1. Prove that \(\tau(n) = n^{o(1)} \).

2. Prove that \(\sum_{x>n} \frac{\chi(x)}{x} = O(1/n) \).

3. Prove that \(\phi(n) = \Omega(n/\log \log n) \).

4. Prove that
 \[
 \sum_{p \leq n} \frac{1}{p} \sim \log \log n.
 \]

5. More generally, prove that
 \[
 \sum_{p \leq n : p \equiv a \pmod{q}} \frac{1}{p} \sim \frac{1}{\phi(q)} \log \log n,
 \]
 where \((a, q) = 1\).

6. Suppose that \((a_n)_n\) is a sequence of complex numbers with \(\sum_n |a_n| < \infty \). Show that the product
 \[
 \prod_{n=1}^{\infty} (1 - a_n) := \lim_{N \to \infty} \prod_{n \leq N} (1 - a_n)
 \]
 converges and is zero if and only if \(a_n = 1\) for some \(n\).

7. Show that if \(A \subset \mathbb{Z}/p\mathbb{Z}\) has \(|A| < \log p\) then
 \[
 \sup_{\gamma \neq 0} |\widehat{1}_A(\gamma)| = \Omega(|A|).
 \]

8. Suppose that \(G\) is a finite abelian group, \(A \subset G\) has density \(\alpha\), and
 \[
 S \subset \{ \gamma \in \hat{G} : |\widehat{1}_A(\gamma)| \geq \epsilon \alpha \}
 \]
 for some \(\epsilon \in (0, 1]\). Show that
 \[
 |S| \leq \epsilon^{-2} \alpha^{-1}.
 \]

9. Show that if \(p \) is prime and \(w \in \mathbb{Z}/p\mathbb{Z} \) then there are elements \(x, y, z \) such that \(w \equiv x^2 + y^2 + z^2 \pmod{p} \).

10. Show that there is some function \(p_0(\alpha) \) such that if \(p > p_0(\alpha) \) is prime and \(A \subset \mathbb{Z}/p\mathbb{Z} \) has density \(\alpha \), then every \(x \in \mathbb{Z}/p\mathbb{Z} \) has \(x \equiv u^2 + a_1 + a_2 \pmod{p} \) for some \(a_1, a_2 \in A \) and \(u \in \mathbb{Z}/p\mathbb{Z} \).

11. Show that there is an absolute constant \(C > 0 \) such that if \(x > C \) is odd and \(N > C \) is a natural then \(x \equiv u_1 + u_2 + u_3 \pmod{N} \) where \(u_1, u_2, u_3 \) are all coprime to \(N \).

Mathematical Institute, University of Oxford, 24-29 St. Giles’, Oxford OX1 3LB, England
E-mail address: tom.sanders@maths.ox.ac.uk