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Abstract

The Gyárfás-Sumner conjecture says that for every forest H, there is a function fH such that if G
is H-free then χ(G) ≤ fH(ω(G)) (where χ, ω are the chromatic number and the clique number of
G). Louis Esperet conjectured that, whenever such a statement holds, fH can be chosen to be a
polynomial. The Gyárfás-Sumner conjecture is only known to be true for a modest set of forests H,
and Esperet’s conjecture is known in to be true for almost no forests. For instance, it is not known
when H is a five-vertex path. Here we prove Esperet’s conjecture when each component of H is a
star.



1 Introduction

The Gyárfás-Sumner conjecture [6, 20] asserts:

1.1 Conjecture: For every forest H, there is a function f such that χ(G) ≤ f(ω(G)) for every
H-free graph G.

(We use χ(G) and ω(G) to denote the chromatic number and the clique number of a graph G, and a
graph is H-free if it has no induced subgraph isomorphic to H.) This remains open in general, though
it has been proved for some very restricted families of trees (see, for example, [1, 7, 8, 9, 11, 13, 14]).

A class C of graphs is χ-bounded if there is a function f such that χ(G) ≤ f(ω(G)) for every graph
G that is an induced subgraph of a member of C (see [15] for a survey). Thus the Gyárfás-Sumner
conjecture asserts that, for every forest H, the class of all H-free graphs is χ-bounded. Esperet [5]
conjectured that every χ-bounded class is polynomially χ-bounded, that is, f can be chosen to be a
polynomial. Neither conjecture has been settled in general. There is a survey by Schiermeyer and
Randerath [19] on related material.

In particular, what happens to Esperet’s conjecture when we exclude a forest? For which forests
H can we show the following?

1.2 Esperet’s conjecture: There is a polynomial fH such that χ(G) ≤ fH(ω(G)) for every H-free
graph G.

Not for very many forests H, far fewer than the forests that we know satisfy 1.1. For instance, 1.2
is not known when H = P5, the five-vertex path. (This case is of great interest, because it would
imply the Erdős-Hajnal conjecture [3, 4, 2] for P5, and the latter is currently the smallest open case
of the Erdős-Hajnal conjecture.)

We remark that, if in 1.2 we replace ω(G) by τ(G), defined to be the maximum t such that G
contains Kt,t as a subgraph, then all forests satisfy the modified 1.2. More exactly, the following is
shown in [16]:

1.3 For every forest H, there is a polynomial fH such that χ(G) ≤ fH(τ(G)) for every H-free graph
G.

One difficulty with 1.2 is that we cannot assume that H is connected, or more exactly, knowing
that each component of H satisfies 1.2 does not seem to imply that H itself satisfies 1.2. For instance,
while H = P4 satisfies 1.2, we do not know the same when H is the disjoint union of two copies of
P4.

As far as we are aware, the only forests that were already known to satisfy 1.2 are those of the
following three results, and their induced subgraphs (a star is a tree in which one vertex is adjacent
to all the others):

1.4 The forest H satisfies 1.2 if either:

� H is the disjoint union of copies of K2 (S. Wagon [21]); or

� H is the disjoint union of H ′ and a copy of K2, and H ′ satisfies 1.2 (I. Schiermeyer [18]); or

� H is obtained from a star by subdividing one edge once (X. Liu, J. Schroeder, Z. Wang and X.
Yu [12]).

1



In the next paper of this series [17] we will show a strengthening of the third result of 1.4, that is,
1.2 is true when H is a “double star”, a tree with two internal vertices, the most general tree that
does not contain a five-vertex path. Our main theorem in this paper is a strengthening of the second
result of 1.4:

1.5 If H is the disjoint union of H ′ and a star, and H ′ satisfies 1.2, then H satisfies 1.2.

A star-forest is a forest in which every component is a star. From 1.5 and the result of [17], we
deduce

1.6 If H ′ is a double star, and H is the disjoint union of H ′ and a star-forest, then H satisfies 1.2.

As far as we know (although it seems unlikely), these might be all the forests that satisfy 1.2.

2 The proof

We will need the following well-known version of Ramsey’s theorem:

2.1 For k ≥ 1 an integer, if a graph G has no stable subset of size k, then

|V (G)| ≤ ω(G)k−1 + ω(G)k−2 + · · ·+ ω(G).

Consequently |V (G)| < ω(G)k if ω(G) > 1.

Proof. The claim holds for k ≤ 2, so we assume that k ≥ 3 and the result holds for k − 1. Let X
be a clique of G of cardinality ω(G), and for each x ∈ X let Wx be the set of vertices nonadjacent to
X. From the inductive hypothesis, |Wx| ≤ ω(G)k−2 + · · ·+ ω(G) for each x; but V (G) is the union
of the sets Wx ∪ {x} for x ∈ X, and the result follows by adding. This proves 2.1.

If X ⊆ V (G), we denote the subgraph induced on X by G[X]. When we are working with a
graph G and its induced subgraphs, it is convenient to write χ(X) for χ(G[X]). Now we prove 1.5,
which we restate:

2.2 If H ′ satisfies 1.2, and H is the disjoint union of H ′ and a star, then H satisfies 1.2.

Proof. H is the disjoint union of H ′ and some star S; let S have k + 1 vertices. Since H ′ satisfies
1.2, and χ(G) = ω(G) for all graphs with ω(G) ≤ 1, there exists c′ such that χ(G) ≤ ω(G)c

′
for every

H ′-free graph G. Choose c ≥ k + 2 such that

xc − (x− 1)c ≥ 1 + xk+2 + xk(k+2)+c′

for all x ≥ 2 (it is easy to see that this is possible).
Let G be an H-free graph, and write ω(G) = ω; we will show that χ(G) ≤ ωc by induction on

ω. If ω = 1 then χ(G) = 1 as required, so we assume that ω ≥ 2. Let n = ωk+1. If every vertex of
G has degree less than ωc, then the result holds as we can colour greedily, so we assume that some
vertex v has degree at least ωc. Let N be the set of all neighbours of v in G. Let X1 be the largest
clique contained in N ; let X2 be the largest clique contained in N \X1; and in general, let Xi be the
largest clique contained in N \ (X1 ∪ · · · ∪Xi−1). Since |N | ≥ ωc ≥ nω (because c ≥ k+ 2), it follows
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that X1, . . . , Xn 6= ∅. Let X = X1 ∪ · · · ∪Xn, and X0 = N \X, and t = |Xn|. Thus 1 ≤ t ≤ ω − 1
(because ω(G[N ]) < ω).

(1) χ(N ∪ {v}) ≤ tc + nω.

From the choice of Xn, it follows that the largest clique of G[X0] has cardinality at most t < ω.
From the inductive hypothesis, χ(X0) ≤ tc, and since X ∪ {v} has cardinality at most nω, it follows
that χ(N ∪ {v}) ≤ tc + nω. This proves (1).

For each stable set Y ⊆ X with |Y | = k, let AY be the set of vertices in V (G) \ (N ∪ {v}) that
have no neighbour in Y . Let A be the union of all the sets AY , and B = V (G) \ (A ∪N ∪ {v}).

(2) χ(A) ≤ (nω)kωc′.

For each choice of Y , G[AY ] is H ′-free (because Y ∪ {v} induces a copy of S with no edges to
AY ), and so χ(AY ) ≤ ωc′ . Since there are at most |X|k ≤ (nω)k choices of Y , it follows that the
union A of all the sets AY has chromatic number at most (nω)kωc′ . This proves (2).

(3) For each b ∈ B, b has fewer than ωk non-neighbours in X.

Let Z be the set of vertices in X nonadjacent to b. Since b /∈ A, G[Z] has no stable set of car-
dinality k; and since it also has no clique of cardinality ω, 2.1 implies that |Z| ≤ (ω−1)k < ωk. This
proves (3).

(4) χ(B) ≤ (ω − t)c.

Suppose that C ⊆ B is a clique with |C| = ω − t + 1. For each c ∈ C, (3) implies that c has
a nonneighbour in fewer than ωk of the cliques X1, . . . , Xn; and so fewer than (ω − t + 1)ωk of the
cliques X1, . . . , Xn contain a vertex with a non-neighbour in C. Since (ω − t + 1)ωk ≤ ωk+1 = n,
there exists i ∈ {1, . . . , n} such that every vertex in Xi is adjacent to every vertex of C, and so C∪Xi

is a clique. Since |Xi| ≥ |Xn| = t, it follows that |C ∪ Xi| > ω, a contradiction. Thus there is no
such clique C, and so ω(G[B]) ≤ ω − t; and from the inductive hypothesis (since t > 0) it follows
that χ(B) ≤ (ω − t)c. This proves (4).

From (1), (2), (4) we deduce that

χ(G) ≤ χ(N ∪ {v}) + χ(A) + χ(B) ≤ tc + nω + (nω)kωc′ + (ω − t)c.

Since 1 ≤ t ≤ ω − 1 and c ≥ 1, it follows that tc + (ω − t)c ≤ 1 + (ω − 1)c, and so

χ(G) ≤ 1 + ωk+2 + (nω)kωc′ + (ω − 1)c ≤ ωc

from the choice of c and since ω ≥ 2. This proves 1.5.
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