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• For decades physicists (and then mathematicians) have been trying to say
something interesting about random geometry. An important motivation comes
from quantum gravity, which would (may?) require to integrate not only on
matter fields but also on space itself.

• Since the 1980’s (in physics) and the 2000’s (in math) random geometry in 2
dimensions(!) has become an intense field of study. Some keywords: random
maps, Brownian maps, Liouville gravity, imaginary geometry...

• This talk will be about random maps (in particular random triangulations).
We create a discrete random space by taking at random a finite triangulation of
some surface.

• This field is very active (and fun!) because the subject is linked to many
things: probability and physics, but also moduli spaces, hyperbolic geometry,
topological recursion, algebraic combinatorics, integrable hierarchies, random
matrices...

• I am a combinatorialist. Today I’ll try to do an introduction about random
maps and what we are interested to ask/say about them. Statements will be
mostly probabilistic in nature, but combinatorics (and counting) plays a key role
everywhere.
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Combinatorialists (like me) like maps because they are fun to count.

Random maps: take a map uniformly at random among the ones having genus g and
size n, possibly with some face-degree constraints/weights.

Triangulations: Tn,g = {triangulations, genus g, 2n faces }

Bipartite quadrangulations: Qn,g = {bip. quadrangulations, genus g, nfaces }

what do they look like (when n goes to infinity)?

Tn,g ∈u Tn,g

Qn,g ∈u Qn,g local behaviour?

global behaviour?

(all my maps are rooted)

τ(n, g) = |Tn,g|
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Local limit: [Angel-Schramm 2000’s:] When n goes to infinity,

−→

Tutte’s formulas (1960’s)

τ(n, 0) = 2 4n(3n)!!
(n+1)!(n+2)!! τp(n, 0) = explicit

Similar behaviour in any fixed genus (the local behaviour is not affected by g).
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[Chassaing-Schaeffer 2004], [C.2010] For g ≥ 0 (fixed) one has

diam(Qn,g) ≈ n1/4

dQn,g (x, y) ≈ n1/4 – with x, y, random vertices in Qn,g

One can do much more and show the convergence of the whole metric space

genus 0: (Qn,0;
dgr
n1/4 )

GH−→ (Q∞,0; d
(0)
∞ )

Brownian map [Le Gall ’11, Miermont ’11].

genus g: (Qn,g;
dgr
n1/4 )

GH−→ (Q∞,g; d
(g)
∞ )

“Genus g Brownian map” [Bettinelli,Miermont].

(the GH-distance, for Gromov-Haussdorf, is
a distance that enables you to compare
two compact metric spaces and say ”how
different” they are one from the other”)
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Fixed genus maps: things we don’t really know

[Bender et Canfield 1986:] For g ≥ 0 (fixed) the number of maps of size n satisfies

|Qn,g| ∼ tgn
5
2 (g−1)12n n −→∞.

for some sequence of numbers tg > 0 which are computable by a complicated
procedure of ”recursion on the topology” the previous bijection EXPLAINS this pretty well.
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[Bender et Canfield 1986:] For g ≥ 0 (fixed) the number of maps of size n satisfies

|Qn,g| ∼ tgn
5
2 (g−1)12n n −→∞.

τg+1 = 1
2

g∑
h=1

τhτg+1−h + (5g+1)(5g−1)
3 τg where τg = 25g−1Γ

(
5g−1

2

)
tg

[Physicists, 1990’s; Maths 2000’s] In fact, the constant tg can be computed by the
quadratic recurrence:

This result is essentially the double scaling limit for GUE random matrices. It is a combinatorial mystery.

for some sequence of numbers tg > 0 which are computable by a complicated
procedure of ”recursion on the topology”

Conjecture [Ch. ’17]
Let Xg = fraction of points in the Voronöı cell of P1 vs P2

P1

P2

Xg

1−Xg

Pick two points uniformly on a Brownian surface of genus g

Then Xg is uniform on [0, 1] ???

(the fact that EX2
g =

1
6 is known and is

”bijectively/surgerically equivalent” to the

double scaling limit above)

the previous bijection EXPLAINS this pretty well.
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The high genus regime

g
n −→ θ, θ < 1/2

f = 2n, e = 3n, v = n + 2− 2g,

Average degree ∼ 6
1−2θ > 6.
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Now we fix θ > 0 and we consider maps of genus gn ∼ θn. This is called the
high-genus regime.

This model is fun because it is difficult:
- we do not have independence as we had in the unfixed genus case.

(fixing the topology is a very complicated, global, constraint)

- we cannot count!

...except in the unicellular (one-face) case, which is already interesting!

In this case the local limit is some ”hyperbolic” random-tree [Angel, Ch, Curien,
Ray ’12] and the diameter is logarithmic [Ray’12], building on combinatorial
literature [Lehman-Walsh’72], [Ch’09, Ch-Féray-Fusy’12].

→ the combinatorial results do not exist in the general case (e.g. triangulations). Until
recently high-genus triangulations were just good for science-fiction....

...the subject has been recently revived by [Janson, Louf, ’22] with strong analogies
with the results of Mirzakhani on random Weil-Petersson surfaces.

- we expect hyperbolic behaviour
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which balls grow exponentially fast – parametrized by
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A breakthrough: the local limit in high-genus!

Tn,g −→ PSHT (λ(θ)) for the local limit topology
[Budzinski-Louf 2019] Proof of the Benjamini-Curien conjecture” When n goes to
infinity and g ∼ θn, θ ∈ (0, 12 )

(PSHT= some hyperbolic analogue of the UIPT in

which balls grow exponentially fast – parametrized by

one real parameter λ. Introduced by [Curien’13])

Their very smart proof requires ”very little” combinatorial input (well, it still
depends on the Goulden-Jackson equation obtained from the KP/2-Toda
integrable hierarchy)

(λ(θ) = something completely explicit)

Remarkably they get counting estimates in return of their proof

[Budzinski-Louf 2019] Counting corollaries:

τ(n, g) = n2gexp(f(θ)n+ o(n))

This is far from a true equivalent (eo(n) can be big!) but the best one can do!

θ

f(θ)

1
2

0

log 12
√
3
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[Budzinski-Ch-Louf 2023+] When n goes to infinity and g ∼ θn, θ ∈ (0, 12 )

Cθ logn ≤ diam(Tn,g) ≤ C ′θ log n w.h.p.

The proof is based on an isoperimetric inequality:

[Budzinski-Ch-Louf 2023+] There are constants Kθ, δθ > 0 such that for any
k2 ≥ k1 ≥ Kθ log n with k1 + k2 = 2n, there is no multicurve of total length
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Our new result: global properties in high genus

[Budzinski-Ch-Louf 2023+] When n goes to infinity and g ∼ θn, θ ∈ (0, 12 )

Cθ logn ≤ diam(Tn,g) ≤ C ′θ log n w.h.p.

where h = min{ |∂A||A| , A ⊂ faces(Tn,g), |A| ≤ n}

logarithmic ”tentacles” do exist

The proof is based on an isoperimetric inequality:

[Budzinski-Ch-Louf 2023+] There are constants Kθ, δθ > 0 such that for any
k2 ≥ k1 ≥ Kθ log n with k1 + k2 = 2n, there is no multicurve of total length
` ≤ δθk1 separating Tn,g in two components with respectively k1, k2 faces.

c1

c2

c3

size k1 size k2
size k2

k1 ≥ Kθ log n ⇒ boundary ≥ δθk1

Cθ
1

logn
≤ h ≤ C ′θ 1

logn w.h.p.We also get the Cheeger constant:



Some elements of the proofs

• Idea behind isoperimetry: use and strengthen the counting estimates of [BL19]
c1
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τ(n, g) = n2gexp(f(θ)n+ o(n))

→ ratio n2g

n
2g1
1 n

2g2
2

is exponentially big if n1, n2 are both comparable to n

→ Concavity of the BL function f(θ) plays an important role (proof by A. Elvey-Price)
Some technical work is needed to get this to work for all scales.

n1 ≈ k1 + `
n2 ≈ k2 + `



Some elements of the proofs

• Idea behind isoperimetry: use and strengthen the counting estimates of [BL19]
c1

c2

c3

size k1 size k2
size k2

total length `

τ(n, g) versus τ(n1, g1)τ(n2, g2)

τ(n, g) = n2gexp(f(θ)n+ o(n))

→ ratio n2g

n
2g1
1 n

2g2
2

is exponentially big if n1, n2 are both comparable to n

→ Concavity of the BL function f(θ) plays an important role (proof by A. Elvey-Price)
Some technical work is needed to get this to work for all scales.

n1 ≈ k1 + `
n2 ≈ k2 + `
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• Idea behind isoperimetry: use and strengthen the counting estimates of [BL19]
c1

c2

c3

size k1 size k2
size k2

total length `

τ(n, g) versus τ(n1, g1)τ(n2, g2)

τ(n, g) = n2gexp(f(θ)n+ o(n))

→ ratio n2g

n
2g1
1 n

2g2
2

is exponentially big if n1, n2 are both comparable to n

→ Concavity of the BL function f(θ) plays an important role (proof by A. Elvey-Price)
Some technical work is needed to get this to work for all scales.

• Lower bounding the diameter: we just count paths of length L between two
random points:

n1 ≈ k1 + `
n2 ≈ k2 + `

E[#paths of length L from x to y] ≤ (cst)nτ(n+L,g)n2τ(n,g) ≤ (λ(θ)+ε)Ln−1 → 0 if L < ε log n.

x

y

x

length L
τ(n−1,g)
τ(n,g) −→ λ(θ)



Some ideas

• Why is isoperimetry related to distances?

pieces separated by small

boundary components

cannot be too large:

because of isoperimetry!

when the boundary of the ball

Br(v) is comparable to the size of

the ball, the growth is exponential

(because

|Br+1(v)| ≥ 1
3|δBr(v)| + |Br(v)|)

Br(v)

such ideas are classical in random graphs/expanders...
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• There are many things we cannot do. The most basic one (which would trivialize
many results in this talk): Can one give an asymptotic equivalent of τ(n, g) when
g ∼ θn and n→∞ ??? This question is frustrating because we have an explicit
recurrence formula to compute these numbers.

• Why would a ”random space” have uniform Voronöı tessellations?

[Goulden-Jackson’09]τ (n, g) = 1
3n+2f
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THANK YOU!


