Boundedness of discounted tree sums

Elie Aïdékon¹ Joint work with Yueyun Hu² and Zhan Shi³

¹Fudan University

²Université Paris XIII

³Chinese Academy of Sciences

Oxford Discrete Mathematics and Probability Seminar November 26th 2024

Two examples

2 The model

Maximum of a branching random walk

4 Theorem

5 Open questions

3 Maximum of a branching random walk

at generation k, $\operatorname{length}(e) = c^k \eta_e$

Suppose $\mathbb{P}(\eta > x) \sim x^{-\theta}$. • If $m < c^{\theta}$, then $X < \infty$ a.s. $\max_{\text{generation } k} \ell(e)$ decreases exponentially

• If $m > c^{\theta}$, then $X = \infty$ a.s. $\max_{\text{generation } k} \ell(e)$ increases exponentially

Proof.
$$m^k \mathbb{P}(\ell(e) > x) = m^k \mathbb{P}(c^k \eta > x) \sim x^{-\theta} (mc^{-\theta})^k$$
.

Athreya (1985) Endogenous solution of

$$X \stackrel{(d)}{=} \eta + \max_{1 \le i \le m} c X^{(i)}$$

Suppose $\mathbb{P}(\eta > x) \sim x^{-\theta}$. • If $m < c^{\theta}$, then $X < \infty$ a.s. $\max_{\text{generation } k} \ell(e)$ decreases exponentially • If $m > c^{\theta}$, then $X = \infty$ a.s. $\max_{\text{generation } k} \ell(e)$ increases exponentially

Proof.
$$m^k \mathbb{P}(\ell(e) > x) = m^k \mathbb{P}(c^k \eta > x) \sim x^{-\theta} (mc^{-\theta})^k$$
.

Athreya (1985) Endogenous solution of

$$X \stackrel{(d)}{=} \eta + \max_{1 \le i \le m} c X^{(i)}$$

Suppose $\mathbb{P}(\eta > x) \sim x^{-\theta}$. • If $m < c^{\theta}$, then $X < \infty$ a.s. $\max_{\text{generation } k} \ell(e)$ decreases exponentially • If $m > c^{\theta}$, then $X = \infty$ a.s. $\max_{\text{generation } k} \ell(e)$ increases exponentially

Proof.
$$m^k \mathbb{P}(\ell(e) > x) = m^k \mathbb{P}(c^k \eta > x) \sim x^{-\theta} (mc^{-\theta})^k$$
.

Athreya (1985) Endogenous solution of

$$X \stackrel{(d)}{=} \eta + \max_{1 \leq i \leq m} c X^{(i)}$$

Goal: find the *k*-th smallest number (result) among *n* numbers.

FIND algorithm

Pick a random number (pivot). Compare it with the other numbers. If result=pivot, end. If not, iterate.

Cost of the algorithm:

$$X_n = n + \max(X_{n_1}, X_{n_2})$$

 $\frac{1}{n}X_n\stackrel{(d)}{\to}X.$

$$X \stackrel{(d)}{=} 1 + \max(\underline{U}X^{(1)}, (1-\underline{U})X^{(2)})$$

Endogenous solution $X < \infty$ (Grüber and Rösler, 1996).

3 Maximum of a branching random walk

$$V(\emptyset) = 0.$$

 $(V(u), |u| = 1) \stackrel{(d)}{=} \mu$: point process on the real line.

At each generation, vertices have independently children with positions at distance a copy of μ from their parent.

 $V(\emptyset) = 0.$

 $(V(u), |u| = 1) \stackrel{(d)}{=} \mu$: point process on the real line.

At each generation, vertices have independently children with positions at distance a copy of μ from their parent.

 $V(\emptyset) = 0.$

 $(V(u), |u| = 1) \stackrel{(d)}{=} \mu$: point process on the real line.

At each generation, vertices have independently children with positions at distance a copy of μ from their parent.

$$V(\emptyset) = 0.$$

 $(V(u), |u| = 1) \stackrel{(d)}{=} \mu$: point process on the real line.

At each generation, vertices have independently children with positions at distance a copy of μ from their parent.

$$V(\emptyset) = 0.$$

 $(V(u), |u| = 1) \stackrel{(d)}{=} \mu$: point process on the real line.

At each generation, vertices have independently children with positions at distance a copy of μ from their parent.

$$V(\emptyset) = 0.$$

 $(V(u), |u| = 1) \stackrel{(d)}{=} \mu$: point process on the real line.

At each generation, vertices have independently children with positions at distance a copy of μ from their parent.

$$V(\emptyset) = 0.$$

 $(V(u), |u| = 1) \stackrel{(d)}{=} \mu$: point process on the real line.

At each generation, vertices have independently children with positions at distance a copy of μ from their parent.

 $e^{V(u)}$: discount rates

 $(\eta_u)_u$: i.i.d. positive marks on the vertices.

$$\mathcal{D}(\xi) := \sum_{u \in \xi} e^{V(u)} \eta_u$$
 discounted sum

$$X:=\sup_{\xi\in\partial T}D(\xi)$$

Question: Is $X < \infty$?

(Aldous & Bandyopadhyay, 2005)

Ľ

$$D(\xi) := \sum_{u \in \xi} e^{V(u)} \eta_u \qquad X := \sup_{\xi \in \partial T} D(\xi)$$

X is the endogenous solution of

$$X \stackrel{(d)}{=} \eta + \sup_{|u|=1} e^{V(u)} X^{(u)}$$

Example I: step displacement is a constant

Example II: $\eta = 1$, step displacement is -Exp(1).

Maximum of a branching random walk

 $M_n - \gamma n - c \ln(n)$ converges in distribution, c < 0.

$$D(\xi) = \sum_{u \in \xi} e^{V(u)} = \sum_{n=0}^{\infty} e^{V(\xi_n)} \le \sum_{n=0}^{\infty} e^{M_n}$$

• $\gamma < 0 \Rightarrow M_n \sim \gamma n \Rightarrow X < \infty$

$$X \ge e^{M_n}$$

•
$$\gamma > 0 \Rightarrow M_n \to \infty \Rightarrow X = \infty$$

• What about $\gamma = 0$?

The upper bound $D(\xi) \leq \sum_{n=0}^{\infty} e^{M_n}$ is too rough. One cannot find a path which stays close to the maximum at all times.

$$D(\xi) = \sum_{u \in \xi} e^{V(u)} = \sum_{n=0}^{\infty} e^{V(\xi_n)} \le \sum_{n=0}^{\infty} e^{M_n}$$

• $\gamma < 0 \Rightarrow M_n \sim \gamma n \Rightarrow X < \infty$

$$X \ge e^{M_n}$$

•
$$\gamma > 0 \Rightarrow M_n \to \infty \Rightarrow X = \infty$$

• What about $\gamma = 0$?

The upper bound $D(\xi) \leq \sum_{n=0}^{\infty} e^{M_n}$ is too rough. One cannot find a path which stays close to the maximum at all times.

Need to control the frequency at which a path returns to levels of order ln *n Not straightforward...*

Need to control the frequency at which a path returns to levels of order $\ln n$ Not straightforward...

3 Maximum of a branching random walk

Suppose that
$$\theta := \lim_{x \to \infty} \frac{-1}{\ln(x)} \ln \mathbb{P}(\eta > x) \in [0, \infty]$$
 exists.

Theorem (A.,Hu,Shi, 24+)

If $t^* < \theta$, then $X < \infty$ a.s. If $t^* > \theta$, then $X = \infty$ a.s. on non-extinction.

If $t^* > \theta$, then $X = \infty$ a.s. on non-extinction.

It suffices to prove $\sup_{|u|=n} e^{V(u)} \eta_u$ goes to ∞ exponentially fast. Better idea: consider $e^{V(u)} \eta_u$ over BRW stopped at level -k then show $\sup_{\text{stopping line}} e^{-k} \eta_u$ goes to infinity.

It suffices to show that

•
$$\{u : V(u) \approx -k\}$$
 is of size e^{t^*k} .

• $\sum_{u \in \xi} \mathbf{1}_{\{V(u) \approx -k\}}$ grows at most polynomially uniformly in ξ .

Stop each path ξ when it is $\approx -k$ for the ℓ -th time.

It suffices to show that

•
$$\{u : V(u) \approx -k\}$$
 is of size e^{t^*k} .

• $\sum_{u \in \xi} \mathbf{1}_{\{V(u) \approx -k\}}$ grows at most polynomially uniformly in ξ .

Stop each path ξ when it is $\approx -k$ for the ℓ -th time.

It suffices to show that

•
$$\{u : V(u) \approx -k\}$$
 is of size e^{t^*k} .

• $\sum_{u \in \xi} \mathbf{1}_{\{V(u) \approx -k\}}$ grows at most polynomially uniformly in ξ .

Stop each path ξ when it is $\approx -k$ for the ℓ -th time.

It suffices to show that

•
$$\{u : V(u) \approx -k\}$$
 is of size e^{t^*k} .

• $\sum_{u \in \xi} \mathbf{1}_{\{V(u) \approx -k\}}$ grows at most polynomially uniformly in ξ . \leftarrow

Stop each path ξ when it is $\approx -k$ for the ℓ -th time.

It suffices to show that

•
$$\{u : V(u) \approx -k\}$$
 is of size e^{t^*k} .

• $\sum_{u \in \xi} \mathbf{1}_{\{V(u) \approx -k\}}$ grows at most polynomially uniformly in ξ .

Stop each path ξ when it is $\approx -k$ for the ℓ -th time.

It suffices to show that

•
$$\{u : V(u) \approx -k\}$$
 is of size e^{t^*k} .

• $\sum_{u \in \xi} \mathbf{1}_{\{V(u) \approx -k\}}$ grows at most polynomially uniformly in ξ .

Stop each path ξ when it is $\approx -k$ for the ℓ -th time.

Suppose $V(u) \in \mathbb{Z}$ and $\mathbb{P}(V(u) \leq -2) = 0$ for |u| = 1.

$$N(\xi,k) := \sum_{u \in \xi} \mathbf{1}_{\{V(u) = -k\}}.$$

What about lim inf?

Theorem (A., Hu, Shi, 24+) (I) $\sup_{\xi} \limsup_{k \to \infty} \frac{1}{k^2} N(\xi, k) = \frac{t^*}{2\theta}$. (II) $\sup_{\xi} \limsup_{k \to \infty} \frac{1}{k} N(\xi, k) = -\frac{t^*}{\ln q}$.

Suppose $V(u) \in \mathbb{Z}$ and $\mathbb{P}(V(u) \leq -2) = 0$ for |u| = 1.

$$N(\xi,k) := \sum_{u \in \xi} \mathbf{1}_{\{V(u)=-k\}}.$$

What about lim inf?

Theorem (A., Hu, Shi, 24+) (I) $\sup_{\xi} \limsup_{k \to \infty} \frac{1}{k^2} N(\xi, k) = \frac{t^*}{2\theta}.$ (II) $\sup_{\xi} \limsup_{k \to \infty} \frac{1}{k} N(\xi, k) = -\frac{t^*}{\ln q}.$

(1)
$$\sup_{\xi} \limsup_{k \to \infty} \frac{1}{k^2} N(\xi, k) = \frac{t^*}{2\theta}$$
.

 $\begin{array}{l} \mathbb{E}[\text{below green line}] \to \infty \text{ if } c < \frac{t^*}{2\theta} \\ \mathbb{E}[\text{green stopping line}] \to 0 \text{ if } c > \frac{t^*}{2\theta} \end{array}$

3 Maximum of a branching random walk

- Hausdorff dimension of rays such that $N(\xi, k) \sim ak^2$?
- Weaker assumptions?
- Study of all solutions of the fixed point equation.

THANK YOU