An Introduction to the Mathematics of Networks

Mason A. Porter
Mathematical Institute, University of Oxford
Tutor in Applied Mathematics, Somerville College
Outline

- Introduction
- What is network science?
- Discussion and Examples
- Conclusions
What is a network?

A network consists of nodes representing entities. Nodes are connected by edges representing ties between the entities.

Examples:

- Individuals connected by Facebook “friendships”
- Web pages connected by hyperlinks
- Contiguous cities on a train route
Networks are Everywhere
Facebook “friendships”
“When we understand this slide, we’ll have won the war.”
Multirelational organization of large-scale social networks in an online world

Michael Szell*, Renaud Lambiotte**, and Stefan Thurner***

*Section for Science of Complex Systems, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; **Institute for Mathematical Sciences, Imperial College London, London SW7 2PG, United Kingdom; ***Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom; and

Edited by H. Eugene Stanley, Boston University, Boston, MA, and approved June 23, 2010 (received for review March 25, 2010)

The capacity to collect fingerprints of individuals in online media has revolutionized the way researchers explore human society. Social systems can be seen as a nonlinear superposition of a multitude of complex social networks, where nodes represent individuals and links capture a variety of different social relations. Much emphasis has been put on the network topology of social interactions, however, the multidimensional nature of these interactions has largely been ignored, mostly because of lack of data. Here, for the first time, we analyze a complete, multirelational, large social network of a society consisting of the 300,000 odd players of a massive multiplayer online game. We extract networks of six different types of one-to-one interactions between the players. Three of them carry a positive connotation (friendship, communication, trade), three a negative (enmity, armed aggression, punishment). We first analyze these types of networks as separate entities and find that negative interactions differ from positive interactions by their lower reciprocity, weaker clustering, and fatter-tail degree distribution. We then explore how the interdependence of different network types determines the organization of the social system. In particular, we study correlations and overlap between different types of links and demonstrate the tendency of individuals to play different roles in different networks. As a demonstration of the power of the approach, we present the first empirical large-scale verification of the long-standing structural balance theory, by focusing on the specific multiplex network of friendship and enmity relations.

Complex networks | multiplex relations | quantitative sociology

Networks in MMORPGs
Types of Networks

- Binary networks: 1 if there is a connection and 0 if there isn’t
- Weighted networks: Some value if there is a connection (representing strength of connection) and otherwise 0
- Directed networks
- Bipartite networks: only nodes of different types are connected to each other (e.g., an actor connected to a movie in which he/she appeared)
- More ...
Representing a Network

Adjacency matrix A

This example: binary ("unweighted")

$A_{ij} = 1$ if there is a connection between nodes i and j

$A_{ij} = 0$ if no connection

How do we generalize the mathematical representation to weighted, directed, and bipartite examples? What happens for networks that depend on time? What changes in other situations?

$$A = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 \\
\end{bmatrix}$$
Goals of **Network Science**

1. Basic principles
 - Microscopic, mesoscopic, and macroscopic structures

2. Function = structure + dynamics
 - Dynamics *on* networks, dynamics *of* networks, interactions between the two
 - Time-evolution, robustness, etc.

3. Application
 - Inference/prediction of structure, demographics, etc.
 - Control and design
Basic Principles

- **Microscopic structure**
 - Properties and roles of individual nodes and edges
 - E.g., local clustering properties, node roles

- **Macroscopic and mesoscopic structure**
 - Macro: Distributions of various microscopic properties of all nodes
 - Caveats: sensitive to noise, missing data, etc.
 - Meso: e.g., modules and hierarchies, core-periphery structure
Small Worlds

6 degrees of separation (psychologist Stanley Milgram)

6 degrees of Kevin Bacon

Erdős numbers

Mathematical models developed starting in late 1990s to study this (starting with Watts & Strogatz, 1998)

How to navigate small worlds?
Develop and use computer algorithms to group nodes (e.g. circles of friends) in an automated fashion.
Facebook Networks

Nodes = individuals

Links = self-identified friendships (1 or 0)

Data

100 different universities (full networks)

Single-time snapshot: September 2005

Facebook was university-only

Self-reported demographics

Gender, class year, high school, major, dormitory/"House"

Provided by Adam D’Angelo & Facebook
Caltech (colored by “House”)

How do universities organize?

- Houses are important at Caltech (reality check for methodology)
- High school is more important at large universities
- Class year is the most important factor at most universities and dorm is often a very strong secondary factor
- Major has varying importance at different universities
- Our work suggests interesting future research projects for social scientists
Voting Networks

Ranking Sports Teams

(this example: American college football)

- **Network:**
 - nodes = teams
 - edges = games
- **Effect on ranking of reversing the outcome of games depends on how important the game is for the network structure**
Chunking: Can networks tell you something about how you learn to get better at Guitar Hero?
Given a network, how should you measure which nodes are most important?

Example: How would you measure which railway stations are most important? What about Hollywood actors?
Some References

- Lots of entries on Wikipedia and Scholarpedia
Conclusions

- **Network science** is a fascinating subject that draws from mathematics, physics, computer science, sociology, biology, and numerous other fields.

- A **statistical mechanics** perspective: Start with local information and appropriately coarse-grain/average over things to find global insights.

- Mathematics is a vibrant area that shows up *everywhere* in your life.