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Triangulations

Figure: A triangulation of a polygon with 10 vertices.

y Question: What does a large typical triangulation of the polygon whose

vertices are e
2i⇡j
n (j = 0, 1, . . . ,n- 1) look like?
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Typical triangulations
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What space for triangulations?

y Aldous: compact subsets of the unit disk.
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The Hausdorff distance

Let X, Y be two subsets of a metric space (Z,d).

If

Xr = {z 2 Z;d(z,X) 6 r}, Yr = {z 2 Z;d(z, Y) 6 r}

are the r-neighborhoods of X and Y, we set

dH(X, Y) = inf {r > 0;X ⇢ Yr and Y ⇢ Xr} .
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Theorem (Aldous ’94)
For n > 3, let Tn be a uniform triangulation with n vertices.

Then there exists

a random compact subset L( ) of the unit disk such that

Tn
(d)���!

n!1
L( ),

where the convergence holds in distribution for the Hausdorff distance on all

compact subsets of the unit disk.

L( ) is called the Brownian triangulation (coded by the Brownian excursion

).

y Consequence: we can find the distribution of the length of the longest

chord of L( ), with the change of variable length = 2 sin(⇡✓).
It is the probability measure with density:

1

⇡

3✓- 1

✓2(1- ✓)2
p
1- 2✓

1 1
36✓6 1

2
d✓.

(Aldous, Devroye–Flajolet–Hurtado–Noy–Steiger)
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Constructing the Brownian triangulation
Start with the Brownian excursion :

The Brownian triangulation L( ) is obtained by drawing all the chords

corresponding to “tunnels” under the Brownian excursion.
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Why?
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Idea of the proof

y “big” chords correspond to “big” subtrees.
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The lexicographical order

First label a plane tree ⌧. Then consider the vertices labelled in lexicographical

order: u(0) < u(1) < · · · < u(|⌧|- 1), where |⌧| is the size of ⌧.
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The Lukasiewicz path
The Lukasiewicz path (W0(⌧),W1(⌧), . . . ,W|⌧|(⌧)) of a tree ⌧ is defined by:

(i) W0(⌧) = 0,

(ii) Wi+1(⌧)-Wi(⌧) =
⇥
number of children of u(i)

⇤
- 1 for 0 6 i 6 |⌧|- 1.

y The scaling limit of the Lukasiewicz path of the dual of a uniform

triangulation is the Brownian excursion.
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Minimal factorizations

Let (1, 2, . . . ,n) be the n-cycle.

Consider the set

Mn = {(⌧1, . . . , ⌧n-1) transpositions : ⌧1⌧2 · · · ⌧n-1 = (1, 2, . . . ,n)}

of minimal factorizations (of the n-cycle into transpositions).

y Question:

#Mn =

For example (multiply from left to right):

(1, 2, 3) = (1, 3)(2, 3) = (2, 3)(1, 2) = (1, 2)(1, 3),

#M3 = 3.

y Question:

for n large, what does a typical minimal factorization look

like?
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1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59
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14
16
18
20
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24
26
28
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32

Figure: Graphical representation of the trajectories of a random minimal factorization
of the 60-cycle.
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Minimal factorizations: motivations

Motivations:y combinatorics of minimal factorizations (Moszkowski, Goulden & Pepper,

Goulden & Yong, Stanley, Biane);

y Hurwitz numbers;y products of random transpositions;y random sorting networks (Angel, Holroyd, Romik & Virág);y rich probabilistic structure (additive coalescent, Aldous-Pitman

fragmentation of the CRT,Thévenin).
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What space for minimal factorizations?

compact subsets of the unit disk.
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Random triangulations of polygons Minimal factorizations Main steps of the proof

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:

I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.

I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12). Take

�
(1, 3), (6, 12), (1, 5), (7, 12), (9, 10), (11, 12), (2, 3), (4, 5), (1, 6), (8, 11), (9, 11)

�
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If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:

I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.

I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12). For k = 1:
�

(1, 3)| {z }
product=(1,3)

, (6, 12), (1, 5), (7, 12), (9, 10), (11, 12), (2, 3), (4, 5), (1, 6), (8, 11), (9, 11)
�
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Random triangulations of polygons Minimal factorizations Main steps of the proof

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:

I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.

I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12). For k = 2:
�

(1, 3), (6, 12)| {z }
product=(1,3)(6,12)

, (1, 5), (7, 12), (9, 10), (11, 12), (2, 3), (4, 5), (1, 6), (8, 11), (9, 11)
�
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Random triangulations of polygons Minimal factorizations Main steps of the proof

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:

I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.

I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12). For k = 3:
�
(1, 3), (6, 12), (1, 5)| {z }
product=(1,3,5)(6,12)

, (7, 12), (9, 10), (11, 12), (2, 3), (4, 5), (1, 6), (8, 11), (9, 11)
�
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If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:

I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.

I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12). For k = 4:
�
(1, 3), (6, 12), (1, 5), (7, 12)| {z }

product=(1,3,5)(6,7,12)

, (9, 10), (11, 12), (2, 3), (4, 5), (1, 6), (8, 11), (9, 11)
�
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Random triangulations of polygons Minimal factorizations Main steps of the proof

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:

I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.

I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12). For k = 5:
�
(1, 3), (6, 12), (1, 5), (7, 12), (9, 10)| {z }

product=(1,3,5)(6,7,12)(9,10)

, (11, 12), (2, 3), (4, 5), (1, 6), (8, 11), (9, 11)
�
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Random triangulations of polygons Minimal factorizations Main steps of the proof

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:

I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.

I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12). For k = 6:
�
(1, 3), (6, 12), (1, 5), (7, 12), (9, 10), (11, 12)| {z }

product=(1,3,5)(6,7,11,12)(9,10)

, (2, 3), (4, 5), (1, 6), (8, 11), (9, 11)
�
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Random triangulations of polygons Minimal factorizations Main steps of the proof

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:

I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.

I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12). For k = 7:
�
(1, 3), (6, 12), (1, 5), (7, 12), (9, 10), (11, 12), (2, 3)| {z }

product=(1,2,3,5)(6,7,11,12)(9,10)

, (4, 5), (1, 6), (8, 11), (9, 11)
�
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Random triangulations of polygons Minimal factorizations Main steps of the proof

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:

I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.

I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12). For k = 8:
�
(1, 3), (6, 12), (1, 5), (7, 12), (9, 10), (11, 12), (2, 3), (4, 5)| {z }

product=(1,2,3,4,5)(6,7,11,12)(9,10)

, (1, 6), (8, 11), (9, 11)
�
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Random triangulations of polygons Minimal factorizations Main steps of the proof

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:

I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.

I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12). For k = 9:
�
(1, 3), (6, 12), (1, 5), (7, 12), (9, 10), (11, 12), (2, 3), (4, 5), (1, 6)| {z }

product=(1,2,3,4,5,6,7,11,12)(9,10)

, (8, 11), (9, 11)
�
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Random triangulations of polygons Minimal factorizations Main steps of the proof

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:

I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.

I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12). For k = 10:
�
(1, 3), (6, 12), (1, 5), (7, 12), (9, 10), (11, 12), (2, 3), (4, 5), (1, 6), (8, 11)| {z }

product=(1,2,3,4,5,6,7,8,11,12)(9,10)

, (9, 11)
�
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Random triangulations of polygons Minimal factorizations Main steps of the proof

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:

I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.

I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12). For k = 11:
�
(1, 3), (6, 12), (1, 5), (7, 12), (9, 10), (11, 12), (2, 3), (4, 5), (1, 6), (8, 11), (9, 11)| {z }

product=(1,2,3,4,5,6,7,8,9,10,11,12)

�
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Random triangulations of polygons Minimal factorizations Main steps of the proof

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:

I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.

I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Remarks:

I The chords are non-crossing

I the cycles of Pk are the connected components of Fk

I Pk has n- k blocks.
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Random triangulations of polygons Minimal factorizations Main steps of the proof

Let (⌧n1 , . . . , ⌧
n

n-1) be a uniform minimal factorization of the n-cycle.

The following film represents

�
Fn

Kn
,Pn

Kn

�

with Kn = bcf(n)c for fixed n = 20000, as c varies (for a certain mystery

function f).
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Let (⌧n1 , . . . , ⌧
n

n-1) be a uniform minimal factorization of the n-cycle.

The following film represents

�
Fn

Kn
,Pn

Kn

�

with Kn = bcnc for fixed n, as c varies.
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Let (⌧n1 , . . . , ⌧
n

n-1) be a uniform minimal factorization of the n-cycle.

The following film represents

�
Fn

Kn
,Pn

Kn

�

with Kn = bc
p
nc for fixed n, as c varies.
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Random triangulations of polygons Minimal factorizations Main steps of the proof

Let (t(n)
1 , . . . , t(n)

n-1) be a uniform minimal factorization of length n and

1 6 Kn 6 n- 1 with Kn ! 1.

(i)

If Kn = o(
p
n):

�
Fn

Kn
,Pn

Kn

� (d)�!
n!1

(S, S).

(ii)

If
Knp
n
! c 2 (0,1): there exists a random compact subset Lc such

that �
Fn

Kn
,Pn

Kn

� (d)�!
n!1

(Lc,Lc).

(iii)

If
Knp
n
! 1 and

n-Knp
n

! 1:

�
Fn

Kn
,Pn

Kn

� (d)�!
n!1

(L( ),L( )).

(iv)

If
n-Knp

n
! c 2 [0,1):

Fn

Kn

(d)�!
n!1

L( ), Pn

Kn

(d)�!
n!1

Lc (with L0 = S).

Theorem (Féray, K.).
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Random triangulations of polygons Minimal factorizations Main steps of the proof

What is the limit?

y L0 is the unit circle.

Igor Kortchemski Random minimal factorizations of a long cycle 35 / @1



Random triangulations of polygons Minimal factorizations Main steps of the proof

What is the limit?

y L1 is Aldous’ Brownian triangulation.

Figure: A Brownian excursion (left) coding L1 (right).
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What is the limit?

y L1 is Aldous’ Brownian triangulation.
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Random triangulations of polygons Minimal factorizations Main steps of the proofy For 0 < c < 1, Lc is a lamination (compact subset of the unit disk

made of noncrossing chords), coded by an excursion of an explicit spectrally

positive Lévy process.

Figure: An excursion of a spectrally positive Lévy process (left) coding L5 (right).

y The Laplace exponent of the Lévy process is

�c(�) = c2

 

1-

r
1+

2�

c

!

+ �c.
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Random triangulations of polygons Minimal factorizations Main steps of the proof

Corollary

If ⌧ = (a,b) is a transposition with a < b, set size(⌧) = min(b- a,n- b+ a).

Let (t(n)
1 , . . . , t(n)

n-1) be a uniform minimal factorization of the n-cycle.

Assume that Kn/
p
n ! c 2 [0,1]. Then

1

n
max

16i6Kn

size(t(n)
i

)
(d)�!

n!1
`c.

Corollary (Féray & K.).

y `c is the “length” of the maximal chord of Lc.

We have `0 = 0 a.s. and `1 is the “length” of the maximal chord of the

Brownian triangulation

(we have the same limit for Kn = ln(n)
p
n or

Kn = n- 1!).
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Random triangulations of polygons Minimal factorizations Main steps of the proof
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Figure: Graphical representation of the trajectories of a random minimal factorization
of the 60-cycle.
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Random triangulations of polygons Minimal factorizations Main steps of the proof

I. Triangulations & dissections

II. Minimal factorizations

III. Main steps of the proof
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Random triangulations of polygons Minimal factorizations Main steps of the proof

Main steps of the proof (regime Kn = c
p
n)

y Step 1. Identify the law of P(t(n)
1 t

(n)
2 · · · t(n)

k
).

y Step 2. Code P(t(n)
1 t

(n)
2 · · · t(n)

k
) by a biconditioned bitype BGW tree.

y Step 3. Study biconditioned two type BGW tree.

y Step 4. Conclude.
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Random triangulations of polygons Minimal factorizations Main steps of the proof

Fix 1 6 k 6 n - 1 and let P be a non-crossing partition with n vertices

and n- k blocks. Then

P
⇣
P(t(n)

1 t
(n)
2 · · · t(n)

k
) = P

⌘

=

k!(n- k- 1)!

nn-2
·
 
Y

B2P

|B||B|-2

(|B|- 1)!

!

·

0

@
Y

B2K(P)

|B||B|-2

(|B|- 1)!

1

A ,

where K(P) is the Kreweras complement of P.

Proposition (Key fact).

y Consequence 1: (take k = 1)

P
⇣
t
(n)
1 = (a,a+ i) for some a

⌘
=

(n- 2)!

nn-2
· ii-2

(i- 1)!
· (n- i)(n-i-2)

(n- i- 1)!

⇠
C

i3/2

for n and i large, which explains the
p
n transition.
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p
n transition.
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Random triangulations of polygons Minimal factorizations Main steps of the proofy Consequence 2:

It follows that P(t(n)
1 t

(n)
2 · · · t(n)

k
) is coded by a bitype biconditioned

Bienaymé–Galton–Watson tree (n- k blue vertices and k+ 1 red vertices)!y different conditioning than those considered for multitype BGW trees by

Marckert, Miermont, Berzunza (total size fixed, or size of one type fixed).

We develop a new machinery to study limits of such random trees.
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Random triangulations of polygons Minimal factorizations Main steps of the proof

Concluding remarks

y We obtain the convergence of the one-dimensional marginal

distributions of the process

⇣
Fn

bc
p
nc

⌘

c>0
by studying bi-conditioned bi-type

BGW trees.

y Thévenin has extended this result to the convergence of

⇣
Fn

bc
p
nc

⌘

c>0

to (Lc)c>0 as a lamination-valued càdlàg process.

y Factorization models have a very rich combinatorics (Hurwitz numbers,

maps, genomics), but few probabilistic results.
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