Revisiting Jerrum's Metropolis Process for the Planted Clique Problem

Elchanan Mossel (MIT), joint work with Zongchen Chen (MIT) and Ilias Zadik (MIT) Jun 6, 2023 Oxford Probability Seminar

Supported by Grants:

Simons-NSF grant DMS-2031883

Vannevar Bush Faculty Fellowship ONR-N00014-20-1-2826

Simons Investigator award (622132)

Cliques in Random Graphs

- Erdős–Rényi random graph $\mathscr{G}(n, 1/2)$
 - *n* vertices, every pair connected with prob 1/2 independently
- Max clique of $\mathcal{G}(n, 1/2)$ has size $\approx 2\log n$ w.h.p.
- Best known algorithm finds a clique of size $\approx \log n$ w.h.p.
- Q: Can we find a $(1 + \varepsilon)\log n$ clique in $\mathcal{G}(n, 1/2)$ efficiently?

- Can do this in $n^{\Theta(\log n)}$ time by exhaustive search

Metropolis Process

- clique in $\mathcal{G}(n, 1/2)$
 - Initialization: a clique X_0
 - At time t, generate X_t from X_{t-1} as follows:
 - Pick a vertex v uniformly at random:
 - If $v \notin X_{t-1}$, let $X_t = X_{t-1} \cup \{v\}$ if it is a clique, and $X_t = X_{t-1}$ otherwise

If
$$v \in X_{t-1}$$
, let $X_t = -$

• [Jerrum'92] considered the Metropolis Process (MP) for finding a $(1 + \varepsilon)\log n$

- $\begin{cases} X_{t-1} \setminus \{v\}, & \text{w.p. } e^{-\beta} \\ X_{t-1}, & \text{w.p. } 1 e^{-\beta} \end{cases}$

 $X_{t-1},$

Metropolis Process: Example

$$X_{t-\overline{T}} \cup \begin{cases} X_{t-1} \setminus \{v\}, & \text{w.p.} e^{-\beta} \\ \{v\} \text{ is a odlian odlight, xeo X = } X \in X_{t-1} \setminus \{v\} \\ X_{t-1}, & \text{w.p.} 1 - e^{-\beta} \end{cases}$$

Metropolis Process for $\mathcal{G}(n, 1/2)$

- As t grows, the distribution of X_t converges to stationary distribution π $\pi(C) \propto e^{\beta|C|}$, \forall clique C
 - $\beta = 0$: π is uniform distribution over all cliques
 - $\beta = \Theta(1)$: $C \sim \pi$ has size $\approx \log n$ w.h.p. $C \sim \pi$: a random
 - $\beta = \Theta(\log n)$: $C \sim \pi$ has size $\approx (1 + \varepsilon)\log n$ w.h.p.
- Hope: X_t converges to π quickly (poly-time), and we get a $(1 + \varepsilon)\log n$ clique!

[Jerrum'92]: For any $\beta \ge 0$, MP fails to find a $(1 + \varepsilon)\log n$ clique in $\mathscr{G}(n, 1/2)$, even if we "plant" a large clique of size $k = n^{\alpha}$, $\alpha < 1/2$

 $C \sim \pi$: a random clique drawn from π

Planted Clique Model

- Planted clique model $\mathscr{G}(n, 1/2, k)$ [Jerrum'92, Kučera'95]
- Step 1: G_0 is an Erdős–Rényi $\mathscr{G}(n, 1/2)$
- Step 2: Pick a subset of k vertices u.a.r. and form a planted k-clique \mathcal{PC}
- $\Rightarrow G = G_0 \cup \mathscr{PC}$
- Goal: Recover \mathscr{PC} from observing $G \sim \mathscr{G}(n, 1/2, k)$ Q: How large does *k* need to be? to (efficiently) find the clique?

Recovering Planted Clique

- Goal: Recover \mathcal{PC} from observing $G \sim \mathcal{G}(n, 1/2, k)$
- $k \ge (2 + \varepsilon) \log n$: $n^{\Theta(\log n)}$ time by exhaustive search
- $k = \Omega(\sqrt{n \log n})$: poly(*n*) time by degree counting
- $k = \Omega(\sqrt{n})$: poly(*n*) time
 - Spectral method, approximate message passing, and more... [AKS'98, FR'10, DM'13, DGGP'14]
 - If $k = o(\sqrt{n})$, many algorithms fail: MP [Jer'92], Sum-of-Squares hierarchy [BHK+'16], statistical-query algorithms [FGR+'17], ...

 Computational hardness implies same for other important problems: compressed sensing, sparse PCA, property testing, cryptography...

MP for Planted Clique Model

- Suppose $k = |\mathcal{PC}| = n^{\alpha}$ where $0 < \alpha < 1$
- X_t converges to π , where $\pi(C) \propto e^{\beta |C|}$, \forall clique C
- $C \sim \pi$ is contained in \mathcal{PC} w.h.p.

a $(1 + \varepsilon)\log n$ clique under worst-case initialization X_0

- # Cliques inside $\mathscr{PC} = 2^k = 2^{n^{\alpha}} \gg n^{\Theta(\log n)} = \#$ Cliques outside \mathscr{PC}

Hope: X_t converges to π in poly time, and we see a significant portion of \mathscr{PC} !

[Jerrum'92]: For any $\alpha < 1/2$ and $\beta \ge 0$, MP requires $n^{\Theta(\log n)}$ time to find

Revisiting Jerrum's Result

a $(1 + \varepsilon)\log n$ clique under worst-case initialization X_0

(a) Why $\alpha < 1/2$? Does MP work when $1/2 \le \alpha < 1$?

- First evidence of "hardness" for planted clique problem when $k = o(\sqrt{n})$ is commonly attributed to the failure of MP in [Jerrum'92]

(b) Why $(1 + \varepsilon)\log n$ clique?

- Can we use simple and nature "empty clique" initialization $X_0 = \emptyset$?

- [Jerrum'92]: For any $\alpha < 1/2$ and $\beta \ge 0$, MP requires $n^{\Theta(\log n)}$ time to find

- Can we first find $\gamma \log n$ vertices from \mathcal{PC} , and then recover \mathcal{PC} easily?
- (c) Why worst-case initialization? Same is true for many lower bounds of MCMC

Our Results

[Chen-Mossel-Zadik'23]: For any $\alpha < 1$, MP requires $n^{\omega(1)}$ time to reach: • Either a clique of size $(1 + \varepsilon)\log n$ • Or a clique of intersection $\gamma \log n$ with \mathcal{PC} When (i) under worst-case initialization and $\beta \geq 0$ (ii) under empty clique initialization and $\beta = o(\log n)$ or $\omega(\log n)$

- Big failure of MP for the planted clique problem
- Contrary to common sense predictions: no strong evidence of hardness

$$k = |\mathscr{PC}| = n^{\alpha}$$

Proof Approach: Worst-case Initialization

[Chen-Mossel-Zadik'23]: For any $\alpha < 1$ and $\beta \ge 0$, MP requires $n^{\Omega(\log n)}$ time to reach:

- Either a clique of size $(1 + \varepsilon)\log n$
- Or a clique of intersection $\gamma \log n$ with \mathcal{PC} under worst-case initialization

"Bottleneck argument": If $\pi(\partial A)/\pi(A) = n^{-\Omega(\log n)}$, then MP requires $n^{\Omega(\log n)}$ time to escape A (reach A^{c}) when started from $X_0 \sim \pi(\cdot | A)$

g*n* n with *PC*

A: a subset of cliques ∂A : boundary cliques of A

Bottleneck for Large Intersection

• $A = \{C : |C \cap \mathscr{PC}| \le \gamma \log n\}$

• $\partial A = \{C : | C \cap \mathscr{PC} | = \gamma \log n\}$

Can show
$$\frac{|\partial A|}{|A|} \approx \frac{\mathbb{E}|\partial A|}{\mathbb{E}|A|} = n^{-\Omega(\log A)}$$

$$= \beta = 0: \frac{\pi(\partial A)}{\pi(A)} = \frac{|\partial A|}{|A|}$$

"Bottleneck argument": If $\pi(\partial A)/\pi(A) = n^{-\Omega(\log n)}$, then MP requires $n^{\Omega(\log n)}$ time to escape A (reach A^{c}) when started from $X_{0} \sim \pi(\cdot \mid A)$

Bottleneck for Large Size

- $(1 + \varepsilon)\log n$
- Work only when $\alpha < 1/2$
- When $1/2 \le \alpha < 1$, $\frac{\pi(\partial B)}{\pi(B)}$ is large since *B* and ∂B are mostly cliques contained in \mathcal{PC}
- large intersection)

• Jerrum's bottleneck ∂B : cliques of size $(1 + 2\varepsilon/3)\log n$ expandable to size

• Need to take "combined bottleneck" $\approx A \cap B$ (A is previous bottleneck for

Proof Approach: Empty Clique Initialization

- $\beta = \omega(\log n)$: Probability of removing a vertex $= e^{-\beta} = n^{-\omega(1)}$
 - possible)
- $0 = |X_0| \rightarrow |X_1| \rightarrow |X_2| \rightarrow \cdots \text{(MP: } \emptyset = X_0 \rightarrow X_1 \rightarrow X_2 \rightarrow \cdots \text{)}$
- Use an auxiliary birth and death process $\{Y_t\}_t$ to bound $\{|X_t|\}_t$
- Can show large hitting time when $\beta = o(\log n)$

- MP \approx Randomized Greedy algorithm (pick a random vertex and add if

• $\beta = o(\log n)$: Consider the "projected process" over \mathbb{N}^+ for sizes of cliques:

Conclusion and Future Problems

[Chen-Mossel-Zadik'23]: For any $\alpha < 1$, MP requires $n^{\omega(1)}$ time to reach: • Either a clique of size $(1 + \varepsilon)\log n$ • Or a clique of intersection $\gamma \log n$ with \mathcal{PC} When (i) under worst-case initialization and $\beta \geq 0$ (ii) under empty clique initialization and $\beta = o(\log n)$ or $\omega(\log n)$

- Failure of MP under empty clique initialization and for $\beta = \Theta(\log n)$?
- General tools for analyzing MCMC algorithms under natural initialization?
- Efficient MCMC algorithms for recovering the planted clique?

Thank you!