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Abstract

In 1972, Mader showed that every graph without a 3-connected
subgraph is 4-degenerate and thus 5-colourable. We show that the
number 5 of colours can be replaced by 4, which is best possible.

1 Introduction

Throughout the paper all graphs are finite and simple, and we only use
standard notions and notation. We recall that a graph is k-connected if it
has at least k + 1 vertices and no vertex cutset with at most k − 1 vertices.
In 1972, Mader [2] proved the following theorem.

Theorem 1.1. For every integer k ≥ 1, every graph with average degree at
least 4k contains a (k + 1)-connected subgraph.

1



Minimum degree 4 Chromatic number 4

Figure 1: Graphs with no 3-connected subgraph.

Focusing on the case k = 2 of Theorem 1.1, we call a graph fragile if
it has no 3-connected subgraph. From Theorem 1.1, every non-null fragile
graph has a vertex of degree at most 7. By restricting the proof of Mader to
the case k = 2, it is easy to show that all fragile graphs G on at least four
vertices satisfy |E(G)| ≤ 2.5|V (G)| − 5 (we supply the proof in Section 3
for the sake of completeness). So the average degree of G is smaller than
5. Thus every fragile graph contains a vertex of degree at most 4, and this
is best possible as shown by the graph in Figure 1. Every fragile graph is
therefore 5-colourable.

Despite recent progress on related questions, there is no available proof
that the number 5 of colours can be improved. The objective of this paper
is to prove the following theorem that implies that every fragile graph is
4-colourable. It was announced without proof in [3] (which also contains a
thorough literature review) and was independently rediscovered by the first
two and last two authors of this article.

Theorem 1.2. For all m ≥ 4, every graph with chromatic number at
least m+ 1 has a 3-connected subgraph with chromatic number at least m.

Theorem 1.2 is best possible as shown by the graph in Figure 1. The proof
of Theorem 1.2 is given in Section 2. Several remarks and open questions are
presented in Section 3.

2 Proof of Theorem 1.2

For every integer m ≥ 4, a graph G is m-fragile if all 3-connected subgraphs
of G are (m− 1)-colourable. Observe that a fragile graph is m-fragile for all
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m ≥ 4. Theorem 1.2 can be rephrased as: for all m ≥ 4, every m-fragile
graph ism-colourable. To prove Theorem 1.2, we shall establish the following
stronger statement. By a k-colouring of a graph G, we mean a function c
that associates to each vertex of G an integer in {1, . . . , k} and such that for
all edges xy of G, c(x) ̸= c(y).

Theorem 2.1. For every integer m ≥ 4, every m-fragile graph G satisfies
the following four conditions.

(1) For all non-adjacent x, y ∈ V (G), G admits an m-colouring c such that
c(x) = c(y).

(2) For all distinct x, y ∈ V (G), G admits an m-colouring c such that
c(x) ̸= c(y).

(3) For all distinct x, y, z ∈ V (G), G admits an m-colouring c such that
c(x) /∈ {c(y), c(z)}.

(4) For all distinct x, y, z ∈ V (G) that are not all pairwise adjacent, G
admits an m-colouring c such that |{c(x), c(y), c(z)}| = 2.

Proof. We proceed by induction on |V (G)|. If |V (G)| ≤ 3, then G obviously
satisfies conditions (1)–(4). For the induction step, suppose |V (G)| ≥ 4 and
that the statement holds for every graph with fewer vertices than G.

If G is 3-connected, then G satisfies conditions (1)–(4) because by as-
sumption G is (m − 1)-colourable. So G can be coloured with colours 1 to
m− 1, and colour m is available to satisfy any of the conditions (1)–(4) (for
instance x and y can be recoloured with colour m to satisfy (1)). Hence we
may assume from here on that G is not 3-connected.

Since G is not 3-connected, there exist two induced subgraphs G1, G2 of G
such that V (G) = V (G1)∪V (G2), E(G) = E(G1)∪E(G2), V (G1)\V (G2) ̸=
∅, V (G2)\V (G1) ̸= ∅, and S = V (G1)∩V (G2) has size at most 2. Moreover,
since G is m-fragile, G1 and G2 are also m-fragile and, as |V (G1)|, |V (G2)| <
|V (G)|, we may apply the induction hypothesis to both G1 and G2.

If S = ∅, the induction step is obvious and we omit the details. So we may
set S = {u, v} (possibly u = v). We have to prove that for each of the pre-
colouring conditions C among (1)–(4) on any given set X ⊆ V (G) (namely,
X = {x, y} for conditions (1) and (2) and X = {x, y, z} for conditions (3)
and (4)) some appropriate 4-colouring exists. Suppose first that X ⊆ V (G1).
Then, by the induction hypothesis, G1 admits a colouring c1 that satisfies C.
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By applying (1) or (2) to the vertices u and v of G2 (or trivially if u = v),
and up to a relabeling of the colours, we can force a colouring c2 of G2 such
that c2(u) = c1(u) and c2(v) = c1(v). Note that the case when uv is an edge
corresponds to the usual amalgamation of two colourings on a clique cutset.
Hence, c1 ∪ c2 is a colouring of G that satisfies C. The proof is similar when
X ⊆ V (G2). Hence, from here on, we may assume that

X intersects both V (G1) \ V (G2) and V (G2) \ V (G1). (⋆)

We now prove four claims, from which Theorem 2.1 trivially follows. Their
proofs are easy when u = v, so we omit this case and assume u ̸= v. Note
that, unless specified otherwise, we shall make no assumption on whether u
and v are adjacent.

Claim 1. The graph G satisfies (1).

Proof. By (⋆), we may assume that x ∈ V (G1) \ V (G2) and y ∈ V (G2) \
V (G1). We build three colourings a1, b1 and c1 of G1 and three colourings a2,
b2 and c2 of G2 that are represented in Figure 2 for the reader’s convenience.

By (3) applied to x, u, v (in this order) in G1, we obtain a colouring a1
of G1 such that a1(x) /∈ {a2(u), a2(v)}. Similarly, we obtain a colouring a2
of G2 such that a2(y) /∈ {a2(u), a2(v)}. Up to a relabeling, we may assume
that a1(x) = a2(y) = 1, a1(u) = a2(u) = 2 and a1(v), a2(v) ∈ {2, 3}. If
a1(v) = a2(v), then a1 ∪ a2 is a colouring of G that satisfies (1). Hence, up
to symmetry, we may assume that a1(v) = 3 and a2(v) = 2.

By (3) applied to u, x, v in G1, we obtain a colouring b1 of G1 such that
b1(u) /∈ {b1(x), b1(v)}. Similarly, we obtain a colouring b2 of G2 such that
b2(u) /∈ {b2(y), b2(v)}. Up to a relabeling, we may assume that b1(x) =
b2(y) = 1, b1(u) = b2(u) = 2 and b1(v), b2(v) ∈ {1, 3}. If b1(v) = b2(v), then
b1 ∪ b2 is a colouring of G that satisfies (1). Hence, we may assume that
b1(v) ̸= b2(v). If b2(v) = 3, then a1 ∪ b2 is a colouring of G that satisfies (1).
Hence, we may assume that b1(v) = 3 and b2(v) = 1.

By (3) applied to v, x, u in G1, we obtain a colouring c1 of G1 such that
c1(v) /∈ {c1(x), c1(u)}. Similarly, we obtain a colouring c2 of G2 such that
c2(v) /∈ {c2(y), c2(u)}. Up to a relabeling, we may assume that c1(x) = 1 and
either c1(u) = 1 and c1(v) = 2 or c1(u) = 2 and c1(v) = 3. Up to a relabeling,
we may also assume that c2(y) = 1 and either c2(u) = 1 and c2(v) = 2 or
c2(u) = 2 and c2(v) = 3. If c1(u) = c2(u), then c1 ∪ c2 is a colouring of G
that satisfies (1). Hence, we may assume that c1(u) ̸= c2(u). If c2(u) = 2
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Figure 2: Colourings obtained in the proof of Claim 1.
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(and so c2(v) = 3), then a1 ∪ c2 is a colouring of G that satisfies (1). Hence,
we may assume that c1(u) = 2, c1(v) = 3, c2(u) = 1 and c2(v) = 2.

By (4) applied to x, u, v in G1, we obtain a colouring d1 of G1 such that
|{d1(x), d1(u), d1(v)}| = 2 (note that x, u and v are not pairwise adjacent
because a2(u) = a2(v) implies uv /∈ E(G)). Up to a relabeling, we may
assume that d1(x) = 1 and {d1(x), d1(u), d1(v)} = {1, 2}. If d1(u) = 1 and
d1(v) = 2, then d1 ∪ c2 satisfies (1). And if d1(u) = 2 and d1(v) = 1,
then d1 ∪ b2 satisfies (1). Finally, if d1(u) = 2 and d1(v) = 2, then d1 ∪ a2
satisfies (1). The claim is proved.

Claim 2. The graph G satisfies (3).

Proof. If x ∈ {u, v} (say x = u up to symmetry), then by (⋆) we may assume
that y ∈ V (G1) \ V (G2) and z ∈ V (G2) \ V (G1). By (3) applied separately
to x, v and y in G1 and to x, v and z in G2, we obtain up to a relabeling
a colouring a1 of G1 and a colouring a2 of G2 such that a1(x) = a2(x) = 1,
a1(v) = a2(v) = 2, a1(y) ̸= 1 and a2(z) ̸= 1. Hence, a1 ∪ a2 is a colouring of
G that satisfies (3). We may therefore assume that x /∈ {u, v}, and so up to
symmetry that x ∈ V (G1) \ V (G2).

Hence, by (⋆) and up to symmetry, we may restrict our attention to the
following two cases.

Case 1: x ∈ V (G1) \ V (G2) and y, z ∈ V (G2).
If uv ∈ E(G), then by (3) applied to x, u and v and up to a relabeling,

there exists a colouring a1 of G1 such that a1(x) = 1, a1(u) = 2, and a1(v) =
3. We claim that there exists a colouring a2 of G2 that requires at most
m − 1 colours for u, v, y, z. If m ≥ 5, this is trivial, so suppose m = 4.
Then the graph induced by u, v, y and z is not a complete graph on four
vertices, because such a graph is 3-connected with chromatic number 4 and
would imply that G is not m-fragile. Hence, either |{u, v, y, z}| ≤ 3 or there
are non-adjacent vertices among u, v, y and z. In either case, there exists
a colouring a2 of G2 that requires at most m − 1 = 3 colours for u, v, y,
z (trivially if |{u, v, y, z}| ≤ 3 or by applying (1) to a non-edge otherwise).
This proves our claim. Up to a relabeling, we may assume that a2(u) = 2,
a2(v) = 3 and {a2(y), a2(z)} ⊆ {2, . . . ,m}. Hence, a1 ∪ a2 is a colouring of
G satisfying (3). We may therefore assume from here on that uv /∈ E(G).

Suppose that there exists a colouring a1 of G1 such that a1(x) ̸= a1(u) =
a1(v). So, up to a relabeling, we may assume a1(x) = 1 and a1(u) = a1(v) =
2. Then by (1) applied to u and v in G2, there exists a colouring a2 of G2
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such that a2(u) = a2(v). Hence, |{a2(u), a2(v), a2(y), a2(z)}| ≤ 3. So, up to
a relabeling, we may assume that a2(u) = a2(v) = 2 and {a2(y), a2(z)} ⊆
{2, 3, 4}. So a1 ∪ a2 is a colouring of G that satisfies (3). We may therefore
assume that no colouring as a1 exists.

Hence, when applying (3) to x, u and v, up to a relabeling, we obtain
a colouring b1 of G1 such that b1(x) = 1, b1(u) = 2 and b1(v) = 3. And
when applying (4) to x, u and v (which is allowed since uv /∈ E(G)), up to
a relabeling and to the symmetry between u and v, we obtain a colouring c1
of G1 such that c1(x) = 1, c1(u) = 1 and c1(v) = 2.

By (2) applied to u and v, there exists a colouring d2 of G2 such that
d2(u) ̸= d2(v). If |{d2(u), d2(v), d2(y), d2(z)}| ≤ 3, then up to a relabeling, we
may assume that d2(u) = 2, d2(v) = 3 and {d2(y), d2(z)} ⊆ {2, 3, 4}, So b1∪d2
is a colouring of G that satisfies (3). And if |{d2(u), d2(v), d2(y), d2(z)}| = 4,
then we may assume up to a relabeling that d2(u) = 1, d2(v) = 2, d2(y) = 3
and d2(z) = 4, so c1 ∪ d2 is a colouring that satisfies (3).

Case 2: x, y ∈ V (G1) \ V (G2) and z ∈ V (G2) \ V (G1).
By (3) applied to x, y and u, up to a relabeling, we obtain a colouring

a1 of G1 such that a1(x) = 1, a1(y) = 2 and a1(u) ∈ {2, 3}. If a1(v) ̸= 1,
then colour 1 is not used on u or v under a1. By (1) or (2) applied to u and
v, we obtain up to a relabeling a colouring a2 of G2 such that a2(u) = a1(u)
and a2(v) = a1(v). Thus, colour 1 is not used on u or v under a2 either and
so, up to a relabeling, we may assume that a2(z) ̸= 1. Hence a1 ∪ a2 is a
colouring of G that satisfies (3). We may therefore assume that a1(v) = 1.

By (3) applied to v, u and z, up to a relabeling, we obtain a colouring b2
of G2 such that b2(v) = 1, b2(u) = a1(u) and b2(z) ̸= 1. Hence a1 ∪ b2 is a
colouring of G that satisfies (3).

Claim 3. The graph G satisfies (2).

Proof. By Claim 2, we may apply (3) to x, y and any vertex of G. We obtain
a colouring of G that satisfies (2).

Claim 4. The graph G satisfies (4).

Proof. By (⋆), we may assume that x ∈ V (G1) \ V (G2) and y ∈ V (G2) \ {u}
and z ∈ V (G2) \ V (G1).

Suppose that uv ∈ E(G). Then by (3) applied to x, u and v and up to a
relabeling, there exists a colouring a1 of G1 such that a1(x) = 1, a1(u) = 2
and a1(v) = 3. By (3) applied to u, y and z (that are distinct since y ̸= u
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and z ∈ V (G2) \ V (G1)) and up to a relabeling, we obtain a colouring a2
of G2 such that a1(u) = 2, a1(v) = 3 and {a2(y), a2(z)} is either {3, 1}, {3}
or {4}. In either case, a1 ∪ a2 is a colouring of G satisfying (4). We may
therefore assume from here on that uv /∈ E(G).

Suppose that there exists a colouring a1 of G1 such that a1(x) ̸= a1(u) =
a1(v). Then up to a relabeling we may assume that a1(x) = 1 and a1(u) =
a1(v) = 2. By (1) applied to u and v in G2, there exists up to a relabeling
a colouring a2 of G2 such that a2(u) = a2(v) = 2. If a2(y) = a2(z), then
up to relabeling, we may assume that a2(y) = a2(z) ̸= 1, so (4) is satisfied
by a1 ∪ a2. And if a2(y) ̸= a2(z), then up to a relabeling, we may assume
a2(y) = 1 or a2(z) = 1, and (4) is again satisfied by a1∪a2. We may therefore
assume that no colouring as a1 exists.

Hence, when applying (3) to x, u and v, up to a relabeling, we obtain
a colouring b1 of G1 such that b1(x) = 1, b1(u) = 2 and b1(v) = 3. And
when applying (4) to x, u and v (which is allowed since uv /∈ E(G)), up to
a relabeling and to the symmetry between u and v, we obtain a colouring c1
of G1 such that c1(x) = 1, c1(u) = 1 and c1(v) = 2.

On the other hand, by (2) applied to u and v, there exists a colouring
d2 of G2 such that d2(u) ̸= d2(v). If d2(y) = d2(z), then up to a relabeling,
we may assume that d2(u) = 2, d2(v) = 3 and d2(y) ̸= 1. Thus, b1 ∪ d2
is a colouring that satisfies (4). Hence, from here on, we may assume that
d2(y) ̸= d2(z).

If |{d2(u), d2(v), d2(y), d2(z)}| ≥ 3, then we may assume up to a relabeling
that d2(u) = 2, d2(v) = 3 and 1 ∈ {d2(y), d2(z)}, so b1 ∪ d2 is a colouring
that satisfies (4). If |{d2(u), d2(v), d2(y), d2(z)}| = 2, then up to a relabeling,
we may assume that d2(u) = 1, d2(v) = 2, so that {d2(y), d2(z)} = {1, 2}.
So c1 ∪ d2 is a colouring of G that satisfies (4).

Theorem 2.1 immediately follows from Claims 1 to 4.

3 Conclusion and open questions

We collect here several remarks and open questions.

3.1 Fragile graphs have average degree less than 5

As announced in the introduction, we recall the proof that every fragile graph
G on at least four vertices satisfies |E(G)| ≤ 2.5|V (G)| − 5. When G has 4
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vertices, the inequality holds since the graph on 4 vertices and 6 edges is a
complete graph and is 3-connected. For the induction step, we decompose G
into G1 and G2 as in the previous section. If |V (G1)| ≤ 3, then G contains a
vertex x of degree at most 2. Hence,

|E(G)| ≤ |E(G\x)|+2 ≤ 2.5|V (G\x)|−5+2 = 2.5(|V (G)|−1)−3 ≤ 2.5|V (G)|−5.

We may therefore assume that |V (G1)| ≥ 4 and symmetrically |V (G2)| ≥ 4.
Hence the induction hypothesis can be applied to both G1 and G2 so that
the result follows from these inequalities:

|E(G)| ≤ |E(G1)|+ |E(G2)|
≤ 2.5|V (G1)| − 5 + 2.5|V (G2)| − 5

= 2.5(|V (G1)|+ |V (G2)|)− 10

≤ 2.5(|V (G)|+ 2)− 10

= 2.5|V (G)| − 5.

3.2 Girth conditions

It is easy to prove by induction that every fragile graph of girth at least 4
on at least 3 vertices satisfies |E(G)| ≤ 2|V (G)| − 4 (the proof is as in Sec-
tion 3.1). This implies that every fragile graph with girth at least 4 contains
a vertex of degree at most 3, so is 4-colourable. We tried to improve this
bound, but we instead found a fragile graph with girth 4 and chromatic
number 4, as we now present.

Let G1 be the graph represented in Figure 3. It has girth 4 and is 2-
degenerate; so in particular it is fragile and has chromatic number at most 3.
For all 3-colourings of G1, vertices a and b receive different colours. Indeed,
suppose for a contradiction that for some 3-colouring of G1, a and b receive
the same colour, say colour 1. Then, one of x and x′, say x up to symmetry,
must receive a colour different from 1, say colour 2. So, the vertices y1, . . . ,
y4 must all receive the same colour, say colour 3. It follows that the vertices
z1, . . . , z4 are coloured with colour 1 and 2 alternately. Hence, u receives
colour 3. Now, v has three neighbors, namely a, x and u that are coloured
with colours 1, 2 and 3 respectively, a contradiction.

It follows that the triangle-free graph G2 represented in Figure 4 is not
3-colourable, but it is fragile since {a′, b′} is a cutset, and G1 is 2-degenerate
even if two vertices adjacent to a and b are added.
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Figure 4: The graph G2.

We could also obtain a fragile graph with no cycle of length 4 and chro-
matic number 4, see Figure 5.

This raises the following question: Is there a finite girth that makes fragile
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Figure 5: A fragile graph with no cycle of length 4 and chromatic number 4.

graphs 3-colourable? A possible approach could be to prove that if the girth
of a fragile graph is large enough, then the graph is 2-degenerate. But this
approach fails because of the following construction. Consider an integer g ≥
3 and a connected cubic graph G of girth g (this exists, see for instance [1]).
Remove an edge uv of G. This yields a 2-degenerate, and therefore fragile
graph. Consider a copy G′ of G\uv, with the vertices u′ and v′ corresponding
to u and v respectively. Now add an edge uu′ and an edge vv′. The obtained
graph is fragile, cubic and has girth g.

Trivially, a graph G is fragile if and only if every subgraph H of G is either
on at most 3 vertices or admits a cutset of size at most 2. In fragile graphs
of girth at least 4, one can further impose the cutset to be an independent
set.

Lemma 3.1. A graph G with girth at least 4 is fragile if and only if every
subgraph H of G is either on at most 2 vertices or admits an independent
cutset of size at most 2.

Proof. We prove the statement by induction on |V (G)|. The equivalence
can be checked to hold on graphs of up to 3 vertices. If |V (G)| ≥ 4, then
since G is not 3-connected, it admits a cutset S of size at most 2. Suppose
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that S is not independent, so S = {u, v} and uv ∈ E(G). Let C be a
connected component of G \ S. Since G has girth at least 4, no vertex of C
is adjacent to both u and v. Hence, if |C| = 1, G admits a cutset of size 1
(and therefore independent). So we may assume that |C| ≥ 2. So, by the
induction hypothesis, G[S ∪ C] admits an independent cutset S ′. It is easy
to check that S ′ is also a cutset of G.

3.3 Algorithms

By subdividing twice every edge of any graph G, a fragile graph G′ is ob-
tained. Poljak [4] proved that α(G′) = α(G) + |E(G)|. It follows that a
polynomial-time algorithm that computes a maximum independent set for
any fragile graph would yield a similar algorithm for all graphs. This proves
that computing a maximum independent set in a fragile graph is NP-hard.

We also observe that, in G′, every edge uv becomes a path uxuvyuvv.
Consider the graph G′′ obtained from G′ by adding, for every vertex xuv, a
new vertex x′

uv adjacent to u, xuv and yuv. It is easy to check that G′′ is
fragile and for all 3-colourings of G′′ and all edges uv of G, u and v have
different colours (in G′′). It follows that if G′′ is 3-colourable, then so is
G. Conversely it is easy to check that if G is 3-colourable, so is G′′. This
proves that deciding whether a fragile graph is 3-colourable is NP-complete.
By the same kind of argument, we can prove that deciding whether a graph
is 3-colourable stays NP-complete even when we restrict ourselves to fragile
triangle-free graphs. To see this, pick any graph G, remove all edges uv,
and replace them by a copy of the graph G1 from Figure 3 with a identified
to u and b identified to v. This yields a triangle-free fragile graph that is
3-colourable if and only if G is 3-colourable.

Our proof that every fragile graph is 4-colourable yields an algorithm that
actually computes a 4-colouring. A crude implementation of this algorithm
would run in exponential time, but it is easy to turn it into a polynomial time
algorithm by maintaining for each 2-tuples and 3-tuples X of vertices of the
input graph, a colouring satisfying the constraints (1)–(4) when applicable
to X.
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are partially supported by the French National Research Agency under re-
search grant ANR DIGRAPHS ANR-19-CE48-0013-01, ANR Twin-width
ANR-21-CE48-0014-01 and the LABEX MILYON (ANR-10-LABX-0070) of
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