in a small range
of λ. Rather, the plot suggests more gradual changes
in the minimum energy partition as λ is increased.

The first few peaks correspond to MPs breaking
off from the main cluster. Interestingly, these MPs
leave the main cluster to join the same smaller clus-
ter. By λ = 0.960, this cluster has increased in size to
16 members, including all but one of the 10 members
of the most rebellious faction as identified by Q&S.
As λ is increased further, MPs continue to break off
from the main cluster, some to form clusters on their
own, others to join the first rebel cluster. Around
λ = 0.975 a second rebel clusters forms and grows
in size until at λ = 0.986 it has 33 members, 19 of
which feature in the second most rebellious faction of
36 members identified by Q&S. By this point the first
rebel cluster has itself broken up, with some mem-
bers having joined the second rebel cluster and others
forming clusters on their own or with a few others. As
λ is increased above λ = 0.986, several sizeable clus-
ters form and break up again, none bearing more than
a passing resemblance to the other factions identified
by Q&S. By λ = 1, each MP forms a cluster on his
or her own.

5 Conclusion

I have explained a method for partitioning legisla-
tures into subsets of legislators that vote in a similar
fashion by modelling legislatures as Potts spin glasses.
The method can be used to obtain partitions of in-
terest in real legislatures. I have highlighted the link
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between the SGP method and modularity maximiza-
tion in networks and generalized the algorithm [36]
to work with any form of couplings.

The SGP method, based on the Potts model, is
a hard clustering method (each legislator is either a
member of a cluster or not). I speculate that other
spin glass models (XY, Heisenberg [11]) might have
some application to the fuzzy clustering of legislators,
assigning degrees of membership of each legislator to
each cluster.

I thank my supervisors, Mason Porter, Jukka-
Pekka Onnela and Nick Jones, for many useful dis-
cussions. I thank Peter Mucha for the idea of using
the Jaccard distance to compare partitions and re-
lated MATLAB code.
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