Boundedness of discounted tree sums

Fli e Aïdékon 1 Joint work with Yueyun Hu² and Zhan Shi³

¹Fudan University

²Université Paris XIII

³Chinese Academy of Sciences

Oxford Discrete Mathematics and Probability Seminar November 26th 2024

[Two examples](#page-2-0)

[The model](#page-15-0)

[Maximum of a branching random walk](#page-25-0)

[Theorem](#page-31-0)

[Open questions](#page-46-0)

[Maximum of a branching random walk](#page-25-0)

Suppose $\mathbb{P}(\eta > x) \sim x^{-\theta}$. If $m < c^\theta,$ then $X < \infty$ a.s. $\left\lfloor \max_{\text{generation } k} \ell(e) \right\rfloor$ decreases exponentially

If $m>c^{\theta}$, then $X=\infty$ a.s. $\max_{\text{generation } k} \ell(e)$ increases exponentially

Proof.
$$
m^k \mathbb{P}(\ell(e) > x) = m^k \mathbb{P}(c^k \eta > x) \sim x^{-\theta} (mc^{-\theta})^k
$$
.

Athreya (1985) Endogenous solution of

$$
X \stackrel{(d)}{=} \eta + \max_{1 \le i \le m} c X^{(i)}
$$

Suppose $\mathbb{P}(\eta > x) \sim x^{-\theta}$. If $m < c^\theta$, then $X < \infty$ a.s. $\left. \rule{0.3cm}{.0cm}\right.$ $\max_{\mathrm{generation}\; k}\ell(e)$ decreases exponentially If $m>c^{\theta}$, then $X=\infty$ a.s. $\left\lfloor \max_{\text{generation } k} \ell(e) \right\rfloor$ increases exponentially

Proof.
$$
m^k \mathbb{P}(\ell(e) > x) = m^k \mathbb{P}(c^k \eta > x) \sim x^{-\theta} (mc^{-\theta})^k
$$
.

Athreya (1985) Endogenous solution of

$$
X \stackrel{(d)}{=} \eta + \max_{1 \le i \le m} c X^{(i)}
$$

Suppose $\mathbb{P}(\eta > x) \sim x^{-\theta}$. If $m < c^\theta$, then $X < \infty$ a.s. $\left. \rule{0.3cm}{.0cm}\right.$ $\max_{\mathrm{generation}\; k}\ell(e)$ decreases exponentially If $m>c^{\theta}$, then $X=\infty$ a.s. $\left\lfloor \max_{\text{generation } k} \ell(e) \right\rfloor$ increases exponentially

Proof.
$$
m^k \mathbb{P}(\ell(e) > x) = m^k \mathbb{P}(c^k \eta > x) \sim x^{-\theta} (mc^{-\theta})^k
$$
.

Athreya (1985) Endogenous solution of

$$
X \stackrel{(d)}{=} \eta + \max_{1 \leq i \leq m} c X^{(i)}
$$

Goal: find the k -th smallest number (result) among n numbers.

FIND algorithm

Pick a random number (pivot). Compare it with the other numbers. If result=pivot, end. If not, iterate.

Cost of the algorithm:

$$
X_n = n + \max(X_{n_1}, X_{n_2})
$$

1 $\frac{1}{n}X_n \stackrel{(d)}{\rightarrow} X$.

$$
X\overset{(d)}{=}1+\mathsf{max}(\mathit{UX}^{(1)},(1-\mathit{U})X^{(2)})
$$

Endogenous solution $X < \infty$ (Grüber and Rösler, 1996).

[Maximum of a branching random walk](#page-25-0)

 $V(\emptyset) = 0.$

 $(V(u), |u| = 1) \stackrel{(d)}{=} \mu$: point process on the real line.

At each generation, vertices have independently children with positions at distance a copy of μ from their parent.

$$
V(\emptyset)=0.
$$

 $(V(u), |u| = 1) \stackrel{(d)}{=} \mu$: point process on the real line.

At each generation, vertices have independently children with positions at distance a copy of μ from their parent.

 $V(\emptyset) = 0.$

 $(V(u), |u| = 1) \stackrel{(d)}{=} \mu$: point process on the real line.

At each generation, vertices have independently children with positions at distance a copy of μ from their parent.

 $V(\emptyset) = 0.$

 $(V(u), |u| = 1) \stackrel{(d)}{=} \mu$: point process on the real line.

At each generation, vertices have independently children with positions at distance a copy of μ from their parent.

 $V(\emptyset) = 0.$

 $(V(u), |u| = 1) \stackrel{(d)}{=} \mu$: point process on the real line.

At each generation, vertices have independently children with positions at distance a copy of μ from their parent.

$$
V(\emptyset)=0.
$$

 $(V(u), |u| = 1) \stackrel{(d)}{=} \mu$: point process on the real line.

At each generation, vertices have independently children with positions at distance a copy of μ from their parent.

$$
V(\emptyset)=0.
$$

 $(V(u), |u| = 1) \stackrel{(d)}{=} \mu$: point process on the real line.

At each generation, vertices have independently children with positions at distance a copy of μ from their parent.

 $(\eta_u)_u$: i.i.d. positive marks on the vertices.

$$
D(\xi) := \sum_{u \in \xi} e^{V(u)} \eta_u \quad \text{disc}
$$

ounted sum

$$
X := \sup_{\xi \in \partial \mathcal{T}} D(\xi)
$$

Question: Is $X < \infty$?

(Aldous & Bandyopadhyay, 2005)

$$
D(\xi) := \sum_{u \in \xi} e^{V(u)} \eta_u \qquad X := \sup_{\xi \in \partial \mathcal{T}} D(\xi)
$$

 X is the endogenous solution of

$$
X \stackrel{(d)}{=} \eta + \sup_{|u|=1} e^{V(u)} X^{(u)}
$$

Example I: step displacement is a constant

Example II: $\eta = 1$, step displacement is $-Exp(1)$.

[Maximum of a branching random walk](#page-25-0)

 $M_n - \gamma n - c \ln(n)$ converges in distribution, $c < 0$.

$$
D(\xi) = \sum_{u \in \xi} e^{V(u)} = \sum_{n=0}^{\infty} e^{V(\xi_n)} \le \sum_{n=0}^{\infty} e^{M_n}
$$

• $\gamma < 0 \Rightarrow M_n \sim \gamma n \Rightarrow X < \infty$

$$
X\geq e^{M_n}
$$

$$
\bullet \ \gamma > 0 \Rightarrow M_n \to \infty \Rightarrow X = \infty
$$

• What about $\gamma = 0$?

The upper bound $D(\xi) \leq \sum_{n=0}^\infty e^{M_n}$ is too rough. One cannot find a path which stays close to the maximum at all times.

$$
D(\xi) = \sum_{u \in \xi} e^{V(u)} = \sum_{n=0}^{\infty} e^{V(\xi_n)} \le \sum_{n=0}^{\infty} e^{M_n}
$$

• $\gamma < 0 \Rightarrow M_n \sim \gamma n \Rightarrow X < \infty$

$$
X\geq e^{M_n}
$$

$$
\bullet\ \gamma>0\Rightarrow M_n\to\infty\Rightarrow X=\infty
$$

• What about $\gamma = 0$?

The upper bound $D(\xi) \leq \sum_{n=0}^\infty e^{M_n}$ is too rough. One cannot find a path which stays close to the maximum at all times.

Need to control the frequency at which a path returns to levels of order $\ln n$ Not straightforward...

Need to control the frequency at which a path returns to levels of order $\ln n$ Not straightforward...

[Maximum of a branching random walk](#page-25-0)

Suppose that
$$
\theta := \lim_{x \to \infty} \frac{-1}{\ln(x)} \ln \mathbb{P}(\eta > x) \in [0, \infty]
$$
 exists.

Theorem (A.,Hu,Shi, 24 $+ \rangle$

If $t^* < \theta$, then $X < \infty$ a.s. If $t^* > \theta$, then $X = \infty$ a.s. on non-extinction.

If $t^* > \theta$, then $X = \infty$ a.s. on non-extinction.

It suffices to prove sup $_{|u|=n} e^{V(u)} \eta_u$ goes to ∞ exponentially fast. Better idea: consider $e^{V(u)}\eta_u$ over BRW stopped at level $-k$ then show $\mathsf{sup}_{\mathsf{stopping\ line}}\,e^{-k}\eta_u$ goes to infinity.

If $t^* < \theta$, then $X < \infty$ a.s.

It suffices to show that

•
$$
\{u : V(u) \approx -k\}
$$
 is of size e^{t^*k} .

 $\sum_{u \in \xi} \mathbf{1}_{\{V(u) \approx -k\}}$ grows at most polynomially uniformly in ξ .

Stop each path ξ when it is $\approx -k$ for the ℓ -th time.

It suffices to show that

•
$$
\{u : V(u) \approx -k\}
$$
 is of size e^{t^*k} .

 $\sum_{u \in \xi} \mathbf{1}_{\{V(u) \approx -k\}}$ grows at most polynomially uniformly in ξ .

Stop each path ξ when it is $\approx -k$ for the ℓ -th time.

It suffices to show that

•
$$
\{u: V(u) \approx -k\}
$$
 is of size $e^{t^*k} \leftarrow$

 $\sum_{u \in \xi} \mathbf{1}_{\{V(u) \approx -k\}}$ grows at most polynomially uniformly in ξ .

Stop each path ξ when it is $\approx -k$ for the ℓ -th time.

It suffices to show that

•
$$
\{u : V(u) \approx -k\}
$$
 is of size e^{t^*k} .

 $\sum_{u \in \xi} \mathbf{1}_{\{V(u) \approx -k\}}$ grows at most polynomially uniformly in ξ. \leftarrow

Stop each path ξ when it is $\approx -k$ for the ℓ -th time.

It suffices to show that

•
$$
\{u : V(u) \approx -k\}
$$
 is of size e^{t^*k} .

 $\sum_{u \in \xi} \mathbf{1}_{\{V(u) \approx -k\}}$ grows at most polynomially uniformly in ξ .

Stop each path ξ when it is $\approx -k$ for the ℓ -th time.

It suffices to show that

•
$$
\{u : V(u) \approx -k\}
$$
 is of size e^{t^*k} .

 $\sum_{u \in \xi} \mathbf{1}_{\{V(u) \approx -k\}}$ grows at most polynomially uniformly in ξ .

Stop each path ξ when it is $\approx -k$ for the ℓ -th time.

Estopping line ∞ e^{t*k} P(S $\approx -k$ for the ℓ -th time) = $o(1)$ if $\ell \geq k^3$.

Suppose $V(u) \in \mathbb{Z}$ and $\mathbb{P}(V(u) \le -2) = 0$ for $|u| = 1$.

$$
\mathsf{N}(\xi,k):=\sum_{u\in\xi}\mathbf{1}_{\{V(u)=-k\}}.
$$

What about lim inf?

Theorem $(A., Hu, Shi, 24+)$ (*I*) \sup_{ξ} lim sup $_{k\to\infty}$ $\frac{1}{k^2}$ $\frac{1}{k^2}N(\xi, k) = \frac{t^*}{2\theta}$ $rac{t^*}{2\theta}$. (II) \sup_{ξ} lim sup $_{k\to\infty}$ $\frac{1}{k}$ $\frac{1}{k}N(\xi, k) = -\frac{t^*}{\ln a}$ $\frac{t^*}{\ln q}$.

Suppose $V(u) \in \mathbb{Z}$ and $\mathbb{P}(V(u) \le -2) = 0$ for $|u| = 1$.

$$
\mathsf{N}(\xi,k):=\sum_{u\in\xi}\mathbf{1}_{\{V(u)=-k\}}.
$$

What about lim inf?

Theorem $(A., Hu, Shi, 24+)$ (*I*) \sup_{ξ} lim sup $_{k\to\infty}$ $\frac{1}{k^2}$ $\frac{1}{k^2}N(\xi, k) = \frac{t^*}{2\theta}$ $rac{t^*}{2\theta}$. (II) \sup_{ξ} lim sup $_{k\to\infty}$ $\frac{1}{k}$ $\frac{1}{k}N(\xi, k) = -\frac{t^*}{\ln a}$ $\frac{t^*}{\ln q}$.

(1)
$$
\sup_{\xi} \limsup_{k \to \infty} \frac{1}{k^2} N(\xi, k) = \frac{t^*}{2\theta}
$$
.

E[below green line] $\rightarrow \infty$ if $c < \frac{t^*}{26}$ E[green stopping line] \rightarrow 0 if $c > \frac{t^*}{2\theta}$ 2θ

[Maximum of a branching random walk](#page-25-0)

- Hausdorff dimension of rays such that $N(\xi, k) \sim ak^2$?
- Weaker assumptions?
- Study of all solutions of the fixed point equation.

THANK YOU