Sharp phase transition for interlacements percolation

OXFORD DISCRETE MATHS AND PROBABILITY SEMINAR.

Augusto Teixeira

2024

Instituto de Matemática Pura e Aplicada Rio de Janeiro - Brazil

Based on a joint work with Duminil-Copin, Goswami, Rodriguez and Severo

Overview of the talk

- 1. Sharpness in Percolation
- 2. Random walks and Random Interlacements
- 3. Main results
- 4. Interpolation technique

Introduction to Percolation

Bernoulli percolation

- Introduced by Broadbent and Hammerley in 1957.
- Very simple model.
- Extensively studied.
- Physics: understood. Math: deep open questions.

- $(d \ge 2)$ Consider \mathbb{Z}^d with edges between nearest neighbors.
- Fix $p \in [0, 1]$.
- Every edge is declared open with probability p and closed w.p. (1-p).
- This is done independently for every edge.

Phase transition

Consider:

$$[0\leftrightarrow\infty]:=$$
 there exists an open path from 0 to infinity.

 $\theta(p) := P[0 \leftrightarrow \infty]$

Its probability $\theta(p)$ is weakly monotone in p:

A beautiful path-counting argument (Peierls) shows that:

- $\theta(p) = 0$ for p small;
- $\theta(p) > 0$ for p close to one.

Phase transition!

(1)

Open questions

Define

$$p_c = \sup\{p \in [0,1]; \theta(p) = 0\}.$$

There are still many question that remain open concerning this model:

- Is $\theta(p)$ continuous for dimensions 3, 4, ..., 10?
- How does $\theta(p)$ behave as p approaches p_c ?

Sub-critical Sharpness

From definition

$$p < p_c \Rightarrow P[0 \leftrightarrow \partial B_n] \to 0.$$

From path counting

$$p < \frac{1}{2d} \quad \Rightarrow \quad P[0 \leftrightarrow \partial B_n] \leq Ce^{-cn}.$$

Definition

$$p_{**} := \sup \{ p \in [0,1]; \exists c, C \text{ with } P[0 \leftrightarrow \partial B_n] \leq Ce^{-cn} \}.$$

Theorem (Hammersley)

One has $p_{**} = p_{***}$, where

$$p_{***} := \sup \{ p \in [0,1]; E[\mathcal{C}_0] < \infty \}.$$

Theorem (Menshikov, Aizenman+Barski, Duminil-Copin+Tassion)

$$p_c = p_{***}$$
.

Super-critical Sharpness

Super-critical Sharpness

Ex(p):

$$P_p\Big[\exists \mathcal{C}\in B_n; \operatorname{diam}(\mathcal{C})\geq n/10\Big]\geq 1-Ce^{-cn}.$$

Uniq(p):

$$P_p\Big[\forall \mathcal{C}_1, \mathcal{C}_2 \in B_n; \operatorname{diam}(\mathcal{C}_i) \geq n/10, \mathcal{C}_1 \underset{B_{2n}}{\longleftrightarrow} \mathcal{C}_2\Big] \geq 1 - Ce^{-cn}.$$

Not monotone!

Counting surfaces:

$$p \sim 1 \quad \Rightarrow \quad \mathsf{Ex}(p) \ \mathsf{and} \ \mathsf{Uniq}(p)$$

Define:

Super-critical

Theorem (Chayes, Chayes, Newman)

$$p_c = p_{slab}$$

Theorem (Grimmett, Marstrand)

$$p_{slab}=p_c$$

Random Interlacements

Random Interlacements

Introduced by Sznitman in 2007.

$$\mathcal{I}^u \subseteq \mathbb{Z}^d$$
 $(d \ge 3)$, related to

- trace of SRW on torus
- large deviations for SRW
- ..
- Example of strongly dependent percolation.

Construction of RI

Fix $u \ge 0$.

Construction of $\mathcal{I}^u \cap R$.

- For each $x \in \partial R$;
- Sample $N_x \stackrel{d}{\sim} \text{Poisson}(e_R(x))$;
- Run N_x independent SRW's.

Phase transition for RI

$$\mathsf{Cov}(x \in \mathcal{I}^u, y \in \mathcal{I}^u) \sim \frac{1}{|x - y|^{d-2}}$$

 \mathcal{I}^u is infinite and connected a.s. $(\forall u \geq 0)!$

$$\mathcal{V}^u = \mathbb{Z}^d \setminus \mathcal{I}^u$$
.

$$u_* := \inf \left\{ u \ge 0; P \left[0 \stackrel{\mathcal{V}^u}{\longleftrightarrow} \infty \right] = 0 \right\}$$

Theorem (Sznitman, Sidoravicius + Sznitman)

$$(d \ge 3), 0 < u_* < \infty$$

see also Ráth.

Quantitative thresholds

$$u_{**} := \inf \left\{ u \geq 0; \forall n \ P \left[0 \overset{\mathcal{V}^u}{\leftrightarrow} \partial B_n \right] \leq C e^{-cn^{\varepsilon}} \right\}$$

Theorem (Sidoravicius + Sznitman)

$$u_{**} < \infty$$

and

$$u_{**} = u_{***} := \inf \left\{ u \ge 0; P\left[B_n \overset{Y^u}{\leftrightarrow} \partial B_{2n}\right] \xrightarrow{n} 0 \right\}$$

Super-critical:
$$\bar{u} := \sup \{ u \ge 0; \mathsf{Ex}'(u), \mathsf{Uniq}'(u) \}$$

Theorem (T. $d \ge 5$, Drewitz+Rath+Sapozhnikov $d \ge 3$)

$$\bar{u} > 0$$

What about $u_{\rm slab}$?

Main Result

Main result

Ex(u):

$$P_p\Big[\exists \mathcal{C} \in \mathcal{V}^u \cap B_n; \operatorname{diam}(\mathcal{C}) \geq n/10\Big] \geq 1 - Ce^{-cn^{\varepsilon}}.$$

• Uniq(*u*, *v*):

$$P_p\Big[\forall \mathcal{C}_1,\mathcal{C}_2\in\mathcal{V}^{\textcolor{red}{\textbf{u}}}\cap \textit{B}_n; \mathsf{diam}(\mathcal{C}_i)\geq \textit{n}/10, \mathcal{C}_1\overset{\mathcal{V}^{\textcolor{red}{\textbf{v}}}\cap \textit{B}_{2n}}{\longleftrightarrow}\mathcal{C}_2\Big]\geq 1-\textit{Ce}^{-\textit{cn}}.$$

Note the sprinkling!

$$ar{ar{u}} := \sup \big\{ u \geq 0; \mathsf{Ex}(u) \ \mathsf{and} \ \forall v < u \ \mathsf{Uniq}(u,v) \big\}$$

Theorem (Duminil-Copin+Goswami+Rodriguez+Severo+T.)

$$u_{**}=u_*=\bar{\bar{u}}$$

Applications (conditional statements):

- RW on torus/cylinder
- Large deviations for SRW . . .

Ideas of proofs

- Reuse Bernoulli sharpness!!!
- Weaken \bar{u}
- General sharpness for finite range models
- Couple with finite range model
- Interpolate the coupling

Weaken \bar{u}

Let

$$M(R) := \exp \{ \log^{\gamma}(R) \}$$
, with γ large

then

$$\tilde{u} := \sup \left\{ u \ge 0; P[B_r \leftrightarrow \partial B_{M(R)}] \left(\frac{M(R)}{R} \right)^d \to 0 \right\}$$

Monotone! Similar to sub-critical!

Theorem (Duminil-Copin+Goswami+Rodriguez+Severo+T.)

$$\tilde{u} = \bar{\bar{u}}$$

Inspired by Benjamini+Tassion

Sharpness for finite range models

Theorem (Duminil-Copin+Goswami+Rodriguez+Severo)

 $u_{**} = u_* = \overline{u}$ for all models satisfying:

- a) lattice symmetries
- b) FKG
- c) Finite energy
- d) Finitary factor of i.i.d.
- e) *Sprinkling:* $\omega^u \leq \omega^{u-\varepsilon} \cup Ber(\delta)$

Finitary RI

Define $\mathcal{I}^{u,L}$:

- PPP on \mathbb{Z}^d , intensity $\left(\frac{u}{L}\right)$
- For each point, take a SWR with length L

Called finitary R.I. (Bowen, Cai, Zhang, Ráth+Rokob, ...)

$$\mathcal{I}^{u,L} o \mathcal{I}^u$$

Also $I^{u,L}$ satisfies a), b), ..., e), thus

$$u_{**}^L = \tilde{u}^L$$

Interpolation

Coupling *L* and 2*L*

Theorem (Duminil-Copin+Goswami+Rodriguez+Severo+T.)

$$P\left[\mathcal{I}^{u-\varepsilon,L} \subseteq \mathcal{I}^{u,2L} \subseteq \mathcal{I}^{u+\varepsilon,L} \text{ in } B_{L+K}\right] \geq 1 - (L+K)^d e^{-cL^{1/4}}$$

Interpolation

1) From infinite to finite:

$$P\Big[B_r \overset{\mathcal{V}^u}{\longleftrightarrow} \partial B_R\Big] \ge P\Big[B_r \overset{\mathcal{V}^{u+\varepsilon_L,L}}{\longleftrightarrow} \partial B_R\Big] - \exp\big\{-\log^{\gamma'}(R)\big\}$$

2) From L to 2L:

$$P\Big[B_r \overset{\mathcal{V}^{u,2L}}{\longleftrightarrow} \partial B_R\Big] \geq P\Big[B_r \overset{\mathcal{V}^{u+\varepsilon_L,L}}{\longleftrightarrow} \partial B_R\Big] - \exp\big\{-\log^{\gamma'}(R)\big\} \mathbf{1}_{R < M(L)}$$

3) Box by box

$$P\left[B_r \stackrel{\mathcal{V}^k}{\longleftrightarrow} \partial B_R\right] \ge P\left[B_r \stackrel{\mathcal{V}^{k+1}}{\longleftrightarrow} \partial B_R\right]$$

