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Programmable Active Matter
as Self-Organizing Particle Systems (SOPS)

Active Matter: ensemble 
of self-organizing

computational “particles” 

Programmable to change their 
collective physical properties

Algorithms: Devise the local, distributed rules 
that each particle runs in order to achieve the 
desired emergent, collective behavior

• No human intervention or central control
• Scalable
• Indistinguishable particles
• Oblivious to global properties



Self-Organization
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In Nature:
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Sensing in materials

Self-regulation

Monitoring health

Assisting surgeries

Exploring terrains

In Nature: Applications:



The Geometric Amoebot Model

• System progresses concurrently and asynchronously

• Actively move (via expansions and contractions)

• Local communication: Exchange information via shared bonds.

Particles:

anonymous

no global orientation

constant-size memory

chirality

Self-Organizing Particle Systems
Abstraction of programmable matter as computational “particles” that 
use distributed, local algorithms to achieve system-level goals.

[Derakhshandeh et al. ‘14]



Compression

Question: Using local, distributed rules, how can particles “compress” 

(or “aggregate”)?

Def: A configuration is α-compressed if its perimeter is at most 

α times the minimum perimeter (for this number of particles).

Not compressed Compressed



Compression Algorithm

A distributed, stochastic algorithm for compression:

• Ensures system connectivity on the triangular lattice.

• Poisson clocks to activate particles (i.e., no synchronization).

• Metropolis probabilities to converge to 𝜋 𝜎 ∝ 𝜆!(#), for 𝜆 > 1.

Fix 𝜆 > 1. Start in any connected configuration.

When a particle activates (according to its Poisson clock):

• Pick a random neighboring node.

• If the proposed node is unoccupied, and certain properties hold*,   

move with probability min 𝜆%!, 1 .

• Otherwise, do nothing.

[Cannon, Daymude, R., Richa ’16]

*To maintain 
connectivity.



Compression Simulations

l = 4
100 particles after:
a) 1 million
b) 2 million
c) 3 million
d) 4 million
e) 5 million
iterations.

(a)                                                    (b)

(c)                          (d)                   (e)



Compression Simulations

l = 2
100 particles after:
a) 10 million
b) 20 million
iterations.

No compression.
(a)                                         (b)



Compression: Theorems

Thm: For all l > 𝟐 + 𝟐, there exists a = a(l) s.t. particles are 

a-compressed at stationarity almost surely.

(E.g., when  l = 4, a = 9.)

Defn: A configuration is a-compressed if its perimeter is at

most a times the minimum perimeter.

Thm: When l < 2.17, for any a > 1, the probability particles

are a-compressed at stationarity is exponentially small.

Note:  Expansion works similarly for small l. 

[Cannon, Daymude, R., Richa ‘16]

?no compression compression

𝟐 + 𝟐𝟐. 𝟏𝟕



Main proof technique: Peierls Argument

Define f: A ® B so that, for c1 > c2  such that:

• For all a Î A,     π(a) <  π(f(a)) e-c1n

• For all b Î B,      |{f -1(b)}|  <  ec2n

Then:      π(A) <  e(c2 - c1) n << 1.

To show that some subset has exponentially small probability:

Physics:  Distinguish Gibbs states;

Comp Sci:  Bound mixing times through identifying small cutsets;

Active Matter:  Bound likelihood of (un)desirable ensemble behavior.

A

Bf
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Thm: For all l > 𝟐 + 𝟐, there exists a = a(l) s.t. particles are 

a-compressed at stationarity almost surely.

Pf:   Note 𝑝 𝜎 = 3𝑛 − 𝑒 𝜎 − 3, so we can express the stat. dist'n as:

𝜋 𝜎 ∝ 𝜆! # = 𝜆+, # /𝑍

Let 𝑆! = configurations with perimeter > 𝛼𝑝𝑚𝑖𝑛
𝑚"= number of configurations with perimeter k. 

The (# configs with perimeter k) <  (# SAWs in the hexagonal lattice), i.e., 

Proof Techniques

.

|{SAWs of length t }| ~ (𝜇hex)𝑡= (2 + 2) t /2

[Duminil-Copin and Smirnov ‘12]
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Thm: For all l > 𝟐 + 𝟐, there exists a = a(l) s.t. particles are 

a-compressed at stationarity almost surely.

Pf:   Let 𝑆! = configurations with perimeter > 𝛼𝑝𝑚𝑖𝑛
𝑚"= number of configurations with perimeter k. 
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…. which is exponentially small for 𝝀 > 𝟐 + 𝟐. 



Thm: For all l > 𝟐 + 𝟐, there exists a s.t. particles are a-compressed 
at stationarity almost surely.

Thm: When l < 2.17, for any a > 1, the probability particles are

a-compressed at stationarity is exponentially small.

Pf:   Another Peierls argument to show non-compression with high prob.

Bijection between configurations and hydrocarbons (or “animals” on 

the hexagonal lattice). 

The normalizing constant Z satisfies:

𝑍 = ,
)

𝝀*()) ≥ 0.13
2.17
𝝀

-'(-

Proof Techniques



Separation (or Speciation)

“Integrated” “Separated”



Separation

Question: Using local, distributed rules, how can heterogeneous

particles “compress” overall while also “separating” into (mostly)

monochromatic groups?

Neither compressed nor separated                    compressed and separated



Definition of Separated

Defn:  A configuration is (b,d)-separated if there is a subset of 
particles R s.t.:

1. There are at most b√n particles with exactly one endpoint in R;

2. The density of particles of color c1 inside R is at least 1-d;
3. The density of particles with color c1 outside R is at most d.

__

Compressed and separated

R



MC for Separation
Distributed algorithm for separation: 

• Ensures global connectivity and is not synchronized.

• Uses Metropolis probabilities to converge to: 

𝜋 𝜎 ∝ 𝜆!(#) ⋅ 𝛾- # , 

for bias parameters 𝜆 (for compression) and 𝛾 (for separation),

where 𝑚 𝜎 is the # of monochromatic edges.

Fix 𝜆 and 𝛾. Start in any connected configuration.

When a particle activates (according to its Poisson clock):

• Pick a random neighbor.

• Move with probability min (𝜆!.⋅ 𝛾-./𝜆! ⋅ 𝛾-), 1 .

• Otherwise, do nothing.



Separation: Simulations

Integration: 𝛾 = 0.25 Separation: 𝛾 = 4

Ex
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n:
 𝜆
=
1
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n:
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=
4

(simulations by Cem Gokmen)



Separation for large 𝛾
Stationary distribution:   𝜋 𝜎 ∝ 𝜆! # ⋅ 𝛾- # = 𝜆𝛾 +,(#) ⋅ 𝛾+/(#).

Thm: When 𝜆𝛾 > 6.83 and 𝛾 > 5.66, there exists 𝛼 s.t. the particle system 
is α-compressed and separated at stationarity a.s.

(Now have to account for both monochromatic / heterogenous edges!)

Pf:   The stationary distribution 𝜋 𝜎 = 𝜆𝛾 +,(#) ⋅ 𝛾+/ # /𝑍.

Let 𝑆0 be the non-α-compressed configurations.   (Need 𝜋 𝑆0 small.)

Partition 𝑆0 into sets of configurations 𝐴1 with perimeter 𝑘. Then:

𝜋 𝐴! = $
"∈$%

𝜆𝛾 %&(") ⋅ 𝛾%) " /𝑍

= 𝜆𝛾 %! ⋅ $
"∈$%

𝛾%)(")/𝑍



Separation for large 𝛾
Thm: When 𝜆𝛾 > 6.83 and 𝛾 > 5.66, there exists 𝛼 s.t. the particle 
system will be α-compressed and separated a.s.

Pf: 𝜋 𝐴1 = 𝜆𝛾 +1 ⋅ ∑#∈3! 𝛾
+/(#)/𝑍.

If we had   ∑#∈3! 𝛾
+/(#) ≤ 𝑏1 for some 𝑏 > 1, then:
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𝑍

But not true for our heterogeneous setting!  

as before.



Separation for large 𝛾
Thm: When 𝜆𝛾 > 6.83 and 𝛾 > 5.66, there exists 𝛼 s.t. the particle 
system will be α-compressed and separated a.s.

Pf (cont):   𝜋 𝐴1 = 𝜆𝛾 +1 ⋅ ∑#∈3! 𝛾
+/(#)/𝑍.

.Instead, express ∑)∈/! 𝛾
(0 ) as a “polymer model.”

An interface 𝐼 between two color classes is a loop.

Let Γ1 be the set of all interfaces in Λ. Then:

∑#∈4" 𝛾
+/ # = ∑567897:; <7:=>7?@ A#∈A"∏B∈A# 𝛾+|B| .

A cluster is a multiset 𝑋 ⊆ Γ1 of connected interfaces.

The “cluster expansion” is:    ln ∑)∈/! 𝛾
(0 ) = ∑2⊆4!𝜙(𝑋)∏5∈2 𝛾( 5 .

When   𝛾 > 5.66, we have convergence (of the formal series) and:

𝑎D ⋅ 𝑒+E1 ≤ ∑#∈4" 𝛾
+/ # ≤ 𝑎D ⋅ 𝑒E1 ,    

which shows compression. 



Integration for small 𝛾 (close to 1)

Stationary distribution:  𝜋 𝜎 ∝ 𝜆! # ⋅ 𝛾- # = 𝜆𝛾 +,(#) ⋅ 𝛾+/(#).

Thm: When 𝜆(𝛾 + 1) > 6.83 and 0.98 ≤ 𝛾 ≤ 1.02, there exists 𝛼(𝜆, 𝛾)
s.t. the particle system will be α-compressed and integrated (i.e., not
separated) at stationarity a.s.

Here we use the “high temperature expansion” (to express Z as a weighted 
sum over even degree subgraphs): 

,
)∈/!

𝛾(0 ) = (… ),
6768 9⊆9(1)

𝛾 − 1
𝛾 + 1

|9|

+ a similar strategy as before with the cluster expansion + a Peierls arg.



Programmable Matter in the “Real World”

• Relax the connectivity requirement.

• Self-organizing particles system algorithms without look-ahead.

Compression Algorithm (without the connectivity requirement):

Fix 𝜆 > 1. Start in any connected configuration.

When a particle activates (according to its Poisson clock):

• Pick a random neighboring node v.

• If unoccupied, and certain properties hold, move with        

probability min 𝜆%!, 1 ∝ 𝜆+<;F(G).
• Otherwise, do nothing. (A variant on Metropolis that

just depends on current position)

• Proving connectivity of the state space is much easier.

• Proving aggregation (or compression) is trickier, 
but just Peierls + cluster expansion as for separation.

Can be implemented 
mechanically !!

[Dutta, Li, Cannon, Daymude, Aydin, Richa, Goldman, R. ‘20]



Compression without Connectivity

No Aggregation Aggregation

What does it mean for a configuration to “aggregate”?

Ø There is a “region” with large area and small perimeter

Ø that is dense with particles

Ø and the complement of the region is sparsely occupied

We provably get a similar phase change

?no aggregation aggregation
l



Theory to Practice: Experiments with robots

BOBbots

Daniel Goldman, GT

Collections of “Dumb” Robots

Syncells

Michael Strano, MIT

Cell-sized Colloidal “Robots”



BOBbots: “Behaving, Oscillating, Buzzing Bots”

• A motor to create “random” motion

• Peripheral magnets to dampen detachment

More 
magnets 
engaged

Smaller 
probability 

of detaching
=                

Preference
for more 
neighbors

=               

?no compression compression

Prediction:

Magnet strength

NO computational capacity; NO memory!



Varying Magnetic Strength

Simulations

Weaker Magnets Stronger Magnets

Experiments



Compression for a Clearing Task  

Low magnetization High magnetization



Theory to Practice: Syncells

Syncells

Michael Strano, MIT

Cell-sized Colloidal “Robots”

Graphene

PSEG - Fe2O3

Platinum

H2O2 bath

• Interparticle interaction

• Dispersion potential



Oscillation in Colloidal System



Ø Simpler than previous SOPS algorithms for active matter

Ø Robust to particle failures

Ø No central controller (or leader) necessary

Ø Can be made to be self-regulating

Advantages of Stochastic SOPS Algorithms



Open Questions

1. What is the running time of our algorithms?

Emergent behavior occurs at low temperatures, and can take exponential 
time to reach stationarity, but emergence occurs much earlier.

2. When do our predictions about equilibrium behavior hold in 
nonequilibrium driven physical systems?

3. What other emergent behavior can we design for simple models of 
programmable active matter?  

Alignment?  Locomotion?  Beating?  Transport? …



Thank you !

Questions?


