
Defective Colouring of Hypergraphs

António Girão† Freddie Illingworth† Alex Scott† David R. Wood‡

October 3, 2023

Abstract

We prove that the vertices of every (r + 1)-uniform hypergraph with maximum degree ∆
may be coloured with c( ∆

d+1 )
1/r colours such that each vertex is in at most d monochromatic

edges. This result, which is best possible up to the value of the constant c, generalises the
classical result of Erdős and Lovász who proved the d = 0 case.

1 Introduction

Hypergraph colouring is a widely studied field with numerous deep results [4, 8–10, 15–17, 22–
24, 28]. In a seminal contribution, Erdős and Lovász [13] proved that every (r + 1)-uniform
hypergraph with maximum degree ∆ has a vertex-colouring with at most c∆1/r colours and with
no monochromatic edge, where c is an absolute constant. The proof is a simple application of
what is now called the Lovász local lemma, introduced in the same paper. Indeed, hypergraph
colouring was the motivation for the development of the Lovász local lemma, which has become
a staple of probabilistic combinatorics.

A vertex-colouring of a (hyper)graph is d-defective if each vertex is in at most d monchromatic
edges (equivalently, the maximum degree of each monochromatic component is at most d).
Defective colouring of graphs has been widely studied; the comprehensive survey [32] has over
one hundred references to papers dedicated to defective colouring. One of the early results in the
area, due to Lovász [25], is that every graph with maximum degree ∆ has a d-defective colouring
with ⌊ ∆

d+1⌋+ 1 colours. An example of one of the more recent highlights is that the defective
analogue of Hadwiger’s conjecture holds. In particular, Edwards et al. [11] showed that every
Kt-minor-free graph has a d(t)-defective (t − 1)-colouring, for some function d(t). Here t − 1
colours is best possible regardless of d. The best defect bound known [30] is d(t) = O(t). Very
little is known about defective colouring of hypergraphs.

This paper proves the common generalisation of the results of Lovász [25] and Erdős and
Lovász [13] mentioned above.

Theorem 1. For all integers r ⩾ 1 and d ⩾ 0 and ∆ ⩾ max{d + 1, 50100r4}, every (r + 1)-uniform
hypergraph G with maximum degree at most ∆ has a d-defective k-colouring, where

k ⩽ 100
(

∆
d + 1

)1/r

.

Several notes on Theorem 1 are in order.
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• The bound on the number of colours in the theorem of Erdős and Lovász [13] and in
Theorem 1 is best possible (up to the multiplicative constant) because of complete hyper-
graphs. Indeed, let G be the (r + 1)-uniform complete hypergraph on n vertices, which
has maximum degree ∆ = (n−1

r ) ⩽ ( en
r )

r. In any d-defective k-colouring of G, at least n
k

vertices are monochromatic, implying d ⩾ (n/k−1
r ) > ( n

2kr )
r ⩾ ∆

(2ek)r . Thus k ⩾ 1
2e (

∆
d )

1/r,
which is within a constant factor of the upper bound in Theorem 1. It remains tight even
for (r + 1)-uniform hypergraphs with no complete (r + 2)-vertex subhypergraph. For
example, a hypergraph construction by Cooper and Mubayi [10, § 3.2.2] has this property1.

• The correct multiplicative constant is not known even for d = 0 and r = 2 (that is, even
for proper colouring of 3-uniform hypergraphs). In this case, the best upper bound
known [31] is ⌈2∆1/2⌉ while the lower bound given by complete 3-uniform hypergraphs
is (1/

√
2 + o(1))∆1/2.

• The assumption ∆ ⩾ d + 1 in Theorem 1 is reasonable, since if ∆ ⩽ d then one colour
suffices. The assumption that ∆ ⩾ 50100r4

enables the uniform constant 100 in the bound
on k. Of course, one could drop the assumption and replace 100 by some constant cr
depending on r.

• If G is a linear hypergraph (that is, any two edges intersect in at most one vertex), then
Theorem 1 may be proved directly with the Lovász local lemma. Non-linear hypergraphs
are hard because the number of neighbours of a vertex v is not precisely determined by
the degree of v. See the start of Section 2 for details.

• Theorem 1 can be rephrased as saying that for any k, G has a k-colouring with maximum
monochromatic degree O( ∆

kr ) for fixed r. This is similar to a result of Bollobás and Scott [6]
who showed that for any k every (r + 1)-uniform hypergraph with m edges has a k-
colouring with O(m

kr ) monochromatic edges of each colour. In this light, Theorem 1 is a
variant on so-called judicious partitions [1, 5–7, 19, 20, 29, 33, 34].

1.1 Notation

Let G be a hypergraph, which consists of a finite vertex-set V(G) and an edge-set E(G) ⊆ 2V(G).
Let e(G) := |E(G)|. G is r-uniform if every edge has size r. The link hypergraph of a vertex v in G,
denoted Gv, is the hypergraph with vertex-set V(G) \ {v} and edge-set {e ⊆ V(G) \ {v} : e ∪
{v} ∈ E(G)}. If G is (r + 1)-uniform, then Gv is r-uniform. The degree of a set of vertices
S ⊆ V(G), denoted deg(S), is the number of edges in G that contain S. We often omit set
parentheses, so deg(x) and deg(u, v) denote the number of edges containing x and the number
of edges containing both u and v, respectively. Let ∆(G) := max{deg(v) : v ∈ V(G)}.

1.2 Probabilistic Tools

We use the following standard probabilistic tools.

Lemma 2 (Lovász local lemma [13]). Let A be a set of events in a probability space such that each
event in A occurs with probability at most p and for each event A ∈ A there is a collection A′ of at most

1Let ei denote the r-dimensional vector with 1 in the ith coordinate and 0 elsewhere. Let G be the (r + 1)-uniform
hypergraph with vertex set {1, . . . , n}r and whose edges are {v, v1, . . . , vr} where, for each i, vi − v is a positive
multiple of ei. Any r + 2 vertices induce at most two edges, so G has contains no (r + 2)-clique. G has maximum
degree ∆ = (n − 1)r < nr. Suppose that V(G) is coloured with k ⩽ (∆/(d + 1))1/r/r < n/(r(d + 1)1/r) colours.
Then there is a monochromatic set S ⊆ V(G) of size at least (d + 1)1/rrnr−1. Apply the following iterative deletion
procedure to S: if, for some coordinate j and integers a1, . . . , aj−1, aj+1, . . . , ar ∈ {1, . . . , n}, there are less than
(d + 1)1/r vertices in S whose ith coordinate is ai for all i ̸= j, then delete all these vertices. Let S′ be the set remaining
after applying all such deletions. Each step deletes less than (d + 1)1/r vertices and at most rnr−1 steps occur so S′ is
non-empty. Let v ∈ S′ have the smallest coordinate sum. By definition of S′, for each i, there are at least (d + 1)1/r

vertices vi ∈ S′ with vi − v being a positive multiple of ei. Hence, v has degree at least d + 1 in S′. Therefore, every
d-defective colouring of G uses more than (∆/(d + 1))1/r/r colours.
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d other events such that A is independent from the collection (B : B ̸∈ A′ ∪ {A}). If 4pd ⩽ 1, then with
positive probability no event in A occurs.

Lemma 3 (Markov’s inequality). If X is a nonnegative random variable and a > 0, then

P(X ⩾ a) ⩽
E(X)

a
.

Lemma 4 (Chernoff bound). Let X ∼ Bin(n, p). For any ε ∈ [0, 1],

P(X ⩾ (1 + ε)E(X)) ⩽ exp(−ε2np/3),

P(X ⩽ (1 − ε)E(X)) ⩽ exp(−ε2np/2).

We will need a version of Chernoff for negatively correlated random variables, for example,
see [21, Thm. 1]. Boolean random variables X1, . . . , Xn are negatively correlated if, for all S ⊆
{1, . . . , n},

P(Xi = 1 for all i ∈ S) ⩽ ∏
i∈S

P(Xi = 1).

Lemma 5 (Chernoff for negatively correlated variables). Suppose X1, . . . , Xn are negatively corre-
lated Boolean random variables with P(Xi = 1) ⩽ p for all i. Then, for any t ⩾ 0,

P
(
∑

i
Xi ⩾ pn + t

)
⩽ exp(−2t2/n).

Finally we need McDiarmid’s bounded differences inequality [26].

Lemma 6 (McDiarmid’s inequality). Let T1, . . . , Tn be n independent random variables. Let X be a
random variable determined by T1, . . . , Tn, such that changing the value of Tj (while fixing the other Ti)
changes the value of X by at most cj. Then, for any t ⩾ 0,

P(X ⩾ E(X) + t) ⩽ exp
(
− 2t2

∑i c2
i

)
.

2 Proof

For motivation we first consider a naı̈ve application of the Lovász local lemma. Suppose G is
a linear (r + 1)-uniform hypergraph. Colour G with k := ⌊100( ∆

d+1 )
1/r⌋ > 99( ∆

d+1 )
1/r colours

uniformly at random. For each set F of d + 1 edges all containing a common vertex, let BF be the
event that the vertex set of F is monochromatic. Then, since G is linear, p := P(BF) = k−r(d+1).
For a fixed F, the number of F′ sharing a vertex with F is at most D := (r(d + 1) + 1)∆(r + 1)(∆

d);
here we have specified the vertex shared with F, the edge containing that vertex, the common
vertex of the edges in F′, and the remaining d edges of F′. Now D ⩽ 3r2d∆(e∆/d)d and so

4pD < 4 · 99−r(d+1)( d+1
∆

)d+1 · 3r2edd−d+1∆d+1

= 12r2ed · 99−r(d+1) · d(d + 1)
( d+1

d

)d

⩽ 24r2d2ed+1 · 99−r(d+1) ⩽ 1.

Hence, by the Lovász local lemma, there is a colouring in which no BF occurs; that is, there is a
d-defective k-colouring of G. It was crucial in this argument that G was linear so that the powers
of ∆ in D and p cancelled out exactly. For non-linear G, the number of neighbours of a vertex v
is not determined by the degree of v and so p may be larger without a corresponding decrease
in D. A more involved argument is required.
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2.1 First Steps

Here we outline our colouring strategy before diving into the details. We are given an (r + 1)-
uniform hypergraph G with maximum degree ∆ and wish to colour its vertices so that every
vertex is in at most d monochromatic edges. For a fixed colouring ϕ, the monochromatic degree of
a vertex v, denoted degϕ(v), is the number of monochromatic edges containing v (which must
have colour ϕ(v)).

First we colour the vertices of G uniformly at random with k colours where k = ⌊49( ∆
d+1 )

1/r⌋.
Since ∆ ⩾ d + 1, we have k > 48( ∆

d+1 )
1/r. Say a vertex is bad if its monochromatic degree is

greater than d and good otherwise. We are aiming for a colouring in which every vertex is good.
The expected monochromatic degree of a vertex v in such a colouring is k−r deg(v) ⩽ k−r∆ <
48−r(d + 1). In particular, each individual vertex has small (certainly, by Markov’s inequality,
less than 48−r) probability of being bad. However, the goodness of a vertex v depends on the
colours assigned to vertices in the neighbourhood of v and so 48−r is not a sufficiently small
probability to conclude (by, say, the Lovász local lemma) that there is a particular colouring for
which all vertices are good.

Instead of colouring all of G with a single random colouring, we do so over many rounds. After
a round (where we coloured a hypergraph G), any good vertices will keep their colours and be
discarded (they have been coloured appropriately). Let G′ be the subhypergraph of G induced
by the bad vertices. In the next round we uniformly and randomly colour the vertices of G′ with
a new palette of colours completely disjoint from those used in previous rounds. Using new
colours ensures that monochromatic edges can only be produced within individual rounds. If
the palettes all have the same size and the process runs for too many rounds, then we will end
up using too many colours. However, if ∆(G′) ⩽ 2−r∆(G), then we can use half the number of
colours in the next round and so use O(( ∆

d+1 )
1/r) colours across all the rounds. Thus, our aim is

to prove the following nibble-style lemma from which Theorem 1 easily follows.

Lemma 7. Fix non-negative integers r, ∆, d with r ⩾ 1 and ∆ ⩾ max{d + 1, 5050r3}. Then ev-
ery (r + 1)-uniform hypergraph G with maximum degree at most ∆ has a partial colouring with at
most 49( ∆

d+1 )
1/r colours such that every coloured vertex has monochromatic degree at most d and the

subhypergraph G′ of G induced by the uncoloured vertices satisfies ∆(G′) ⩽ 2−r∆.

Proof of Theorem 1 assuming Lemma 7. We start with a (r + 1)-uniform hypergraph G with maxi-
mum degree at most ∆ = ∆0 for some ∆0 ⩾ max{d + 1, 50100r4}. Apply Lemma 7 to get a partial
colouring of G where:

• every vertex has monochromatic degree at most d,
• at most 49( ∆0

d+1 )
1/r colours are used, and

• the subhypergraph G1 of G induced by uncoloured vertices has ∆(G1) ⩽ ∆1 = 2−r∆0.

Iterate this procedure (using a palette of new colours each round) to obtain, for i = 0, 1, . . . , an
induced subhypergraph Gi of G with ∆(Gi) ⩽ ∆i = 2−ri∆ such that G[V(G)− V(Gi)] has been
coloured with at most

49
( ∆0

d+1

)1/r
+ 49

( ∆1
d+1

)1/r
+ · · ·+ 49

(∆i−1
d+1

)1/r
= 49

( ∆
d+1

)1/r
(1+ 2−1 + · · ·+ 2−(i−1)) ⩽ 98

( ∆
d+1

)1/r

colours and every monochromatic degree is at most d. Continue carrying out rounds of colouring
until ∆i < d + 1 or ∆i < 5050r3

.

First suppose that ∆i < d + 1 and so ∆(Gi) ⩽ d. Use a single new colour on the entirety of Gi to
give a d-defective colouring of G. Now suppose that d + 1 ⩽ ∆i < 5050r3

. Properly colour Gi
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with ∆(Gi) + 1 ⩽ 5050r3
colours. This gives a d-defective colouring of G with at most

98
( ∆

d+1

)1/r
+ 5050r3

⩽ 100
( ∆

d+1

)1/r

colours. The final inequality uses the fact that ∆ ⩾ 50100r4
and d + 1 < 5050r3

.

Recall that a vertex is bad for a colouring ϕ if it has monochromatic degree at least d + 1. Say
that an edge e is bad for a colouring ϕ if every vertex in e is bad (note that a bad edge is not
necessarily monochromatic). Furthermore, say that a vertex is terrible for a colouring ϕ if it is
incident to more than 2−r∆ bad edges. Lemma 7 says that there is some colouring for which no
vertex is terrible. The key to the proof of Lemma 7 is to show that a vertex is terrible with low
probability.

In the remainder of the paper, we use the definitions of good, bad, and terrible given above and
also set k := ⌊49( ∆

d+1 )
1/r⌋.

Lemma 8. Let ∆ ⩾ max{d+ 1, 5050r3}. Let G be an (r + 1)-uniform hypergraph with maximum degree
at most ∆. In a uniformly random k-colouring of V(G), each vertex v of G is terrible with probability at
most ∆−5.

Proof of Lemma 7 assuming Lemma 8. Randomly and independently assign each vertex of G one
of k colours. For each vertex v, let Av be the event that v is terrible. By Lemma 8, P(Av) ⩽
∆−5. The event Av depends solely on the colours assigned to vertices in the closed second
neighbourhood of v. Thus if two vertices v and w are at distance at least 5 in G, then Av
and Aw are independent. Thus each event Av is mutually independent of all but at most
2(r∆)4 other events Aw. Since 4∆−5 · 2(r∆)4 = 8r4/∆ ⩽ 1, by the Lovász local lemma, with
positive probability, no event Av occurs. Thus, there exists a k-colouring ϕ of G such that no
vertex is terrible. Let G′ be the subgraph of G induced by the bad vertices. Since no vertex is
terrible, ∆(G′) ⩽ 2−r∆. Uncolour all the bad vertices: every coloured vertex is good and so has
monochromatic degree at most d.

It remains to prove Lemma 8, which we do in Section 2.4. We have now reduced the question to
a local property of a random k-colouring.

A vertex v is terrible if it is bad and at least 2−r∆ edges in its link graph, Gv, are bad. Analysing
the dependence between the badness of different edges in Gv is difficult. We sidestep this issue
by using a sunflower decomposition. A sunflower with p petals is a collection A1, . . . , Ap of sets
for which A1 \ K, . . . , Ap \ K are pairwise disjoint where K := A1 ∩ · · · ∩ Ap (that is, Ai ∩ Aj = K
for all distinct i, j). K is the kernel of the sunflower and A1 \ K, . . . , Ap \ K are its petals.

If A1, . . . , Ap are distinct edges of a uniform hypergraph that form a sunflower, then the petals
are pairwise disjoint, non-empty and have the same size. The kernel may be empty in which case
the sunflower is a matching of size p. In a random colouring, the colourings on different petals
of a sunflower are independent. Hence, it will be useful to partition the edges of hypergraphs
into sunflowers with many petals together with a few edges left over.

Lemma 9 (Sunflower decomposition). Let H be an r-uniform hypergraph and a be a positive integer.
There are edge-disjoint subhypergraphs H1, . . . , Hs of H such that:

• Each Hi is a sunflower with exactly a petals.
• H′ = H − (E(H1) ∪ · · · ∪ E(Hs)) has fewer than (ra)r edges.
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Proof. Let H1, . . . , Hs be a maximal collection of edge-disjoint subhypergraphs of H where each
Hi is a sunflower with exactly a petals. So H′ contains no sunflower with a petals. By the Erdős-
Rado sunflower lemma [12], e(H′) ⩽ r!(a − 1)r < (ra)r (see [2, 3, 14, 27] for recent improved
bounds in the sunflower lemma).

The proof of Lemma 8 uses a sunflower decomposition to show that if a vertex is terrible, then
some reasonably large set of vertices S must have at least 3−r proportion of its vertices being
bad. As noted above, each vertex is bad with probability at most 48−r and so we expect at most
48−r|S| bad vertices in S. We are able to show that the number of bad vertices in (a suitable)
S is not much more than the expected number with very small failure probability. This is
accomplished in Lemmas 11 and 13 below, which correspond respectively to the case of large
and small k.

2.2 When k is large: k ⩾ ∆1/(6r2)

Recall that 48( ∆
d+1 )

1/r < k ⩽ 49( ∆
d+1 )

1/r throughout. When k is large we expect a medium-sized
vertex-set S to have close to |S| different colours appearing on it (that is, to be close to rainbow).
If two vertices have different colours, then the events that they are bad will be negatively
correlated and hence we expect only a small proportion of S to be bad. The negative correlation
is made precise in Lemma 10 and the upper tail concentration of the number of bad vertices in S
is established in Lemma 11.

Lemma 10. Let S = {v1, . . . , vℓ} be a set of at most k vertices in G and let D be the event that v1, . . . , vℓ
are all given different colours. Let X be the number of bad vertices in S. Then, in a uniformly random
k-colouring of V(G), for any t ⩾ 0,

P(X ⩾ ℓ · 48−r + t | D) ⩽ exp
(
−2t2/ℓ

)
.

Proof. Let Bj be the event {vj is bad} and Xj be the indicator random variable for Bj so X = ∑j Xj.
For an edge e containing a vertex v, the probability e is monochromatic is k−r. Hence, the
expected number of monochromatic edges containing v is at most ∆k−r < 48−r(d + 1). Thus,
P(Xj = 1) ⩽ 48−r by Markov’s inequality (Lemma 3).

Fix distinct colours c1, . . . , cℓ and let Vj be the set of vertices given colour cj. Conditioned on the
event Cj = {vj is coloured cj}, Bj is increasing in Vj, while D is non-increasing in Vj. Hence, by
the Harris inequality [18], P(Bj ∩ D | Cj) ⩽ P(Bj | Cj)P(D | Cj). Using this and the symmetry of
the colours gives

P(Bj | D) = P(Bj | D ∩ Cj) =
P(Bj ∩ D | Cj)

P(D | Cj)
⩽ P(Bj | Cj) = P(Bj).

But P(Bj) ⩽ 48−r, so E(X | D) = ∑j P(Bj | D) ⩽ ℓ · 48−r.

Let C be the event {each vi is coloured ci}. Conditioned on C, Bj is increasing in Vj and non-
increasing in all other Vi. We claim the Bi are negatively correlated on the event C. For ℓ = 2
this is just the Harris inequality. Fix ℓ > 2 and let S be a set of indices: we need to show
P(∩i∈SBi | C) ⩽ ∏i∈S P(Bi | C). If |S| ⩽ 1, then there is equality. Otherwise let i1, i2 ∈ S. Now
Bi1 ∩ Bi2 is increasing in Vi1 ∪ Vi2 and non-increasing in all other Vi. By induction,

P(∩i∈SBi | C) ⩽ P(Bi1 ∩ Bi2 | C) · ∏
i∈S\{i1,i2}

P(Bi | C) ⩽ ∏
i∈S

P(Bi | C).

By symmetry of the colours, P(Bi | C) = P(Bi | D) for all i and also P(∩i∈SBi | C) = P(∩i∈SBi |
D) for any set of indices S. In particular, the Bi are negatively correlated on the event D.
Applying Lemma 5 to X1, . . . , Xℓ gives the result.
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Lemma 11. Let S be a set of vertices of G with 106r ⩽ |S| ⩽ k1/2. In a uniformly random k-colouring of
V(G), with failure probability at most 2(e|S|−1/2)|S|

1/2
, fewer than 3−r|S| vertices of S are bad.

Proof. Let A be the event that the number of distinct colours on S is at most |S| − |S|1/2. We first
give an upper bound for P(A). The probability that a fixed vertex does not have a unique colour
is at most |S|/k. If A does occur, then at least |S|1/2 vertices of S do not have a unique colour.
Hence,

P(A) ⩽
(

|S|
|S|1/2

)(
|S|
k

)|S|1/2

⩽
(

|S|
|S|1/2

)
|S|−|S|1/2

.

If A does not occur, then there is a subset S′ ⊂ S of size |S| − |S|1/2 where the vertices are all
given different colours. Fix such an S′ and let X be the number of bad vertices in S and X′

be the number of bad vertices in S′. Note that if X′ < 4−r|S′|, then X < 4−r|S′| + |S|1/2 ⩽
4−r|S|+ |S|1/2 ⩽ 3−r|S|.

Let D be the event that all vertices of S′ get different colours. By Lemma 10 and the previous
paragraph,

P(X ⩾ |S| · 3−r | D) ⩽ P(X′ ⩾ |S′| · 4−r | D)

⩽ P(X′ ⩾ |S′| · 48−r + |S′| · 4−r/
√

2 | D) ⩽ exp(−|S′| · 4−2r).

Let A be the complement of A. Taking a union bound over all S′,

P({X ⩾ |S| · 3−r} ∩ A) ⩽
(

|S|
|S|1/2

)
· exp(−|S′| · 4−2r).

Finally,

P(X ⩾ |S| · 3−r) ⩽
(

|S|
|S|1/2

)(
exp(−|S′| · 4−2r) + |S|−|S|1/2)

⩽ (e|S|1/2)|S|
1/2 · 2|S|−|S|1/2

= 2(e|S|−1/2)|S|
1/2

.

2.3 When k is small: k ⩽ ∆1/(6r2)

Recall that 48( ∆
d+1 )

1/r < k ⩽ 49( ∆
d+1 )

1/r throughout. We need a simple max cut lemma.

Lemma 12 (Max cut). Let G be a hypergraph whose edges have size at most r + 1 and let ℓ be a positive
integer. There is a partition V1 ∪ · · · ∪ Vℓ of V(G) such that, for every vertex x ∈ Vi, the number of
edges containing x and at least one more vertex from Vi is at most r deg(x)/ℓ.

Proof. Throughout the proof, vertices u, v, x are distinct. Choose a partition V1 ∪ · · · ∪Vℓ of V(G)
into ℓ parts that minimises

∑
i

∑
u,v∈Vi

deg(u, v). (1)

Fix a vertex x and suppose it is in some part Va. By minimality, for all i,

∑
u∈Va

deg(u, x) ⩽ ∑
u∈Vi

deg(u, x),

or else we could increase (1) by moving x to Vi. But

∑
i

∑
u∈Vi

deg(u, x) = ∑
u∈V(G)

deg(u, x) ⩽ r deg(x),

and so ∑u∈Va
deg(u, x) ⩽ r deg(x)/ℓ. This last sum is at least the number of edges containing x

and at least one more vertex from Va.
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Given a large vertex-set S we aim to show that, with high probability, a small proportion of its
vertices are bad. We use Lemma 12 to split S into parts so that very few edges have two vertices
in the same part. Consider an arbitrary part P. We will show that, with high probability, a small
proportion of the vertices in P are bad. We do this by first revealing the random k-colouring
on V(G)− P. Since k is small, we get strong concentration on the distribution of colours on
V(G) − P. We then reveal the colouring on P and use this concentration to show that it is
unlikely that P has a high proportion of bad vertices.

Lemma 13. Suppose ∆ ⩾ 5050r3
, k ⩽ ∆1/r2

and let S be a set of at least (3k)3r∆1/(6r) vertices of G.
With failure probability at most ∆−6, in a uniformly random k-colouring of V(G), fewer than 3−r|S|
vertices of S are bad.

Proof. It will be helpful to partition S into multiple parts such that not too many edges meet
one part in more than one vertex. We therefore apply the max cut lemma, Lemma 12, to G with
ℓ = rkr, and restrict the resulting partition to S. We obtain a partition P of S into rkr parts such
that, for every vertex x ∈ S, the number of edges containing x and at least one more vertex from
x’s part is at most deg(x)/kr. We say a part P ∈ P is big if |P| ⩾ |S|/(50r(3k)r) and is small
otherwise.

Since there are rkr parts in P and small parts have less than |S|/(50r(3k)r), the number of
vertices of S in small parts is less than |S|/(50r(3k)r) · rkr = 0.02 · 3−r|S|. Hence, if 3−r|S|
vertices of S are bad, then at least 0.98 · 3−r proportion of the vertices in big parts are bad, so
some big part P has at least 0.98 · 3−r|P| bad vertices. We now focus on a big part P ∈ P and
show that, with failure probability at most ∆−8, at most 0.98 · 3−r|P| vertices of P are bad.

For each vertex x ∈ P, let G′
x be the r-uniform graph on V(G)− P, whose edges are those e with

e ∪ {x} ∈ E(G) (that is, G′
x is the link graph of x restricted to V(G)− P). Define the r-uniform

auxiliary (multi)hypergraph HP to have vertex set V(G)− P and edge set

E(HP) =
⋃
x∈P

E(G′
x),

where edges are counted with multiplicity. Let ϕ be a uniformly random k-colouring of V(G)
and ϕ′ be the restriction of ϕ to V(G)− P. Reveal ϕ′ and let X be the number of monochromatic
edges of HP, again counted with multiplicity.

We now apply McDiarmid’s inequality to show that X concentrates. First note that e(HP) ⩽
|P| · ∆ and E(X) = e(HP)k−(r−1) ⩽ |P| · ∆k−(r−1). For a vertex v ∈ V(HP), changing ϕ′(v)
changes the value of X by at most degHP

(v). Now,

∑
v

degHP
(v)2 ⩽ ∆ ∑

v
degHP

(v) = r∆e(HP) ⩽ r∆2|P|.

By McDiarmid’s inequality (Lemma 6),

P
(

X ⩾
1.1 · ∆|P|

kr−1

)
⩽ P

(
X ⩾ E(X) +

0.1 · ∆|P|
kr−1

)
⩽ exp

(
− |P|

50rk2(r−1)

)
⩽ exp

(
− |S|

2500r2 · 3r · k3r−2

)
⩽ exp

(
−k2∆1/(6r)/(2500r2)

)
⩽ ∆−8/2.

For a vertex x ∈ P, say a colour is x-unhelpful if there are more than (48r − 1)∆/kr monochromatic
edges of G′

x of that colour. Say x is unhelpful if there are more than 0.45 · 3−rk x-unhelpful colours.
Note that if x is unhelpful, then the number of monochromatic edges in G′

x is greater than
0.45(48r − 1) · ∆ · 3−r/kr−1. Hence, if more than 0.48 · 3−r · |P| vertices of P are unhelpful, then
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the number of monochromatic edges in HP is greater than 1.1 · ∆|P|/kr−1. We have just shown
this occurs with probability less than ∆−8/2. Hence, with failure probability at most ∆−8/2, at
least (1 − 0.48 · 3−r)|P| vertices of P are helpful.

Suppose that at least (1 − 0.48 · 3−r)|P| vertices of P are helpful; call the set of helpful vertices
P′. Now reveal ϕ on P. For each vertex x ∈ P′, the probability that x gets given an x-unhelpful
colour is at most 0.45 · 3−r. Let Y be the number of x ∈ P′ coloured with an x-unhelpful colour.
For different x ∈ P′, these events are independent (we have already revealed ϕ on V(G)− P)
and so we may couple Y with a random variable Z ∼ Bin(|P′|, 0.45 · 3−r) so that Y ⩽ Z. Hence,
by the Chernoff bound (Lemma 4),

P(Y ⩾ 0.5 · 3−r|P′|) ⩽ P(Z ⩾ 0.5 · 3−r|P′|) ⩽ P(Z ⩾ 1.1 ·E(Z))
⩽ exp(−0.45 · 3−r|P′|/300)

⩽ exp
(
−k2r∆1/(6r)/(6000r)

)
⩽ ∆−8/2.

Hence, with failure probability at most ∆−8/2 + ∆−8/2 = ∆−8, at least (1 − 0.5 · 3−r)|P′| ⩾
(1 − 0.98 · 3−r)|P| vertices x of P are coloured with an x-helpful colour.

We now show that if a vertex x is given an x-helpful colour, then x will be a good vertex (for ϕ).
There are at most deg(x)/kr ⩽ ∆/kr edges of G containing x that have at least one more vertex
in P and, as x is given an x-helpful colour, there are at most (48r − 1)∆/kr other monochromatic
edges containing x. In particular, if x is given an x-helpful colour, then at most 48r∆/kr < d + 1
monochromatic edges contain x and so x is good. Hence, with failure probability at most ∆−8, at
least (1 − 0.98 · 3−r)|P| vertices of P are good, that is, at most 0.98 · 3−r|P| vertices of P are bad.

Finally, taking a union bound over the big parts shows that the probability some big part P has
at least 0.98 · 3−r|P| bad vertices is at most rkr∆−8 ⩽ r∆−8+1/r ⩽ ∆−6, as required.

2.4 Proof of Lemma 8

To prove Lemma 8 we use the sunflower decompositions given by Lemma 9 to show that if a
vertex is terrible, then some reasonably large set of vertices S must have at least 3−r proportion
of its vertices being bad. Lemmas 11 and 13 show that this is unlikely.

Proof of Lemma 8. Recall that ∆ ⩾ 5050r3
. Fix a vertex v of G and consider the link graph Gv,

which is an r-uniform hypergraph. Recall that an edge of Gv is bad if all its vertices are bad and
is good otherwise. If v is terrible, then at least 2−r∆ edges of Gv are bad.

First suppose that k ⩾ ∆1/(6r2). By Lemma 9, there are edge-disjoint subgraphs G1, . . . , Gs of Gv

each of which is a sunflower with exactly ⌊∆1/(12r2)⌋ petals and such that e(Gv − E(G1 ∪ · · · ∪
Gs)) < rr · ∆1/(12r) ⩽ 6−r∆. Let G′ = G1 ∪ · · · ∪ Gs. For each Gi, choose a vertex from each petal
to form a vertex-set Si. If v is terrible, then the number of bad edges in G′ is at least(

2−r − 6−r)∆ ⩾ 3−r∆ ⩾ 3−re(G′).

Hence, if v is terrible, then there is some i for which at least 3−re(Gi) edges of Gi are bad. But,
since Si contains exactly one vertex from each petal of Gi, at least 3−r|Si| vertices of Si are bad.
Also, each Si has size ⌊∆1/(12r2)⌋ ⩾ ∆2/(25r2) ⩾ 504r ⩾ 106r and ⌊∆1/(12r2)⌋ ⩽ k1/2. Hence, by
Lemma 11, at least 3−r|Si| vertices of Si are bad with probability at most

2(e|S|−1/2)|S|
1/2

⩽ 2(e∆−1/(25r2))∆1/(25r2)
⩽ 2(∆−1/(50r2))502r

⩽ 2(∆−1/(50r2))400r2
= 2∆−8.

Taking a union bound over i shows that v is terrible with probability at most 2s∆−8 ⩽ ∆−5.
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Now suppose that k ⩽ ∆1/(6r2). By Lemma 9, there are edge-disjoint subgraphs G1, . . . , Gs of Gv
each of which is a sunflower with at least ∆1/r/(6r) petals and such that e(Gv − E(G1 ∪ · · · ∪
Gs)) < 6−r∆. Let G′ = G1 ∪ · · · ∪ Gs. For each Gi, choose a vertex from each petal to form a
vertex-set Si. If v is terrible, then the number of bad edges in G′ is at least(

2−r − 6−r)∆ ⩾ 3−r∆ ⩾ 3−re(G′).

Hence, if v is terrible, then there is some i for which at least 3−re(Gi) edges of Gi are bad and so
at least 3−r|Si| vertices of Si are bad. Now, (3k)3r∆1/(6r) ⩽ 33r∆1/(2r)∆1/(6r) ⩽ ∆1/r/(6r) ⩽ |Si|.
Hence, by Lemma 13, at least 3−r|Si| vertices of Si are bad with probability at most ∆−6. Taking
a union bound over i shows that v is terrible with probability at most s∆−6 ⩽ ∆−5.

3 Open problems

As noted in the introduction, Erdős and Lovász proved that every (r + 1)-uniform hypergraph
G with maximum degree at most ∆ has chromatic number χ(G) = O(∆1/r). Frieze and
Mubayi [17] improved this to O((∆/ log ∆)1/r) when G is a linear hypergraph and there have
been similar improvements [8, 9, 24] when G satisfies other sparsity conditions (such as being
triangle-free2).

It would be interesting to know whether logarithmic improvements occur for defective colour-
ings of sparse hypergraphs. Frieze and Mubayi [16] showed that there exist (r + 1)-uniform
linear hypergraphs G with maximum degree ∆ and χ(G) = Ω((∆/ log ∆)1/r). Consider a
d-defective k-colouring of G (where d ⩾ 2). Each colour class induces a linear (r + 1)-uniform
hypergraph with maximum degree d and so is O((d/ log d)1/r)-colourable. In particular,

k = Ω
(( ∆

log ∆ · log d
d

)1/r
)

.

We conjecture this is tight.

Conjecture 14. Every (r + 1)-uniform linear hypergraph is k-colourable with defect d ⩾ 2, where

k = O
(( ∆

log ∆ · log d
d

)1/r
)

.

Finally, it would be interesting to extend Theorem 1 to the list colouring setting.
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Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pp.
617–631. Springer, 2010.

[22] ALEXANDR KOSTOCHKA, M. KUMBHAT, AND T. ŁUCZAK. Conflict-free colourings of
uniform hypergraphs with few edges. Combin. Probab. Comput., 21(4):611–622, 2012.

[23] ALEXANDR V. KOSTOCHKA AND M. KUMBHAT. Coloring uniform hypergraphs with few
edges. Random Structures Algorithms, 35(3):348–368, 2009.

[24] LINA LI AND LUKE POSTLE. The chromatic number of triangle-free hypergraphs. 2022,
arXiv:2202.02839.
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