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Abstract

We generalize the continuum coupled map (CCM) model described by Venkatara-
mani and Ott1? by introducing a sinusoidal term into their mapping func-
tion. This change yields remarkable patterns whose complete understanding
remains and open question. The purpose of this paper is to display the data
produced from the sinusoidal mapping term to motivate interest in others to
more fully understand this dynamically interesting system.

1 Introduction

Patterned states are a wide ranging phenomenon that occur in then nat-
ural world in such forms as convection®, chemical reactions®, and granular
media dynamics®?2.

Because we treated the data we modelled as a discrete dynamical system,
the method we incorporated in arriving at steady patterns heavily relied upon
the repeated iteration of given mapping terms. This repeated iteration was
hoped would yield insight into whether or not data from a function will fall
into particular orbits, the speed the data might conform to these orbits, and
characteristics of the orbits themselves.

Continuum coupled maps consist of discrete maps describing time evo-
lution and continuous field and spatial variables. Venkataramani and Ott!»?



Model type | Field variable(s) | Spatial domain Time
PDE Continuous Continuous Continuous
LODE Continuous Discrete Continuous
CML Continuous Discrete Discrete
CA Discrete Discrete Discrete
CCM Continuous Continuous Discrete

Table 1: Different model types and their qualities.

have used them to study vertically vibrated granular media, to which we now
turn our attention.

1.1 Vibrated Granular Media

Granular media is ubiquitous and defines substances ranging from coffee
to gravel to grain®. Because of their particular size, shape, and surface prop-
erties, as well as their dissipative nature, granular media sometimes exhibits
complicated dynamics, which are not completely understood®>.

The equations we adapted from Venkataramani and Ott»? were descrip-
tions of behavior displayed by experiments done by Umbanhowar, Melo, and
Swinney®. These experiments made use of brass spheres that were vertically
vibrated sinusoidally, and yielded several patterned states.

1.2 Continuum Coupled Map Models (CCM’s)

A CCM model consists of continuous variables, a continuous spatial do-
main, and discrete time intervals of a non-equilibrium system®2. Therefore,
the purpose of a CCM is to map a continuous field forward (or backward)
in time®2. There are various other model types with different choices of
continuity and discreteness for different quantities (Table 1)1, however, the
advantage of CCM’s is that they allow for both efficiency (through a fast
Fourier transform to simulate iteration) and the flexibility to model patterns
not regulated by an artificial grid 1'2. For these reasons, Venkataramani and
Ott1? used CCM’s to model period-2 vertical forcing in granular media, and
it is their CCM model of that forcing that we will later adapt.



1.3 Pattern Formation

Pattern formation is pervasive throughout nature2. It can be seen on
the shells of mollusks, convection, and chemical equations®.

Fortunately, our understanding of this important phenomenon has dra-
matically increased under close mathematical scrutiny. However, much still
remains to be discovered and seen.

It is hoped that given a situation where a function or functions model
the actual behavior of a real system, and a patterned state arises from the
successive iteration of that/those function(s), one could gain insight into pre-
dicting and/or understanding our physical world.

2 Replication of Prior Results

A crucial first step to understanding the problem to accurately reproduce
the results of Venkataramani and Ott’? in order to assure the validity of
further investigations into similar phenomena. To set the stage, we now
discuss Venkataramani and Ott’s CCM formulation.

Venkataramani and Ott utilized an array of values &,(z) to represent the
varying heights of the vibrated granular media at time n, where x is a two-
dimensional variable representing a value’s spatial coordinate in the array.
In order to iterate the function to time n+1, they first applied a mapping
function M:

(@) = M[&a(x), 7], (1)
where r is a parameter of the chosen map function. Finally, they incorporated
coupling of x’s neighbors by using a linear spatial operator, ¢:

§nr1(z) = (6, (x)]- (2)
Venkataramani and Ott went further in defining ¢ as:
{[&(2)] = f(z) ® &, (2), (3)

where ® represents convolution.
Venkataramani and Ott employ spatial Fourier transforms of &,(x) and

f(x) denoted as &,(k) and f(k) giving:
Env1(k) = f(R)E,(K), (4)
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where f(k) is:

Flk) = g(k/ko, k/ke). (5)
The function ¢ in equation (5) is defined by Venkataramani and Oftt as:

where ¢(k/k.) and v(k/ko) are given by:

w3 5]
¢(k) = sgn(k? — k). (8)

For the mapping function, M, in equation (1), Venkataramani and Ott
chose:

M(€,r) = rexp[—(£ —1)%/2] (9)

The most important aspect of this choice is that M is closely related to

the logistic map M (&,7) = r£(1 — &), but has bounded orbits for all values
12

Figure 1 shows the patterns we obtained that correspond to those in
Figure 3 of Ref.’s [1,2].
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Figure 1: Patterns that correspond to Venkataramani and Ott’sb2. Left: r
— 1.9, (ko/ko)?) = 5.0; Right: t = 1.9, (k,/ko)?) = 1.5.
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Figure 2: A progression of 100, 500, 1000, 5000, and 10000 iterates for pa-
rameters r = 1.9, (k./ko)?) = 1.5.

3 Other Visuals

Figure 2 shows the development of a pattern at successive time iterations.
Some of the other interesting patterns that we found that were not in-
cluded in Ref.’s [1,2] are depicted here in Figure 3.

Figure 3: Patterns not mentioned by Venkataramani and Ottb2. Left to
right: v = 2.5, (k./ko)?) = 2.0; v = 2.5, (k./ko)?) = 3.5; v = 2, (k./ko)?) =
2.5: 1 = 3.5, (ko/ko)?) = 2.5.

4 Sinusoidal Mapping Function

In an effort to discover new dynamics, we modified the original mapping
function (9). Instead of using equation (9), we employed:

M(€,7) = rsin[—(§ —1)*/2]. (10)

We studied this map numerically and found some peculiar and interesting
phenomena. For instance, Figure 4 illustrates a pattern that seemed unclas-
sifiable with the traditional taxonomy used in Ref.’s [1,2].

Our specific sinusoidal mapping function numerically yielded interesting
results. For instance, the data from one pixel after iterating our code using



Figure 4: Sinusoidal mapping after 10000 iterates for parameters r = 1.5,
(ke/ko)?) = 4.

the new sin map after 10000 iterations, setting r to 1.5 and (k./ko)?) to 4
was: —1.4993 —0.0274 —0.7554 —1.4993 —0.0274 —0.7554 —1.4993.
Figure 5 displays the oscillation of this particular pixel for the last 100 and
30 iterations of the 10000 for each respective plot.

Although this data does not look like it is approaching a singular fixed
point, it appears that there are three distinct orbits. This implies that these
points are in the basin of attraction of a periodic orbit of period 3, i.e.
FU(f(z0))) = mo.

An interesting area for further study would be an analytical exploration
of the sin map. This exploration help explain the period-3 results obtained,
which imply chaos in the time evolution of the CCM™®. As a side note, it
did seem that the final outcome produced by the code was highly sensitive
to the initial random matrix input, which is a hallmark of chaos™®.

Figure 6 shows some of the scnsitivity we observed. Each frame of the
figure represents patterns iterated 10000 times given identical initial param-
eters except for differing random near-homogeneous seed matrix inputs.

5 Conclusion

There is not a lot that we can firmly conclude other than the fact that pat-
tern formation is a curious phenomenon that deserves more in depth study.
Our computational research showed several very interesting patterns, but



-ush

___________

Figure 5: Left: Plot of last 100 iterates of 10000 iterates for for an individual
pixel for the sinusoidal map of parameters r = 1.5, (k./k¢)?) = 4; Right:Plot
of last 30 iterates of 10000 iterates for for an individual pixel for the sinusoidal
map of parameters r = 1.5, (k./ko)?) = 4.
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Figure 6: Different pattern observed using near-homogenous random seed
matrices but equivalent parameters of r = 1.5, (k./ko)?) = 4 after 10000
iterations.




it is clear that an analytical approach is necessary to complement our nu-
merical studies and achieve a deeper understanding of the phenomenon we
considered.
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