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Abstract

This paper derives nonlinear second order ordinary differential equations

describing the motion of a two dimensional airfoil allowing for three spa-

tial degrees of freedom in the airfoil’s angular rotation, vertical movement,

and control surface rotation. The equations of motion are derived from the

Euler-Lagrange equation with the dissipative forcing functions arising from

two dimensional aerodynamics incorporating results from Theodorsen’s un-

steady thin airfoil theory. A particular type of structural nonlinearity is

included by using cubic polynomials for the stiffness terms. The resulting

nonlinear model predicts damped, exponentially decreasing oscillations be-

low a critical airflow speed called the flutter boundary. The paper shows

how this speed can be predicted from the eigenvalues of the correspond-

ing linear system. By changing certain airfoil geometrical and mechanical

properties, it is demonstrated that it is possible to aeroelastically tailor the

airfoil such that flutter is avoided for a given flight regime. Above the flutter

speed, limit cycle oscillations are predicted that grow in amplitude with the

airspeed. The amplitude of the limit cycles are also dependent on the posi-

tion of the elastic center and the magnitude of the cubic hardness coefficient

term.



1 Introduction

Aeroelastic considerations are of vital importance in the design of aerospace-

craft because vibration in lifting surfaces, called flutter, can lead to struc-

tural fatigue and even catastrophic failure [1]. An important problem con-

cerns the prediction and characterization of the so called flutter bound-

ary (or speed) in aircraft wings. Classical aeroelastic theories [2] predict

damped, exponentially decreasing oscillations for an aircraft surface per-

turbed at speeds below the critical flutter boundary. Exponentially increas-

ing oscillations are predicted beyond this speed [3]. Therefore, knowledge of

the stability boundary is vital to avoid hazardous flight regimes. This sta-

bility problem is studied in classical theories with the governing equations

of motion reduced to a set of linear ordinary differential equations [2].

Linear aeroelastic models fail to capture the dynamics of the system in

the vicinity of the flutter boundary. Stable limit cycle oscillations have been

observed in wind tunnel models [3] and real aircraft [1] at speeds near the

predicted flutter boundary. These so called benign, finite amplitude, steady

state oscillations are unfortunately not the only possible effect. Unstable

limit cycle oscillations have also been observed not only after but also before

the onset of the predicted flutter speed [3]. In the case of unstable limit cycle

oscillations the oscillations grow suddenly to very large amplitudes resulting

in catastrophic flutter and structural failure. A more accurate aeroelastic

model is needed to incorporate the nonlinearities present in the system to

account for such phenomena.

Nonlinear effects in aeroelasticity can arise from either the aerodynamics

of the flow or from the elastic structure of the airfoil. Sources of nonlinearity

in aerodynamics include the presence of shocks in transonic and supersonic
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flow regimes and large angle of attack effects, where the flow becomes sep-

arated from the airfoil surface. Structural nonlinearities are known to arise

from freeplay or slop in the control surfaces, friction between moving parts,

and continuous nonlinearities in structural stiffness [3].

In the paper, we first adopt a linear aerodynamic model that limits the

ambient airflow to inviscid, incompressible (low Mach number), and steady

state flow. A more sophisticated aerodynamic model using Theodorsen’s

unsteady thin airfoil theory is then used to capture dissipative effects in

flutter. We derive the structural equations separately from the aerodynamics

because it is simple to adopt more sophisticated aerodynamics at a later

stage without affecting the structural model. Further development includes

the addition of nonlinear polynomial terms to model structural stiffness once

the unsteady model is in place.

2 The Airfoil Cross-Section

The physical model used to study aeroelastic behavior of aircraft lifting

surfaces has traditionally been the cross section of a wing (or other lifting

surface). This 2-dimensional (2D) cross section is called a typical airfoil

section [2]. The flow around this section is assumed to be representative

of the flow around the wing. Because the airfoil section is modeled as a

rigid body, elastic deformations due to structural bending and torsion are

modeled by springs attached to the airfoil [1]. The use of an airfoil model

is consistent with standard aerodynamic analysis, in which the flow over

3-dimensional (3D) lifting surfaces is first studied using a 2D cross section

and the results are then suitably modified to account for 3D (finite wing)

effects [4]. In this study, finite wing corrections are not incorporated into
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the aerodynamic model.

A brief discussion of airfoil terminology will be useful at this point. The

tip of the airfoil facing the airflow is called the leading edge (LE) and the

end of the airfoil is called the trailing edge (TE). The straight line distance

from the LE to the TE is called the chord of the airfoil. The airfoil chord is

fixed by the type of airfoil specified, given by standard National Advisory

Committee for Aeronautics (NACA) nomenclature [5] and hence can be used

as a universal reference length. The mean camber line is the locus of points

midway between the upper and lower surfaces of the airfoil. For a symmetric

airfoil, the mean camber line is coincident with the chord line.

The typical airfoil section studied in this paper includes a TE control

surface known as a flap (see Figures 1(a) and (b)). As an airfoil moves

through a flow, it has potentially an infinite number of spatial degrees of

freedom (DOF). Here, the airfoil is constrained to one translational and two

rotational DOF (see Figure 1(a)). The translational DOF called plunging is

the vertical movement of the airfoil about the local horizontal with a time

dependent displacement h = h(t). The rotational or pitching DOF of the

airfoil about the elastic center (point 3 in Figure 1(a)) is represented by

the angle α = α(t) measured counterclockwise from the local horizontal.

Finally, the rotational or flapping DOF of the flap about its hinge axis

(point 6 in Figure 1(a)) is measured by the angle β = β(t) with respect to

the airfoil chord line. The elastic constraints on the airfoil are represented

by one translational and two rotational springs with stiffness coefficients kh,

kα and kβ, treated for now as constants, but developed further subsequently.

Points of interest on the airfoil section are shown in Figure 1(b). The

center of pressure for the airfoil lies at point 1 (see section 5 for further

information). In the case of a thin symmetric airfoil the center of pres-
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Figure 1: (a) Typical airfoil section (cross-section of a wing) showing aero-

dynamic forces lift L, dragD, the resultant forceR and resultant torqueMac,

and elastic constraints kα, kβ , and kh. (b) Same airfoil section showing

inertial axes (I (̂i1, î2, î3)) and airfoil-fixed axes (A(â1,â2,â3) & B(b̂1,b̂2,b̂3)),

and constants (a, b, c, xα, xβ &xχ). Points of interest 1–7 are shown. See

Table 1 for definitions.

sure is coincident with the aerodynamic center of the airfoil. Point 2 is the

half chord point of the airfoil section. One half of the chord length (b in

Figure 1(b)) is used in this paper to non-dimensionalize the other geomet-

rical lengths of the airfoil. The half chord is also used as the characteristic

length of an airfoil for the purpose of formulating the aerodynamic forces

and torques (see section 5). Two important reference points are the elastic

center, point 3, about which the airfoil rotates and the flap hinge location,

point 6, about which the TE flap rotates. The center of gravity (CG) of the
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airfoil is located at point 4 and that of the flap is at point 7. The CG of

the airfoil-flap combination is located at point 5. The geometrical constants

relating these points are defined graphically in Figure 1(b) and summarized

in Table 1.

3 Equations of Motion

The classical aeroelastic equations of motion for a typical airfoil section

were derived by Theodorsen [2] using a force balance. The equations are re-

derived in this paper by writing Euler-Lagrange equations of motion for each

DOF. The aerodynamic force and torques (see section 4) associated with the

airfoil are treated as external forces. Three Cartesian coordinate frames are

used in the following derivation - an inertial frame I (̂i1, î2, î3) with its origin

at the half chord and two airfoil fixed frames. The first airfoil-fixed frame

A(â1,â2,â3) also has its origin at the airfoil half chord. The points of interest

1–6 in Figure 1(b) on the chord line are coincident with the â1 direction.

The second non-inertial frame B(b̂1,b̂2,b̂3) has its origin at the flap pivot

point with the flap center of mass lying in the b̂1 direction. The â1 and b̂1

axes are coincident with the inertial î1 axis for the airfoil in its non-deflected

position. The general rotations to transform a vector ~v from frames A,B

into the inertial reference frame I are [6],

{~v}I = [Rz(−α)]{~v}A and {~v}I = [Rz(−α− β)]{~v}B (1)

where [Rz(ψ)] is the Euler rotation matrix given by,

[Rz(ψ)] =


cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1


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We note that the rotations are considered small and hence small angle ap-

proximations are used (i.e. sin(x) ≈ x and cos(x) ≈ x).

The Lagrangian is the difference between the kinetic T and potential V

energies of the system, L = T − V. By defining the gravitational potential

datum line at the î1 inertial axis (see Figure 1(b)) and arguing that the

movement of the CG of the airfoil about this line is small, the contribution

of gravitational potential to the energy of the system can be neglected [1].

The potential energy of the system is then,

V =
1
2
kα α

2 +
1
2
kβ β

2 +
1
2
kh h

2 (2)

The expression for the kinetic energy in terms of the velocities vj , j =

{4, 7} of the mass centers (points 4 and 7 in Figure 1(b)) and the angular

rotations α and β is

T =
1
2
Ia α̇

2 +
1
2
If (α̇+ β̇)2 +

1
2
ma ~v4 · ~v4 +

1
2
mf ~v7 · ~v7 (3)

Here, ma is the mass of the entire airfoil, mf is the mass of the flap alone,

and Ij , j = {a, f} are the corresponding moments of inertia with respect to

the CG locations.

The velocities of the mass centers can be written relative to the rotation

centers (points 3 and 6 in Figure 1(b)) as,

~v4 = ~v3 + (−α̇)â3 × ~r34

~v7 = ~v6 + (−β̇)b̂3 × ~r67 + (−α̇)â3 × ~r36. (4)

The length of the vectors ~rij can be obtained from Figure 1(b). Performing

rotations into the inertial reference frame using equation (1) with small angle
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approximations and taking the cross products in the above equation,

~v4 = −[bxχα α̇] î1 − [ḣ+ bxχ α̇] î2

~v7 = −[bxβ(α+ β) β̇ + b(c− a)α α̇] î1 − [ḣ+ bxβ β̇ + b(c− a) α̇] î2.

Recalling that α and β are small, we keep only the terms that are linear in

α and β in the above equation,

~v4 · ~v4 = |~v4|2 = (ḣ+ bxχ α̇)2

~v7 · ~v7 = |~v7|2 = (ḣ+ bxβ β̇ + b(c− a) α̇)2. (5)

Substituting equations (5) into the kinetic energy expression from (3) yields,

T =
1
2

[
Ia + If +mab

2x2
χ +mfb

2(xβ + c− a)2
]
α̇2 +

1
2

[
If +mfb

2x2
β

]
β̇2 +

+
1
2

[ma +mf ] ḣ2 +
[
If +mfb

2x2
β + (mfb

2xβ)(c− a)
]
α̇β̇ +

+ [mabxχ +mfb(xβ + c− a)] ḣα̇+mfbxβ β̇ḣ (6)

We note here that from Figure 1(b) the CG location of the airfoil-flap

combination can be expressed in terms of the CG locations of the airfoil

and flap as (ma +mf )bxα = mabxχ +mfb(xβ + c− a). Then, the following

structural quantities that appear in Theodorsen’s form of the equations [2]

are defined as follows:

m = ma +mf

Iα = Ia + If +mab
2x2

χ +mfb
2(xβ + c− a)2

Iβ = If +mfb
2x2

β (7)

Sα = mabxχ +mfb(xβ + c− a) = (ma +mf )bxα = mbxα

Sβ = mfbxβ .
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Table 1: Nomenclature
Variables (see Figure 1(a))

α Pitch angle (Positive counterclockwise)

h Plunging displacement (Positive downwards)

β Flap angle (Positive counterclockwise)

Aerodynamic Forces/Torques (see Figure 1(b))

L Resultant aerodynamic force at point 1

Mα Torque due to L about point 3

Mβ Torque due to L about point 6

Structural Constants

b Half-chord of airfoil

m Airfoil mass per unit length

Ii Moments of inertia, i = {α, β}

Si Static moments, i = {α, β}

ki Elastic constraint stiffness, i = {α, β, h} (see Figure 1(b))

Geometrical Constants (Non-dimensional)

a Coordinate of axis of rotation (elastic center)

c Coordinate of flap hinge

xα Distance of airfoil-flap mass center from a

xχ Distance of airfoil mass center from a

xβ Distance of flap mass center from c

The moment of inertia of the entire airfoil Iα, the moment of inertia

of the flap Iβ, and the corresponding static moments Sj , j = {α, β} in

the above expressions are measured with respect to the respective reference

points (point 3 for the airfoil and point 6 for the flap, see Figure 1(b)). The
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Lagrangian function in terms of the potential and kinetic energy expressions

from (2) and (6), with the structural quantities as defined in (7) is given by,

L =
{

1
2
Iα α̇

2 +
1
2
Iβ β̇

2 +
1
2
mḣ2 + [Iβ + b(c− a)Sβ] α̇β̇ + Sα ḣα̇+ Sβ β̇ḣ

}
− 1

2
{
kα α

2 + kβ β
2 + kh h

2
}

(8)

The general expression for the non-conservative form of the Euler-Lagrange

equations is [6],

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Qi, i = 1, . . . , n (9)

For this particular problem we have n = 3 and i = α, β, h. Let Qi, i =

{α, β, h} represent the generalized forces on the right hand side of the equa-

tion. The external forces on the airfoil arise due to the force ~R and the

torque ~Mac (see Figure 1(a)). The force R produces torques about ref-

erence points 3 and 6 which we shall call ~Mα, ~Mβ using the notation of

Theodorsen [2]. The generalized forces can then be obtained from a varia-

tional principle called the principle of virtual work (PVW) [6], which states

that the external forces ~Qi on a system produce no virtual work δW for

virtual displacements δ~qi. The mathematical statement for the principle is

δW =
n∑

i=1

~Qi · δ~qi = 0. (10)

The virtual displacements of a point on the airfoil can be written as −δĥi2,

−δαî3 and −δβ î3 in the inertial frame I. Then the general statement of

PVW from equation (10) gives,

δW = ~R · (−δĥi2) + ~Mα · (−δαî3) + ~Mβ · (−δβ î3) = 0

⇒ δW = Lî2 · (−δĥi2) + (−Mαî3) · (−δαî3) + (−Mβ î3) · (−δβ î3) = 0

⇒ δW = −Lδh+Mαδα+Mβδβ = 0
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which gives us the expressions for the generalized forces in terms of aerody-

namic lift and torques,

Qα = Mα, Qβ = Mβ and Qh = −L (11)

The Lagrangian (8) is substituted in equations (9) along with the rela-

tionships for the generalized forces from (11). Evaluating the expressions

gives three 2nd order ordinary differential equations (ODE), which we re-

produce from Theodorsen’s paper [2],

Iα α̈+ (Iβ + b(c− a)Sβ) β̈ + Sα ḧ+ kα α = Mα

Iβ β̈ + (Iβ + b(c− a)Sβ) α̈+ Sβ ḧ+ kβ β = Mβ (12)

mḧ+ Sα α̈+ Sβ β̈ + kh h = −L

The left hand side of equations (12) gives the contributions from the

structural dynamics of the airfoil. The right hand side terms representing

the aerodynamic forces arise from the interaction of the airfoil with the

surrounding flow. In the Theodorsen paper [2] the aerodynamic forcing

terms on the right hand side were expressed as linear functions of (α, β, α̇,

β̇, ḣ, α̈, β̈, ḧ). These functions arose from the aerodynamic model chosen by

Theodorsen, which assumed a thin airfoil limited to small oscillations in an

unsteady incompressible flow. We will first develop a simple incompressible

and irrotational steady state aerodynamic model in the next section for

a thin airfoil undergoing small amplitude oscillations. This introduces a

basic steady linear model for our system. We will at first not include any

nonlinearities and assume constant stiffness coefficients ki in the equations

(12). The generalized forces L, Mα, and Mβ will be linear functions of α, β

and h (see section 5).
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Following this development, we will incorporate more sophisticated un-

steady aerodynamics with the generalized functions expressed as linear func-

tions of the generalized coordinates and their time derivatives (see section 7).

Finally, nonlinearities will be introduced in the unsteady model by replacing

the stiffness coefficients with polynomial stiffness terms.

4 Steady Aerodynamic Model

The terms on the right hand side of equations (12) represent the restor-

ing aerodynamic force and torques on the airfoil. We want to develop an

aerodynamic model for these forces that can be expressed only as a linear

combination of the generalized coordinates α, β, and h. As an airfoil moves

through the air, there is surrounding pressure distribution, which can be

integrated over the airfoil surface to give a single resultant force R and a

torque Mac acting at the aerodynamic center (point 1 in Figure 1(a)).

Figure 2: Airfoil control mass (CM) within a control volume (CV) with an

integration contour C defined. Also shown are the inertial (Eulerian) and

airfoil fixed (Lagrangian) reference frames.

Consider an airfoil control mass (CM) enclosed in a control volume (CV)

V , with control surface S in an inertial reference frame (i, j, k) (see Figure 2).
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The airfoil CM is attached to an airfoil-fixed right handed Cartesian refer-

ence frame (̂i1, î2, î3) moving in time t. The airfoil CM has constant mass m

and velocity ~̃v = ~̃v(t). The flow field enclosed in the CV around the airfoil

is variable with both space and time. Its density is ρ∞ = ρ∞(~x, t) and ve-

locity is ~v = vx(~x, t) î+vy(~x, t) ĵ+vz(~x, t) k̂, defined in the inertial reference

frame. The airfoil has a pressure distribution p = p(~x, t) due to the flow

field. We wish to relate the temporal dynamics of the airfoil CM viewed

from a Lagrangian frame (moving with the airfoil) to the properties of the

CV viewed from a fixed Eulerian frame of reference. Reynolds’ Transport

Theorem (RTT) is a general conservation law that relates CM conservation

laws to the CV under consideration [7]. It states that for a general contin-

uum property Ψ = Ψ(~x, t) with a corresponding mass dependent property

ψ = ψ(~x, t) = ∂Ψ
∂m ,

d

dt

∫∫∫
CM

Ψ dV =
d

dt

∫∫∫
V
ρψ dV +

∫∫
S
ρψ (~v · ~dS) (13)

To write mass conservation equations, we consider mass as the property

of interest, letting Ψ = m so that ψ = 1. Substituting this in equation (13),

d

dt

∫∫∫
CM

m dV =
d

dt

∫∫∫
V
ρ dV +

∫∫
S
ρ (~v · ~dS)

The left hand side of the above equation represents the time rate of change

of density of the airfoil CM, which is invariant. The equation then leads to

the general continuity equation of fluid mechanics [4],

d

dt

∫∫∫
V
ρ dV +

∫∫
S
ρ (~v · ~dS) = 0 (14)

For momentum conservation laws, the continuum property of interest is

momentum. We let Ψ = m~v and correspondingly ψ = ~v. Then, substituting
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this in the RTT equation (13),

d

dt

∫∫∫
CM

m~̃v dV =
d

dt

∫∫∫
V
ρ~v dV +

∫∫
S
ρ~v (~v · ~dS) (15)

The left hand side of equation (15) Newton’s 2nd Law (constant mass)

relates the momentum of the airfoil CM to the force it experiences,

~F = m
d

dt
(~̃v) (16)

The force ~F on the airfoil CM is split into a volume force ~f acting on a

unit elemental volume dV , a force due to viscous shear stresses, represented

simply by ~Fv and a pressure force p acting on an elemental area dS. Then,

for the control volume V and control surface S, equation (15) gives,

−
∫∫

S
p ~dS +

∫∫∫
V
ρ~f dV + ~Fv =

∂

∂t

∫∫∫
V
ρ~v dV +

∫∫
S
(ρ~v · ~dS) ~v (17)

The continuity and momentum conservation equations do not have closed

form solutions. Consequently, we impose certain conditions on the flow

properties. First, the flow around the airfoil is assumed to be changing so

slowly that a steady state in time can be assumed. Second, the flow is

assumed to be incompressible (a good approximation [4] for a flow Mach

number is M / 0.3) making ρ = ρ∞ a constant, where the subscript ∞

refers to freestream flow, far from the airfoil. Then, with these assumptions

and applying the divergence theorem to the continuity equation (14),

ρ∞

∫∫
S
(~v · ~dS) = ρ∞

∫∫∫
V

(~∇ · ~v) dV = 0

⇒ ~∇ · ~v = 0 (18)

The third assumption is of irrotational flow, which implies that ~∇×~v = 0.

This allows us to define a potential flow such that the velocity of the flow
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at every point is the gradient of a scalar potential function φ(x, y, z):

~∇× ~v = 0 ⇔ ~v = ~∇φ(x, y, z). (19)

Immediately, from equations (18, 19) we obtain Laplace’s equation [4],

governing incompressible, irrotational flow.

∇2φ = 0 (20)

Because the equation is linear, a complicated flow about an airfoil can be

broken into several elementary potential flows that are solutions to Laplace’s

equation. This is the basis for thin airfoil theory [8, 9] which we shall use

later. There are two boundary conditions [4] associated with equation (20)

for the case of flow over a solid body. The first assumes that perturbations go

to zero far from the body. Thus, we can define the freestream flow conditions

as being uniform [4] i.e. ~v = v∞î. The second is the flow tangency condition

for a solid body, which states that its physically impossible for a flow to cross

the solid body boundary i.e. ~∇φ · n̂ = 0.

Now we take a look at the momentum conservation equation (17). The

irrotationality and incompressibility criteria imply that the flow is inviscid;

i.e., friction, thermal conduction, and diffusion effects are not present (these

effects are negligible for high Reynolds numbers associated with aircraft

flight [4]). We have already neglected inertial forces in our derivation of the

Euler-Lagrange equations so that, ~f = 0. For 2D airfoils, with unit depth in

the k̂ direction and the integration contour C defined as shown in Figure 2,

equation (17) then reduces to:

−
∮

C
p ~dS = ρ∞v∞

∮
C
( ~v∞ · ~dS) (21)

The left hand side represents the force R due to the pressure distribution

on the airfoil. An expression for this can be calculated from either of the two
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integrals in equation (21). However, since we have assumed incompressible,

irrotational flow, we can take advantage of the Kutta-Juokowski Theorem [4]

that relates the force (R) experienced by a two dimensional body of arbi-

trary (with some smoothness limitations) cross sectional area immersed in

an incompressible, irrotational flow to the magnitude of the circulation Γ

around the body. Mathematically the Kutta-Juokowski Theorem states,

~R = ρ∞ ~v∞ × ~Γ, where ~Γ = −
∮

C
(~v · ~dS) (22)

Before moving onto thin airfoil theory [8, 9], a brief discussion of the

inviscid flow assumption is in order. The condition of inviscid flow follows

directly from the condition of irrotationality as a consequence of Kelvin’s

Circulation Theorem [4], which proves that for an inviscid flow, with conser-

vative body forces (in our case, body forces are zero), the circulation remains

constant along a closed contour. This implies that there is no change in the

vorticity, ~∇× ~v, with time:

dΓ
dt

= − d

dt

∮
C
(~v · ~dS) = − d

dt

∫∫
S
(~∇× ~v) · ~dS = 0 (23)

If the vorticity is zero in the absence of inviscid forces (as is the case

for irrotational flow), the flow remains irrotational. The major drawback of

ignoring viscosity is that zero drag is predicted for the airfoil (”d’Alembert’s

paradox” [4]), which we can see using equation (22). The lift force L is

defined as normal to the free stream whereas the drag force D is always

parallel to the flow (See Figure 1(a)). Taking force components normal and

parallel to the freestream flow yields,

L = ρ∞ | ~v∞| |~Γ| sin(
π

2
) = ρ∞v∞Γ

D = ρ∞ | ~v∞| |~Γ| sin(0) = 0 (24)
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This paradox is resolved with the justification that the drag force is

always parallel to the translational DOF for the airfoil h and can thus be

safely ignored in our equations of motion. The drag force vector rotates

about the mean chord line, but as we are assuming small oscillations, any

torques that could affect the two rotational DOF α and β are neglected.

5 Steady Thin Airfoil Aerodynamic Theory

Classical thin airfoil theory assumes that the flow around an airfoil can be

described by the superposition of two potential flows, such that the entire

flow around the airfoil has a velocity potential function that is a solution

to Laplace’s equation (20). The first potential flow is a uniform freestream

flow that we have already described, ~v = v∞î. To this is added a second

component of velocity, induced by the presence of the airfoil in the moving

flow.

The fundamental assumption of the theory is that the velocity induced by

the airfoil is equivalent to the sum of induced velocities of a line of elemental

vortices, called a vortex sheet, placed on the chord line of the airfoil (see

Figure 3). Thus, the airfoil itself can be replaced by the vortex sheet in

the model. In reality, there is a thin layer of high vorticity on the surface

of an airfoil due to viscous effects. Our model is justified if one includes

the restriction that the airfoil be thin enough to model with just the chord

line. The NACA standard definition for a thin airfoil is that the thickness

is no greater than 10% of the chord i.e. tmax ≤ 0.1(2b), where tmax is the

maximum airfoil thickness and b is the half chord [5].

Replacing the airfoil with an equivalent vortex sheet on the mean chord

line (Figure 3) produces a velocity distribution consistent with vortex flow,
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Figure 3: The airfoil (shown at the bottom) is replaced with a vortex sheet

along its chord line. The chord line (shown on top) is then transformed to

a half circle by the conformal map ξ = b(1− cos(ϑ)). The flap location η is

mapped to an angle θh.

which is a potential flow and hence satisfies Laplace’s equation (20). The

strength of each elemental vortex located at a distance x is γ = γ(x). The

circulation around the airfoil arises from the contribution of all the elemental

vortices:

Γ =
∫ 2b

0
γ(ξ) dξ (25)

The mean chord line of the airfoil is transformed via a conformal map

such that the airfoil coordinate ξ (see Figure 3) is replaced by an angle ϑ [8].

The flap hinge coordinate η is transformed to the angle θh. The conformal
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map is given by the equation:

ξ = b(1− cos(ϑ)) (26)

where the flap hinge location in Figure 3 is given by η = b(1− cos(θh)).

The lift per unit span, L = ρ∞v∞Γ is obtained using the Kutta-Joukowski

Theorem (22). At this point, it is convenient to introduce a dimensionless

variable known as the section lift coefficient [4], defined as,

cl =
L

1
2ρ∞v

2
∞(2b)

=
L

bρ∞v2
∞

=
Γ
bv∞

(27)

where b is the half chord length from Figure 1(b). From dimensional analy-

sis [4], in general for a given flow cl = cl(α, β). Expanding this with a first

order Taylor approximation,

cl = cl(0, 0) +
∂cl(0, 0)
∂α

α+
∂cl(0, 0)
∂β

β (28)

Thin airfoil theory [8] gives constant expressions for the partial derivatives in

equation (28). We are assuming a symmetric airfoil, which makes cl(0, 0) =

0 [4]. Then,

cl = 2π α+ 2[(π − θh) + sin(θh)]β

Noting from Figure 1(b) and Figure 3 that the length of the flap chord is

b(1 − c) = b − η and using the inverse of the conformal map defined in

equation (26),

cl = σ1 α+ σ2 β (29)

where σ1, σ2 are constants (see the Appendix).

The aerodynamic torque about an arbitrary point x0 on the airfoil can

be expressed in terms of the strength γ of each elemental vortex as,

M = −ρ∞v∞
∫ 2b

0
(ξ − x0) γ(ξ − x0) dξ
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We are interested in the aerodynamic torque Mα about the elastic center

(point 3 in Figure 1(b)) that appears in equation (12). However, thin airfoil

theory provides results [8] for the aerodynamic torque Mac about the aero-

dynamic center, which is coincident with the quarter chord point (point 1

in Figure 1(b)) for a thin airfoil [4]. We proceed by deriving an expression

relating Mα to Mac. Summing torques about point 3 in Figure 1(b),

~Mα = ~Mac + ~r13 × ~L (30)

where, ~r13 is the vector from point 1 to 3 and the lift vector ~L is always

orthogonal to the chord line and hence to ~r13. Also, from Figure 1(b),

|~r13| = b
(

1
2 + a

)
.

Analogous to the section lift coefficient is the section moment coeffi-

cient [4],

cm =
M

1
2(2b)2ρ∞v2

∞
=

M

2b2ρ∞v2
∞

(31)

Expressing the torques in equation (30) in terms of moment coefficients (31)

and the lift coefficient defined in equation (27),

cm,α = cm,ac +
cl
2

(
a+

1
2

)
(32)

As before, cm,ac = cm,ac(α, β) [4]. Expanding this with a first order

Taylor approximation,

cm,ac(α, β) = cm,ac(0, 0) +
∂cm,ac(0, 0)

∂α
α+

∂cm,ac(0, 0)
∂β

β (33)

The aerodynamic center is a convenient reference because the aerodynamic

torque about this point is independent of the angle of attack [4] which implies
∂cm,ac

∂α = 0 and for a symmetric airfoil, cm,ac(0, 0) = 0 [4]. Thin airfoil

theory gives constant values [8] (see σ3, σ4 in the Appendix) for the partial
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derivatives in equation (33) which are substituted back into equation(32)

along with the expression for cl from equation (29) to obtain,

cm,α = σ5 α+ σ6 β (34)

where the constant terms σ5, σ6 are given in the Appendix.

The hinge torque Mβ about the flap hinge (point 6 in Figure 1(b)) arises

due to the pressure distribution on the flap. The hinge torque about an

arbitrary point x̃0 on the flap can be expressed in terms of the strength γ

of the elemental vortices arranged along the flap chord,

Mβ = −ρ∞v∞
∫ b

bc
(ξ − x̃0) γ(ξ − x̃0) dη

As before, a section hinge moment coefficient is defined with the airfoil chord

b replaced by the flap chord b(1− c) (see Figure 1(b)),

cm,β = cm,β(α, β) =
Mβ

1
2(b(1− c))2ρ∞v2

∞
(35)

From the results of thin airfoil theory [9] we directly obtain constants for the

partial derivatives in the first order Taylor expansion (see the Appendix),

cm,β(α, β) = cm,β(0, 0) +
∂cm,β(0, 0)

∂α
α+

∂cm,β(0, 0)
∂β

β = σ7α+ σ8β (36)

Finally, the aerodynamic force and torque expressions from equations

(27, 31) can be written in terms of the defined constants (see equations (50)

in the Appendix) as linear functions of α and β,

L = bρ∞v
2
∞(σ1α+ σ2β)

Mα = 2b2ρ∞v2
∞(σ5α+ σ6β) (37)

Mβ =
1
2
b2(1− c)2ρ∞v2

∞(σ7α+ σ8β)
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6 Steady Linear Aeroelastic Model

We combine the aeroelastic equations of motion developed in section 3 with

the linear steady aerodynamics developed in section 5 to obtain an aeroelas-

tic model for the system. The main limitation is an assumption of steadiness

of the flow around the airfoil with respect to time. Combining equations (12)

and (37), we write the model equations of motion in matrix form.
Iα (Iβ + b(c− a)Sβ) Sα

(Iβ + b(c− a)Sβ) Iβ Sβ

Sα Sβ m




α̈

β̈

ḧ

 + (38)


kα − 2b2ρ∞v2

∞σ5 −2b2ρ∞v2
∞σ6 0

−1
2b

2(1− c)2ρ∞v2
∞σ7 kβ − 1

2b
2(1− c)2ρ∞v2

∞σ7 0

bρ∞v
2
∞σ1 bρ∞v

2
∞σ2 kh




α

β

h

 =


0

0

0


Note that the equations are of the general form [M ]~̈q+[C]~̇q+[K]~q, where

~q is a vector of the system variables, [M ] is a symmetric inertia matrix, [K]

is a stiffness matrix with contributions from the strain energy of the system,

the potential energy of the elastic constraints and the aerodynamic loads.

The matrix [C] represents the damping present in the system, and is null

in this case because of the absence of any dissipative forces in this model.

We rewrite the equations in first order form by introducing a change of

variables {x1, x2, x3, x4, x5, x6} = {α, β, h, α̇, β̇, ḣ} to obtain the following

equation, where the constants ai, i = 1, 2 . . . , 6 and bj , j = 1, 2 . . . , 9 are

expressions of the system constants from Table 1. This linear, 1st order

ODE system has solutions of the form ~x(t) = ~νie
λit, i = {1 . . . 6}, where λi

is an eigenvalue of the system given above with an associated eigenvector ~νi.

The velocity v∞ is shown explicitly in the matrix because of its importance
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in this analysis.



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

a1v
2
∞ + b1 a2v

2
∞ + b2 b3 0 0 0

a3v
2
∞ + b4 a4v

2
∞ + b5 b6 0 0 0

a5v
2
∞ + b7 a6v

2
∞ + b8 b9 0 0 0





x1

x2

x3

x4

x5

x6


(39)

Prediction and characterization of the flutter boundary is our ultimate

goal and the system behavior is studied for various values of v∞. Numerical

values for a real airfoil geometry with corresponding physical structural data,

obtained from experimental results published in reference [10], are tabulated

in Table 2. These numbers were used to numerically integrate the ODEs

in equation (39) using a 4th order Runge-Kutta scheme with a 5th order

correction. The airflow density was taken to be that at mean sea level. The

numerics correspond to a physical situation where an airfoil is flown at sea

level between speeds of 0 to 100m/s. The limitations on the speed are a

direct consequence of the incompressible, inviscid assumptions made in the

aerodynamic model (see section 4), which only hold for a Mach number

M / 0.3, corresponding to an airflow velocity of v∞ ≈ 100m/s. The airfoil

was chosen to run at sea level because of this speed limitation in order to

reflect a real physical regime in which aircraft operate - the takeoff roll. This

usually occurs at speeds within the limits of our model at sea level. Speeds

at the high end of this range are also normal for the initial ascent of small,

low speed private commuter aircraft like the Cessna series of single engine

turboprops [11].
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Table 2: Physical Data

Structural Constants

b 0.127 m

m 1.567 kg

Iα 0.01347 kgm2

Iβ 0.0003264 kgm2

Sα 0.08587 kgm

Sβ 0.00395 kgm

kα 37.3 kgm/s2

kβ 39 kgm/s2

kh 2818.8 kgm/s2

ρ∞ 1.225 kg/m3

Geometrical Constants (Non-dimensional)

a -0.5

c 0.5

The six eigenvalues of the system take the form Γk ± iΩk, k = 1, 2, 3,

where the stability of the system is determined by the real part of the eigen-

values, Γk. The stability of the system is ensured if all Γk ≤ 0. The system

exhibits oscillatory behavior for non-zero values of the imaginary part Ωk.

The response for the set of parameters given in Table 2 is unstable over

a significant range of velocities within the limit of the model, with diver-

gent oscillations. The behavior of the imaginary part of the eigenvalues

with changes in airflow speed is shown in Figure 4(b). A plot of Γk versus

v∞ from Figure 4(a), shows that the first bifurcation occurs at a value of

v∞ ≈ 25m/s, where Γk first take a positive value. This bifurcation corre-
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Figure 4: (a) Real part of eigenvalues plotted versus flow speed (in m/s).

Note the first bifurcation for v∞ ≈ 25m/s. This is the predicted flutter

velocity. (b)Imaginary part of eigenvalues plotted versus flow speed (in

m/s). See Table 2 for values of system constants. The system dynamics for

this configuration are divergent oscillations.

sponds to a change in the stability of the system from stable to divergent

oscillations and is the predicted flutter boundary. The onset of flutter at

such an early stage in the flight regime is highly undesirable because most

modern aircraft take off at speeds ∼ 60m/s [11]. We seek to tailor the

design of the airfoil such that flutter is delayed as long as possible. Within

the limits of the present model, a flutter speed above 100m/s would be a

good design objective because beyond this speed the model will no longer

produce meaningful results.

With this design goal in mind, the behavior of the system was studied

for changes in various model parameters. The first approach adopted was

in varying the geometrical configuration of the airfoil. The location of the
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Figure 5: Real part of eigenvalues plotted versus flow speed (in m/s). Sα =

0.008587 kgm. Note the delayed first bifurcation for v∞ ≈ 65m/s, when

compared to Figure 4. However, flutter is still predicted before the model

limit of v∞ ≈ 100m/s

elastic center (point 3 in Figure 1(b)), corresponding to the value of a in

Table 2 had no significant effect on the location of the first bifurcation point.

The location of the airfoil CG (point 5 in Figure 1(b)) with respect to the

elastic center was then changed. This corresponds to an increase or decrease

in the static moment Sα (see Table 1 and equation (7) for definitions).

Increasing Sα, which implies moving the center of gravity towards the TE of

the airfoil, only worsened the situation with flutter occurring at even lower

speeds. A decrease in Sα, obtained by moving the CG towards the LE of

the airfoil did delay the onset of the first bifurcation. However, the flutter
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Figure 6: (a) Real part of eigenvalues plotted versus flow speed (in m/s).

(b) Imaginary part of eigenvalues plotted versus flow speed (in m/s). Sα =

0.008587 kgm, kα = 93.25 kgm/s2, kβ = 97.5 kgm/s2. The airfoil stiffness

has been increased by 250% and the CG is shifted forward towards the

LE by 90%. Note the first bifurcation for v∞ ≈ 125m/s falls outside the

boundaries of the model (v∞ / 100m/s).

boundary was still within 100m/s for the maximum decrease in Sα possible

physically. For example, the flutter boundary was pushed forward to around

70m/s for 10% of the original Sα (see Figure 5).

The second configuration change was altering the structural characteris-

tics of the airfoil. The stiffness of the airfoil constraints in pitch, plunge and

flap were changed. This approach successfully pushed the flutter boundary

outside the physical envelope of this model. Combining a change in the

geometry of the airfoil with a change in its structural stiffness produced

the best results for the smallest alteration in the airfoil configuration. For

example, a 250% increase in kα and kβ (changing the stiffness of the air-
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Figure 7: System dynamics for a simulation time of 100 seconds. Sα =

0.008587 kgm, kα = 93.25 kgm/s2, kβ = 97.5 kgm/s2. Note that the oscil-

lations do not diverge. The maximum deflection of the airfoil is about 0.5

m, which is twice the airfoil length. The pitch and flap oscillations are also

within 1 radian.

foil in pitch and flap), combined with a 50% decrease in Sα produced the

first bifurcation at a speed of around 120m/s. The bifurcation diagrams

are shown in Figures 6(a) and (b). The stable oscillatory behavior of the

system for the new parameters is shown in Figure 7.

The above analysis is deficient because of the shortcomings of our aero-

dynamic model. While the linear nature of the aerodynamics is one major

limiting assumption, the major obstacle to obtaining a realistic picture of

the dynamics is due to the absence of dissipative forces. The flow around
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the airfoil changes with time and thus physically accurate predictions of flut-

ter speed can only be made using unsteady aerodynamics [1]. However, at

least some qualitative inferences can be made from this limited model. The

flutter speed dependence on the system parameters has been established. It

is also evidently possible to delay the onset of instability by changing the

structure of the airfoil. For example, moving the CG location of the airfoil

forward with respect to its elastic axis, towards the LE, while stiffening the

airfoil structurally leads to an increase in the flutter speed for the linear

aerodynamic model.

7 Incorporating Dissipation in the Model

In previous sections, we have seen the limitations of the steady state aero-

dynamic model, where the generalized aerodynamic force and torques were

linear scleronomic constraints of the form Qi = f(~q), i = α, β, h, where ~q is

a vector of the generalized coordinates. A steady state model predicts un-

realistic flutter boundaries because the steadiness assumption neglects per-

turbations that arise due to airfoil-flow interactions. The surrounding air

exerts frictional forces that would tend to retard the motion of the airfoil.

For systems where the amplitude of oscillations is small compared to the

magnitude of the dissipation, the generalized damping constraint forces are

linear functions of the form Qfr,i = f(~̇q) = −
∑

i cij q̇i. It is possible to write

this in terms of a dissipative function, Ffr = 1
2

∑
i,j cij q̇iq̇j where cij = cji,

such that Qfr,i = −∂Ffr

∂q̇i
. We add this dissipative function to the right hand

side of Lagrange’s equations (9) to obtain the following equations [12],

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Qi −

∂Ffr

∂q̇i
, i = 1, 2, 3 (40)
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We need expressions for the generalized forces on the right hand side of

the above equation. Deriving a dissipative aerodynamic model from first

principles is beyond the scope of this paper. Instead, we adopt an unsteady

model developed by Theodorsen for a thin airfoil oscillating in an incom-

pressible flow [2]. In this model, the sources of dissipation in the airfoil-flow

system are classified according to two distinct physical phenomena - circula-

tory and non-circulatory effects [1]. To understand the origin of circulatory

effects, we recall Kelvin’s circulation theorem discussed in section 4, which

states that the circulation remains constant along a closed contour for an

inviscid flow (neglecting inertial forces). This implies that the vortices de-

veloped on the airfoil surface (see Figure 3) shed vortices of equal strength

and opposite rotation in the surrounding flow in order to produce no change

in the overall circulation. These counter-rotating vortices would produce an

induced flow that would effectively change the flow field around the airfoil.

As the airfoil moves, a succession of these vortices would be continuously

formed leading to unsteady flow around the airfoil dependent on the strength

and distance of these vortices.

Non-circulatory effects arise due to the inertia of the mass of air sur-

rounding the airfoil, which we have neglected so far. A perturbation to the

airfoil that produces a net acceleration would be opposed by the inertial force

of this mass of air. So, the total contribution to the generalized forces on the

right hand side of equations (40) comes from scleronomic constraints, iner-

tial constraints and frictional damping. According to Theodorsen’s model,

the aerodynamic force L and torques Mα,Mβ can be expressed as linear

functions of {α, α̇, α̈, β, β̇, β̈, ḣ, ḧ} (the coefficient of h is zero) as follows:
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L = − ρ∞b
2
[
−πabα̈− T1bβ̈ + πḧ+ πv∞α̇− T4v∞β̇

]
− 2πρ∞bv∞C(k)

[
b

(
1
2
− a

)
α̇+

T11

2π
bβ̇ + ḣ+ v∞α+

T10

π
v∞β

]
Mα = − ρ∞b

2

[
πb2

(
1
8

+ a2

)
α̈− (T7 + (c− a)T1) b2β̈ − πabḧ

]
− ρ∞b

2

[(
1
2
− a

)
πbv∞α̇+

(
T1 − T8 − (c− a)T4 +

1
2
T11

)
bv∞β̇ + (T4 + T10)v2

∞β

]
+ 2πρ∞

(
a+

1
2

)
b2v∞C(k)

[
b

(
1
2
− a

)
α̇+

T11

2π
bβ̇ + ḣ+ v∞α+

T10

π
v∞β

]
(41)

Mβ = − ρ∞b
2

[
2T13b

2α̈− T3

π
b2β̈ − T1bḧ

]
− ρ∞b

2

[{
T4

(
a− 1

2

)
− T1 − 2T9

}
bv∞α̇−

T4T11

2π
bv∞β̇ +

(
T5 − T4T10

π

)
v2
∞β

]
− T12ρ∞b

2v∞C(k)
[
b

(
1
2
− a

)
α̇+

T11

2π
bβ̇ + ḣ+ v∞α+

T10

π
v∞β

]
Here, a, b are the usual airfoil geometrical constants defined in Figure 1,

and Table 1 and ρ∞, and v∞ are the constant freestream density and velocity

respectively. The constants Ti, i = 1, 2, . . . , 14 arise from the velocity poten-

tials [2] and can be expressed in terms of the airfoil constant c (see Figure 1),

analogous to the constants for the steady model, σi (see equations(50) in

the Appendix).

The contribution from the circulatory effects is contained in the last

term in each of equations (41). The effect of the shed vortices is modeled

using the function C(k), where k, known as the reduced frequency, is a

dimensionless parameter that is a measure of the extent of dissipation in

the model. The reduced frequency can be expressed in terms of flow speed

v∞, airfoil half chord b and the natural frequency of the motion ω as k =
bω
v∞

. The Theodorsen function C(k) is a complex valued function [2] that is

given by, C(k) = F (k) + iG(k), where F (k) and G(k) are Bessel functions.
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The Theodorsen function introduces a phase lag between airfoil oscillations

and resulting changes in the surrounding airflow. Its value also determines

the magnitude of change in the lift force due to unsteady effects, which is

the reason it is sometimes called the lift deficiency function. The terms

in equations (41) that do not contain C(k) arise from the non-circulatory

effects of the potential flow. Their contribution to the overall force and

torques is less significant than the circulatory term because inertial forces

on an airfoil tend to be smaller than the pressure forces [1].

8 Linear Quasi-Steady Aeroelastic Model

We adopt an approximation of Theodorsen’s theory by setting C(k) = 1 in

equations (41). This neglects any lag between unsteady oscillations and their

effect on aerodynamic force and torques, limiting us to oscillations that are

changing slowly. Referring to Figure 4 in reference [2], which contains plots

of the real and imaginary parts F (k) and G(k) of the Theodorsen function,

we note that k / 0.1 for C(k) = 1. Apart from neglecting the phase lag,

the forces produced by unsteady effects on the airfoil are assumed to be

small compared to those arising due to steady effects. For this reason, such

an approximation of Theodorsen’s theory is known as ”quasi-steady” thin

airfoil theory [1].

We set C(k) = 1 in equations (41) and use them as expressions for

the generalized forces on the right hand side in equations (12). This leads

to linear second order equations of motion for a quasi-steady aeroelastic

model, expressed in general matrix form as, [M ]~̈q + [C]~̇q + [K]~q = {0},

where ~q = {α, β, h} is a vector of the system variables, [M ] is a symmetric

inertia matrix, [C] contains terms arising from the dissipation in the system
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Table 3: Physical Data for Quasi-Steady Model

Nondimensional Constants

xα 0.2

xβ 0

rα 0.5

rβ 0.035

ωα 90

ωβ 22.5

ωh 27.56

k 0.25

a -0.5

c 0.6

Dimensional Constants (Non-dimensional)

b 1.829 m

m 12.207 kg

and [K] is a stiffness matrix with contributions from the strain energy of the

system, the potential energy of the elastic constraints and the aerodynamic

loads. Written explicitly, Iα + π
`

1
8

+ a2
´
ρ∞b4 Iβ + b(c− a)Sβ + 2T13ρ∞b4 Sα − πρ∞ab3

Iβ + b(c− a)Sβ + 2T13ρ∞b4 Iβ − T3
π

ρ∞b4 Sβ − T1ρ∞b3

Sα − πρ∞ab3 Sβ − T1ρ∞b3 m + πρ∞b2


α̈

β̈

ḧ

 +

 ˆ`
1
2
− a

´
+ 2

`
a2 − 1

4

´
C(k)

˜
πρ∞b3v∞

ˆ
T1 − T8 − (c− a)T4 + 1

2
T11 −

`
a + 1

2

´
T11C(k)

˜
ρ∞b3v∞ −2π

`
a + 1

2

´
C(k)ρ∞b2v∞ˆ

T4

`
a− 1

2

´
− T1 − 2T9 + T12

`
1
2
− a

´
C(k)

˜
ρ∞b3v∞ − [T4T11 − T11T12C(k)] ρ∞

2π
b3v∞ T12C(k)ρ∞b2v∞

[1 + (1− 2a)C(k)] πρ∞b2v∞ −(T4 − T11C(k))ρ∞b2v∞ 2πC(k)ρ∞bv∞


α̇

β̇

ḣ


+

 kα − 2π
`
a + 1

2

´
C(k)ρ∞b2v2

∞
ˆ
T4 + T10 − 2

`
a + 1

2

´
T10C(k)

˜
ρ∞b2v2

∞ 0

T12C(k)ρ∞b2v2
∞ kβ + (T5 − T4T10 + T10T12C(k)) ρ∞

π
b2v2

∞ 0

2πC(k)ρ∞bv2
∞ 2T10C(k)ρ∞bv2

∞ kh


α

β

h

 =


0

0

0

 (42)

At this point, it is convenient to introduce the following nondimension-
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Figure 8: (a) Real part of eigenvalues plotted versus flow nondimensional-

ized flow speed. (b) Imaginary part of eigenvalues plotted versus nondimen-

sionalized flow speed. The first bifurcation for u ≈ 0.65, which corresponds

to a physical speed of 108 m/s in this case.

alized constants:

κ =
πρ∞b

2

m
, u∞ =

v∞
bωα

rα =

√
Iα
mb2

, rβ =

√
Iβ
mb2

xα =
Sα

mb
, xβ =

Sβ

mb

ωα =
√
kα

Iα
, ωβ =

√
kβ

Iβ
, ωh =

√
kh

m
. (43)

Defining nondimensional variables {ᾱ, β̄, h̄} = {α, β, h
b } and using the pa-

rameters from equations (43), we can rewrite equations (42)in nondimen-

sional form, [M̄ ]~̈̄q + [C̄]~̇̄q + [K̄]~̄q = {0}. Written explicitly, we have the
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Figure 9: System dynamics for 100 nondimensional time units. Note that

the oscillations decay with time because this velocity is below the flutter

boundary.

following equations:
r2

α
ω2

α
+ κ

ω2
α

`
1
8

+ a2
´ r2

β

ω2
α

+ (c− a)
xβ

ω2
α

+ 2 κ
ω2

α

T13
π

xα
ω2

α
− aκ

r2
β

ω2
α

+ (c− a)
xβ

ω2
α

+ 2 κ
ω2

α

T13
π

r2
β

ω2
α
− κ

ω2
α

T3
π2

xβ

ω2
α
− κ

ω2
α

T1
π

xα
ω2

α
− aκ

xβ

ω2
α
− κ

ω2
α

T1
π

1 + κ




¨̄α

¨̄β

¨̄h

 +

 ˆ`
1
2
− a

´
+ 2

`
a2 − 1

4

´
C(k)

˜
κ

ωα
u∞

ˆ
T1 − T8 − (c− a)T4 + 1

2
T11 −

`
a + 1

2

´
T11C(k)

˜
κ

πωα
u∞ −2

`
a + 1

2

´
C(k) κ

ωα
u∞ˆ

T4

`
a− 1

2

´
− T1 − 2T9 + T12

`
1
2
− a

´
C(k)

˜
κ

πωα
u∞ − [T4T11 − T11T12C(k)] κ

2π2ωα
u∞ T12C(k) κ

πωα
u∞

[1 + (1− 2a)C(k)] κ
ωα

u∞ −(T4 − T11C(k)) κ
πωα

u∞ 2C(k) κ
ωα

u∞


˙̄α

˙̄β

˙̄h


+

 r2
α − 2

`
a + 1

2

´
C(k)κu2

∞
ˆ
T4 + T10 − 2

`
a + 1

2

´
T10C(k)

˜
κ
π

u2
∞ 0

T12C(k)ρ∞
κ
π

u2
∞ r2

β + (T5 − T4T10 + T10T12C(k)) κ
π2 u2

∞ 0

2C(k)κu2
∞ 2T10C(k) κ

π
u2
∞

ω2
h

ω2
α




ᾱ

β̄

h̄

 =


0

0

0

 (44)

Performing the operation ~̈̄q = −([M̄ ]−1[K̄]~̄q + [M̄ ]−1[C̄]~̇̄q) and introduc-
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ing a change of variables, {x̄1, x̄2, x̄3, x̄4, x̄5, x̄6} = {ᾱ, β̄, h̄, ˙̄α, ˙̄β, ˙̄h}, we write

the equations as 6 linear homogenous first order ODEs in the following

nondimensionalized matrix form,

˙̄x1

˙̄x2

˙̄x3

˙̄x4

˙̄x5

˙̄x6


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

m11 m12 m13 n11 n12 n13

m21 m22 m23 n11 n12 n13

m31 m32 m33 n11 n12 n13





x̄1

x̄2

x̄3

x̄4

x̄5

x̄6


(45)

In the equations, mij , i, j = 1, 2, 3 and nij , i, j = 1, 2, 3 are constants

that have analytical expressions in terms of the entries of the inertia [M ],

stiffness [K] and damping [C] matrices. Analytical solutions of the form ~̄x =

~νie
λiτ , i = {1 . . . 6} were found for equations (45), where λi is an eigenvalue

of the system with an associated eigenvector ~νi. The equations were solved

numerically for the parameters given in Table 3 and the initial condition

vector {0.05, 0.025, 0, 0, 0, 0}. The parameters chosen are typical for large

commercial aircraft [2]. The numerical results agreed very closely with the

analytical solution.

Choosing nondimensionalized velocity u (equations (43)) as the parame-

ter, bifurcation diagrams (Figure 8) were made for the quasi-steady model.

In this case, for the parameters chosen initially, the first bifurcation was

noticed at a nondimensionalized velocity of around 0.65, which corresponds

to a physical velocity of 108m/s. The system dynamics for a velocity below

the flutter boundary are given in Figure 9. The oscillations, as expected,

decay with time.
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9 Cubic Structural Nonlinearities

The assumption of linearity in an aeroelastic system leads to a prediction

of flutter speed, below which the system is stable and perturbations from

the equilibrium flight condition die out exponentially with time. Above the

flutter speed however, the system dynamics show exponentially increasing

oscillations with time. These flutter speed predictions and the characteristics

of the motion are affected by the nonlinearities present in the system [3].

Nonlinearities arise from both the aerodynamics and the structural dynamics

of the system. We shall consider only structural nonlinearities in this paper.

An aircraft structure is affected by various kinds of nonlinearities, which

can classified into either distributed or concentrated nonlinearities based

on the region of their action. Distributed nonlinearities arise from general

deformations of the entire structure. Concentrated nonlinear phenomena, on

the other hand, are localized and result from non-ideal mechanical linkages

and non-elastic structural deformations. We consider a particular type of

concentrated nonlinearity that can be approximated by replacing the linear

springs in our model with hard and soft nonlinear springs. Linear

springs exhibit the behavior represented by the solid line in the force versus

displacement curves shown in Figure 10. The spring provides a resistance

proportional to its linear or angular displacement, with the proportionality

constant determined by Hooke’s Law. A nonlinear spring on the other hand

does not deform proportionally to the displacement. A hardening spring

becomes stiffer with increasing displacement or twist angle as shown by

the dashed curves in the figure. A softening spring, on the other hand,

offers decreasing resistance as the spring is stretched. This is represented

by the dotted lines in the figure. In general, these nonlinear springs can

36



Figure 10: Behavior of cubic hardening (dashed lines) and softening springs

(dotted lines) compared to a linear spring (solid line). Hardening springs

become stiffer with increased displacement, while softening springs offer less

resistance. The magnitude of γ indicates the degree of softness or hardness.

be represented as polynomial functions of the generalized coordinates of the

system:

kα(α) = a0 + a1α+ a2α
2 + a3α

3

kβ(β) = b0 + b1β + b2β
2 + a3β

3

kh(h) = c0 + c1h+ c2h
2 + c3h

3

The constant term can be set to zero by the simple expedient of setting

the initial displacement as the equilibrium position. The coefficient of the
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Figure 11: (a) Real part of eigenvalues plotted versus flow speed nondi-

mensionalized with respect to flutter velocity V ∗. (b) Imaginary part of

eigenvalues plotted versus nondimensionalized flow speed. The first bifur-

cation for V/V ∗ = 1, corresponds to a physical speed of 108 m/s in this

case.

square term can also be set to zero by arguing that the spring exhibits anti-

symmetric behavior for loading and unloading. Then, the nonlinear springs

can be represented as

kα(α) = a1α+ a3α
3

kβ(β) = b1β + a3β
3 (46)

kh(h) = c1h+ c3h
3

For a hard spring, the coefficients of the cubic terms in the above equa-

tions are positive. The degree of hardness can be specified by defining

γ1 = a3/a1, γ2 = b3/b1, γ3 = c3/c1. Higher γi values correspond to harder
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Figure 12: A phase plot of α̇ vs α shows that a very small limit cycle exists

around the origin, which attracts trajectories with initial conditions outside

the envelope of the limit cycle. Flow velocity is 100 m/s, which is below the

predicted flutter speed of 108 m/s. The hardness coefficient γ = 5 and all

other parameters are given in Table 2.

springs. For soft springs, γi are negative and the degree of softness is propor-

tional to the respective magnitudes of γi. Replacing the constant stiffness

terms in equations 12 with equations 46 above, and using the quasi-steady

model from equations 41 developed in a preceding section for the aerody-

namics, we obtain the following equations for an aeroelastic system with
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Figure 13: A phase plot of α̇ vs α shows that a very small limit cycle exists

around the origin, which attracts trajectories with initial conditions inside

the envelope of the limit cycle. The size of the limit cycle is 10−7, which

is negligible for all practical purposes. Flow velocity is 100 m/s, which is

below the predicted flutter speed of 108 m/s. The hardness coefficient γ = 5

and all other parameters are given in Table 2.

cubic stiffness nonlinearities oscillating in quasi-steady flow.

Iα α̈+ (Iβ + b(c− a)Sβ) β̈ + Sα ḧ+ a1α+ a3α
3 = −ρ∞b2

[
πb2

(
1
8

+ a2

)
α̈− (T7 + (c− a)T1) b2β̈ − πabḧ

]
−

ρ∞b
2

[(
1
2
− a

)
πbv∞α̇+

(
T1 − T8 − (c− a)T4 +

1
2
T11

)
bv∞β̇ + (T4 + T10)v2

∞β

]
+

2πρ∞

(
a+

1
2

)
b2v∞

[
b

(
1
2
− a

)
α̇+

T11

2π
bβ̇ + ḣ+ v∞α+

T10

π
v∞β

]
Iβ β̈ + (Iβ + b(c− a)Sβ) α̈+ Sβ ḧ+ b1β + a3β

3 = −ρ∞b2
[
2T13b

2α̈− T3

π
b2β̈ − T1bḧ

]
−

ρ∞b
2

[{
T4

(
a− 1

2

)
− T1 − 2T9

}
bv∞α̇−

T4T11

2π
bv∞β̇ +

(
T5 − T4T10

π

)
v2
∞β

]
−

T12ρ∞b
2v∞

[
b

(
1
2
− a

)
α̇+

T11

2π
bβ̇ + ḣ+ v∞α+

T10

π
v∞β

]
(47)

mḧ+ Sα α̈+ Sβ β̈ + c1h+ c3h
3 = −ρ∞b2

[
−πabα̈− T1bβ̈ + πḧ+ πv∞α̇− T4v∞β̇

]
−

2πρ∞bv∞

[
b

(
1
2
− a

)
α̇+

T11

2π
bβ̇ + ḣ+ v∞α+

T10

π
v∞β

]
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Figure 14: A phase plot of α̇ vs α shows that trajectories starting near the

origin settle down to an attracting limit cycle. Flow velocity is 110 m/s,

which is just above the predicted flutter speed of 108 m/s. The hardness

coefficient γ = 5 and all other parameters are given in Table 2.

Note that C(k) was set to 1 to correspond to quasi-steady flow. This

system can then be rewritten as six first order equations of the general form:

ẋ1 = x4

ẋ2 = x5

ẋ3 = x6 (48)

ẋ4 = p1x1 + p2x
3
1 + q1x2 + q2x

3
2 + r1x3 + r2x

3
3 + s1x4 + s2x5 + s3x6;

ẋ5 = p3x1 + p4x
3
1 + q3x2 + q4x

3
2 + r3x3 + r4x

3
3 + s4x4 + s5x5 + s6x6;

ẋ6 = p5x1 + p6x
3
1 + q5x2 + q6x

3
2 + r5x3 + r6x

3
3 + s7x4 + s8x5 + s9x6;

Here, pi, qi, ri, and sj , i = {1, . . . , 6} and j = {1, . . . , 9} are constants

expressed analytically in terms of the system parameters defined in equa-

tions 43 and the airstream velocity v∞. Linear stability analysis was done

by constructing the following Jacobian matrix for a general fixed point
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Figure 15: Comparing this phase plot of α̇ vs α with that of Figure 14 shows

that the amplitude of the limit cycle has grown as the velocity has increased.

Flow velocity is 150 m/s, which is above the predicted flutter speed of 108

m/s. The hardness coefficient γ = 5 and all other parameters are given in

Table 2.

~x∗i = (x∗1, x
∗
2, x

∗
3, x

∗
4, x

∗
5, x

∗
6).

Df(~x∗i ) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

p1 + 2p2x
2
1 q1 + 2q2x2

2 r1 + 2r2x2
3 s1 s2 s3

p3 + 2p4x
2
1 q3 + 2q4x2

2 r3 + 2r4x2
3 s4 s5 s6

p5 + 2p6x
2
1 q5 + 2q6x2

2 r5 + 2r6x2
3 s7 s8 s9


~x∗i

(49)

10 Cubic Hardening Springs

An aeroelastic system with cubic hardening springs can be described by

equations 47with positive cubic coefficients. The only physical fixed point

for this case is the origin, (0, 0, 0, 0, 0, 0). The eigenvalues of the Jacobian

42



Figure 16: This time series plot shows the oscillations with exponentially

decreasing amplitude for a speed of 100 m/s, which is below the predicted

flutter speed of 108 m/s. The hardness coefficient γ = 5 and all other

parameters are given in Table 2.

Figure 17: This time series plot shows limit cycle oscillations with for a

speed of 150 m/s, which is above the predicted flutter speed of 108 m/s. The

hardness coefficient γ = 5 and all other parameters are given in Table 2.
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Figure 18: This plot shows the growth of the limit cycle amplitude with

change in speed nondimensionalized with respect to flutter speed V ∗. The

hardness coefficient γ = 0.05 and all other parameters are given in Table 2.

The limit cycle amplitude is 285◦ at a speed 25% greater than flutter, clearly

indicating that the airfoil has undergone catastrophic oscillations at this

point.

evaluated at this fixed point have negative real parts for values less than

the flutter speed, V ∗. The flutter speed is predicted from the linear system

as described in section 6. Bifurcation diagrams for the eigenvalues of the

system for the dimensionless parameter V/V ∗ are shown in Figure 11. For

values of V/V ∗ < 1 the airspeed velocity is less than the flutter speed and the

system is asymptotically stable. For values above this dimensionless speed,

exponentially divergent oscillations are predicted by the linearization. This

predicted behavior is similar to the quasi-steady linear case presented in

section 8. The system behavior was investigated for a range of velocities

using numerical simulations for various hardness values. The effect of the

elastic center location was also investigated.

44



Figure 19: This plot shows the growth of the limit cycle amplitude with

change in speed nondimensionalized with respect to flutter speed V ∗. The

hardness coefficient γ = 0.1 and all other parameters are given in Table 2.

The limit cycle amplitude is 200◦ at a speed 25% greater than flutter, which

is lower than the previous case where γ = 0.1. However, this is still a

catastrophic case of flutter.

For speeds below the onset of flutter, a very small attracting limit cycle

surrounds the origin. This is shown in Figures 12, where the trajectory was

started close to the origin, but outside the envelope of the limit cycle. For a

set of initial conditions outside the closed orbit, trajectories spiral inwards

to the limit cycle. Figure 13 shows a trajectory that was started very close

to the origin, which approaches the limit cycle from the inside. The system

dynamics for speeds below flutter exponentially decrease to the amplitude

of the limit cycle, of the order 10−7 which is for all practical purposes zero.

For speeds above the flutter speed however, the limit cycle increases in size

proportional to the airspeed velocity. This behavior is shown in Figures 14

and 15. The spring hardness for the example shown is γi = 5 and the other

45



Figure 20: This plot shows the growth of the limit cycle amplitude with

change in speed nondimensionalized with respect to flutter speed V ∗. The

hardness coefficient γ = 1, which implies that the linear terms are equal in

magnitude to the nonlinear terms. All other parameters are given in Table 2.

The limit cycle amplitude is 60◦ at a speed 25% greater than flutter, which

is quite severe, but the amplitude has decreased significantly.

parameters are the same as before (see Table 2). Time series of α oscillations

are shown in Figure 16 for a speed of 100 m/s, which shows exponentially

decreasing oscillations. At a speed of 150 m/s, around 40 m/s above the

flutter speed, the system settles down to a limit cycle oscillation as shown

in Figure 17.

The size of the limit cycle also depends on the hardness of the spring.

Figures 18 through 22 show plots of the limit cycle amplitude versus the

non-dimensional speed V/V ∗, where V ∗ is the flutter speed predicted by the

linear quasi-steady model. The spring hardness coefficient γi = 0.05, 0.1, 1, 5,

and 10 respectively. For small values of γi, the limit cycle amplitude grows to

values greater than 90◦, which indicates catastrophic wing failure, for speeds
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Figure 21: This plot shows the growth of the limit cycle amplitude with

change in speed nondimensionalized with respect to flutter speed V ∗. The

hardness coefficient γ = 5. For the first time, the system has nonlinearities

that are larger than the linear terms. All other parameters are given in

Table 2. The limit cycle amplitude is 25◦ at a speed 25% greater than

flutter. This is a big improvement over all the other cases, but can still be

cause for concern in the design of a wing.

only 25% above the flutter speed. As the spring hardness is increased to a

value γ > 1, at which point the nonlinear term is larger than the linear

term, the amplitude of oscillations is reduced to a more reasonable 20◦. For

all cases, the limit cycle starts to grow in amplitude exactly at the flutter

speed predicted by the linearized model.

Changing the elastic axis position (a in Figurer̃efairfoil) has a dramatic

affect on the linearly predicted flutter velocity. For values of a > −0.5, the

system exhibits instability for all speeds. For this reason, this particular

airfoil was designed with an elastic axis at a = −0.5. Moving the elastic

axis to a = −0.6 increases the flutter velocity to 129m/s. It also has an
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Figure 22: This plot shows the growth of the limit cycle amplitude with

change in speed nondimensionalized with respect to flutter speed V ∗. The

hardness coefficient γ = 10 and all other parameters are given in Table 2.

The limit cycle amplitude is 15◦ at a speed 25% greater than flutter. This

is within acceptable limits for large wings.

affect on the amplitude of the limit cycle oscillations induced after the flut-

ter. Comparing Figuresr̃efhardlco5 and 23 shows that the amplitude of the

oscillations has reduced by 33% at a speed 25% greater than flutter speed

for the same spring hardness coefficient by moving the elastic axis forward

by 20%. In fact, the amplitude of the limit cycle is comparable to that of a

much harder spring with γ = 10, shown in Figure 22.

11 Concluding Remarks

In this paper, we derived a linear steady state aeroelastic model in three

DOF for an airfoil with two spatial dimensions. We derived equations of

motion from the Lagrangian formulation for conservative systems. A flut-

ter boundary was predicted at sea level conditions and the effects of airfoil
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Figure 23: This plot shows the decrease in the limit cycle amplitude with

change in the position of the elastic axis to a = −0.6 from −0.5 (see Fig-

urer̃efairfoil). The hardness coefficient γ = 5 and all other parameters are

given in Table 2. The limit cycle amplitude is 17◦ at a speed 25% greater

than flutter. This is comparable to the case of γ = 10.

geometry and structural characteristics on the predicted value were stud-

ied. The results indicate that a linear steady state model cannot accurately

predict the flutter boundary. A major weakness of the model lies in the

assumed steadiness of the airflow around an airfoil. The airfoil-flow interac-

tions produce perturbations that are entirely neglected in a non-dissipative

model. Furthermore, the steady state assumption limits the velocity range

for which this model is valid, due to the necessary limitations of inviscidity

and incompressibility that have been introduced while deriving the aero-

dynamical model. However, the model does provide a certain amount of

insight into the nature of the flutter boundary. We have shown that the

flutter boundary can be inferred from the behavior of the real part of the

eigenvalues arising from the equations of motion. It has also been noticed
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that changing certain airfoil structural and geometrical parameters leads to

a shift in the position of the flutter boundary. This is significant because

it allows for the design of an airfoil which will never encounter flutter for a

certain flight regime.

We then developed a quasi-steady aerodynamic model, which is a better

representation of real flow around an airfoil. The introduction of dissipative

forces into the flow around an airfoil led to a more realistic prediction of

flutter characteristics. We have adopted Theodorsen’s unsteady thin airfoil

theory [2] as our aerodynamic model. The theory is modified by assuming

a slowly changing flow, leading to the quasi-steady form of Theodorsen’s

theory. The aerodynamic forcing functions are expressed as functions of time

derivatives of the system variables. This was combined with the structural

dynamics to complete the dissipative aeroelastic model.

In the next step we incorporate structural nonlinearities into the un-

steady model by replacing the structural stiffness constants kα, kβ, kh with

polynomial stiffness coefficients kα(α), kβ(β), kh(h). We studied a particular

kind of structural nonlinearity, which can be modeled using cubic harden-

ing springs of the general form s1q + s(3)q3, where q is a system variable.

The model predicts a very small attractive limit cycle enclosing the origin,

which makes the system settle down to oscillations of negligible amplitude

at speeds before the flutter velocity. At the linearly predicted flutter veloc-

ity, however, the limit cycle grows in size. The amplitude of the limit cycle

oscillations increases with the airspeed. A system with a larger cubic hard-

ness coefficient undergoes smaller amplitude oscillations when compared to a

system with smaller nonlinearities at the same speed. The amplitude of the

limit cycles also decreases when the elastic center is moved forward towards

the leading edge of the airfoil.
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Appendix

The length of the flap chord, from Figure 1 is bf = b(1− c). We define the

constant nondimensional parameter E = bf

b = 1 − c. Then we can express

the partial derivatives σi, i = {1 . . . 6}, used in the equations (29,34,and 36)

of the steady aerodynamic model (see section 5), solely in terms of E as

follows:
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σ1 =
∂cl
∂α

= 2π

σ2 =
∂cl
∂β

= σ1

[
1− 2

π

(
arccos(

√
E)−

√
E(1− E)

)]
σ3 =

∂cm,ac

∂α
= 0

σ4 =
∂cm,ac

∂β
= −1

2
(2− E)

√
E(2− E) (50)

σ5 =
∂cm,α

∂α
= −1

4
σ1

σ6 =
∂cm,α

∂β
= −1

4
σ2 − 2(1− E)

√
E(1− E)

σ7 =
∂cm,β

∂α
= − 4σ1

πE2

[(
3
2
− E

) √
E(1− E)−

(
3
2
− 2E

) (π
2
− arccos(

√
E)

)]
σ8 =

∂cm,β

∂β
=

σ7σ2

σ1
−

2(1− E)
√
E(1− E)

πE2

[π
2
− arccos(

√
E)−

√
E(1− E)

]
The Theodorsen unsteady aerodynamic theory [2] derives the following

constants Ti, i = {1 . . . 14} in terms of the constant airfoil length c (see

Figure 1). The constants appear in the equations (41,42,and 44) in the

section 8, wherein we derive the linear quasi-steady aerodynamic model.
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T1 = c arccos(c)− 1
3
(2 + c2)

√
1− c2

T2 = c (1− c2)− (1 + c2)
√

1− c2 arccos(c) + (c arccos(c))2

T3 =
1
4
c (7 + 2c2)

√
1− c2 arccos(c)−

(
1
8

+ c2
)

(arccos(c))2 − 1
8
(1− c2)(5c2 + 4)

T4 = c
√

1− c2 − arccos(c)

T5 = 2 c
√

1− c2 arccos(c)− (arccos(c))2 + c2 − 1

T6 = T2

T7 =
1
8
c (2c2 + 7)

√
1− c2 −

(
1
8

+ c2
)

arccos(c) (51)

T8 = c arccos(c)− 1
3
(2c2 + 1)

√
1− c2

T9 =
1
2

[
1
3

√
(1− c2)3 + aT4

]
T10 =

√
1− c2 + arccos(c)

T11 = (1− 2c) arccos(c) + (2− c)
√

1− c2

T12 = (2 + c)
√

1− c2 − (2c+ 1) arccos(c)

T13 = −1
2

[T7 + (c− a)T1]

T14 =
1
16

+
1
2
ac
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