Revisiting Jerrum's Metropolis Process for the Planted Clique Problem

Elchanan Mossel (MIT), joint work with Zongchen Chen (MIT) and Ilias Zadik (MIT) Jun 6, 2023
Oxford Probability Seminar

Supported by Grants:

Simons-NSF grant DMS-2031883
Vannevar Bush Faculty Fellowship ONR-N00014-20-1-2826
Simons Investigator award (622132)

Cliques in Random Graphs

- Erdős-Rényi random graph $\mathscr{G}(n, 1 / 2)$
- n vertices, every pair connected with prob $1 / 2$ independently
- Max clique of $\mathscr{G}(n, 1 / 2)$ has size $\approx 2 \log n$ w.h.p.
- Best known algorithm finds a clique of size $\approx \log n$ w.h.p.

Q: Can we find a $(1+\varepsilon) \log n$ clique in $\mathscr{G}(n, 1 / 2)$ efficiently?

- Can do this in $n^{\Theta(\log n)}$ time by exhaustive search

Metropolis Process

- [Jerrum'92] considered the Metropolis Process (MP) for finding a $(1+\varepsilon) \log n$ clique in $\mathscr{G}(n, 1 / 2)$
- Initialization: a clique X_{0}
- At time t, generate X_{t} from X_{t-1} as follows:
- Pick a vertex v uniformly at random:
- If $v \notin X_{t-1}$, let $X_{t}=X_{t-1} \cup\{v\}$ if it is a clique, and $X_{t}=X_{t-1}$ otherwise
- If $v \in X_{t-1}$, let $X_{t}=\left\{\begin{array}{ll}X_{t-1} \backslash\{v\}, & \text { w.p. } \mathrm{e}^{-\beta} \\ X_{t-1}, & \text { w.p. } 1-\mathrm{e}^{-\beta}\end{array} \quad \beta \geq 0\right.$

Metropolis Process: Example

Metropolis Process for $\mathscr{G}(n, 1 / 2)$

- As t grows, the distribution of X_{t} converges to stationary distribution π $\pi(C) \propto e^{\beta|C|}, \forall$ clique C
- $\beta=0: \pi$ is uniform distribution over all cliques
$-\beta=\Theta(1)$: $C \sim \pi$ has size $\approx \log n$ w.h.p.
$-\beta=\Theta(\log n)$: $C \sim \pi$ has size $\approx(1+\varepsilon) \log n$ w.h.p.
$C \sim \pi$: a random clique drawn from π

Hope: X_{t} converges to π quickly (poly-time), and we get a $(1+\varepsilon) \log n$ clique!
[Jerrum'92]: For any $\beta \geq 0$, MP fails to find a $(1+\varepsilon) \log n$ clique in $\mathscr{G}(n, 1 / 2)$, even if we "plant" a large clique of size $k=n^{\alpha}, \alpha<1 / 2$:

Planted Clique Model

- Planted clique model $\mathscr{G}(n, 1 / 2, k)$ [Jerrum'92, Kučera'95]

Step 1: G_{0} is an Erdős-Rényi $\mathscr{G}(n, 1 / 2)$
Step 2: Pick a subset of k vertices u.a.r. and form a planted k-clique $\mathscr{P} \mathscr{C}$
$\Rightarrow G=G_{0} \cup \mathscr{P} \mathscr{C}$

Goal: Recover $\mathscr{P} \mathscr{C}$ from observing $G \sim \mathscr{G}(n, 1 / 2, k)$
Q: How large does k need to be? to (efficiently) find the clique?

$$
G=\mathscr{C}
$$

Recovering Planted Clique

Goal: Recover $\mathscr{P} \mathscr{C}$ from observing $G \sim \mathscr{G}(n, 1 / 2, k)$

- $k \geq(2+\varepsilon) \log n: n^{\Theta(\log n)}$ time by exhaustive search
- $k=\Omega(\sqrt{n \log n}): \operatorname{poly}(n)$ time by degree counting
- $k=\Omega(\sqrt{n}): \operatorname{poly}(n)$ time
- Spectral method, approximate message passing, and more... [AKS'98, FR'10, DM'13, DGGP'14]
- If $k=o(\sqrt{n})$, many algorithms fail: MP [Jer'92], Sum-of-Squares hierarchy [BHK+'16], statistical-query algorithms [FGR+'17], ...

The Planted Clique Conjecture

- Computational hardness implies same for other important problems: compressed sensing, sparse PCA, property testing, cryptography...

MP for Planted Clique Model

- Suppose $k=|\mathscr{P} \mathscr{C}|=n^{\alpha}$ where $0<\alpha<1$
- X_{t} converges to π, where $\pi(C) \propto e^{\beta|C|}, \forall$ clique C
- $C \sim \pi$ is contained in $\mathscr{P} \mathscr{C}$ w.h.p.
- \# Cliques inside $\mathscr{P} \mathscr{C}=2^{k}=2^{n^{\alpha}} \gg n^{\Theta(\log n)}=$ \# Cliques outside $\mathscr{P} \mathscr{C}$

Hope: X_{t} converges to π in poly time, and we see a significant portion of $\mathscr{P} \mathscr{C}$!
[Jerrum'92]: For any $\alpha<1 / 2$ and $\beta \geq 0, \mathrm{MP}$ requires $n^{\Theta(\log n)}$ time to find a $(1+\varepsilon) \log n$ clique under worst-case initialization X_{0} :

Revisiting Jerrum's Result

[Jerrum'92]: For any $\alpha<1 / 2$ and $\beta \geq 0, \mathrm{MP}$ requires $n^{\Theta(\log n)}$ time to find a $(1+\varepsilon) \log n$ clique under worst-case initialization X_{0} :
(a) Why $\alpha<1 / 2$? Does MP work when $1 / 2 \leq \alpha<1$?

- First evidence of "hardness" for planted clique problem when $k=o(\sqrt{n})$ is commonly attributed to the failure of MP in [Jerrum'92]
(b) Why $(1+\varepsilon) \log n$ clique?
- Can we first find $\gamma \log n$ vertices from $\mathscr{P} \mathscr{C}$, and then recover $\mathscr{P} \mathscr{C}$ easily?
(c) Why worst-case initialization? Same is true for many lower bounds of MCMC
- Can we use simple and nature "empty clique" initialization $X_{0}=\varnothing$?

Our Results

$$
k=|\mathscr{P} \mathscr{C}|=n^{\alpha}
$$

[Chen-Mossel-Zadik'23]: For any $\alpha<1$, MP requires $n^{\omega(1)}$ time to reach:

- Either a clique of size $(1+\varepsilon) \log n$
- Or a clique of intersection $\gamma \log n$ with $\mathscr{P} \mathscr{C}$ When (i) under worst-case initialization and $\beta \geq 0$
(ii) under empty clique initialization and $\beta=o(\log n)$ or $\omega(\log n)$
- Big failure of MP for the planted clique problem
- Contrary to common sense predictions: no strong evidence of hardness

Proof Approach: Worst-case Initialization

[Chen-Mossel-Zadik'23]: For any $\alpha<1$ and $\beta \geq 0$, MP requires $n^{\Omega(\log n)}$ time to reach:

- Either a clique of size $(1+\varepsilon) \log n$
- Or a clique of intersection $\gamma \log n$ with $\mathscr{P} \mathscr{C}$ under worst-case initialization
"Bottleneck argument": If $\pi(\partial A) / \pi(A)=n^{-\Omega(\log n)}$, then MP requires $n^{\Omega(\log n)}$ time to escape A (reach A^{c}) when started from $X_{0} \sim \pi(\cdot \mid A)$

A : a subset of cliques ∂A : boundary cliques of A

Bottleneck for Large Intersection

- $A=\{C:|C \cap \mathscr{P} \mathscr{C}| \leq \gamma \log n\}$
- $\partial A=\{C:|C \cap \mathscr{P} \mathscr{C}|=\gamma \log n\}$
"Bottleneck argument": If $\pi(\partial A) / \pi(A)=n^{-\Omega(\log n)}$, then MP requires $n^{\Omega(\log n)}$ time to escape A (reach A^{c}) when started from $X_{0} \sim \pi(\cdot \mid A)$
. Can show $\frac{|\partial A|}{|A|} \approx \frac{\mathbb{E}|\partial A|}{\mathbb{E}|A|}=n^{-\Omega(\log n)}$ w.h.p.

$$
_\beta=0: \frac{\pi(\partial A)}{\pi(A)}=\frac{|\partial A|}{|A|}
$$

_ For general $\beta: \frac{\pi(\partial A)}{\pi(A)} \approx \frac{\max _{q} e^{\beta q}\left|\mathscr{C}_{q, \gamma \log n}\right|}{\max _{q} e^{\beta q}\left|\mathscr{C}_{q}\right|} \leq \frac{\left|\mathscr{C}_{q^{*}, \gamma \log n}\right|}{\left|\mathscr{C}_{q^{*}}\right|} \approx n^{-\Omega(\log n)}$

$$
\mathscr{C}_{q}=\{C:|C|=q\} \quad \mathscr{C}_{q, r}=\{C:|C|=q,|C \cap \mathscr{P} \mathscr{C}|=r\}
$$

Bottleneck for Large Size

- Jerrum's bottleneck ∂B : cliques of size $(1+2 \varepsilon / 3) \log n$ expandable to size $(1+\varepsilon) \log n$
- Work only when $\alpha<1 / 2$
- When $1 / 2 \leq \alpha<1, \frac{\pi(\partial B)}{\pi(B)}$ is large since B and ∂B are mostly cliques contained in $\mathscr{P} \mathscr{C}$
- Need to take "combined bottleneck" $\approx A \cap B(A$ is previous bottleneck for large intersection)

Proof Approach: Empty Clique Initialization

- $\beta=\omega(\log n)$: Probability of removing a vertex $=e^{-\beta}=n^{-\omega(1)}$
- MP \approx Randomized Greedy algorithm (pick a random vertex and add if possible)
- $\beta=o(\log n)$: Consider the "projected process" over \mathbb{N}^{+}for sizes of cliques:

$$
0=\left|X_{0}\right| \rightarrow\left|X_{1}\right| \rightarrow\left|X_{2}\right| \rightarrow \cdots\left(\mathrm{MP}: \varnothing=X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow \cdots\right)
$$

- Use an auxiliary birth and death process $\left\{Y_{t}\right\}_{t}$ to bound $\left\{\left|X_{t}\right|\right\}_{t}$
- Can show large hitting time when $\beta=o(\log n)$

Conclusion and Future Problems

[Chen-Mossel-Zadik'23]: For any $\alpha<1$, MP requires $n^{\omega(1)}$ time to reach:

- Either a clique of size $(1+\varepsilon) \log n$
- Or a clique of intersection $\gamma \log n$ with $\mathscr{P} \mathscr{C}$ When (i) under worst-case initialization and $\beta \geq 0$
(ii) under empty clique initialization and $\beta=o(\log n)$ or $\omega(\log n)$
- Failure of MP under empty clique initialization and for $\beta=\Theta(\log n)$?
- General tools for analyzing MCMC algorithms under natural initialization?
- Efficient MCMC algorithms for recovering the planted clique?

Thank you!

