Thresholds

Jinyoung Park

Stanford University

University of Oxford
Discrete Maths and Probability Seminar

June 2022

New result

Conjecture [Kahn-Kalai '06]; proved by P.-Pham ('22).

There exists a universal $K>0$ such that for every finite set X and increasing property $\mathcal{F} \subseteq 2^{X}$,

$$
p_{c}(\mathcal{F}) \leq K p_{\mathbf{E}}(\mathcal{F}) \log |X|
$$

- $p_{c}(\mathcal{F})$: threshold for \mathcal{F}
- $p_{\mathrm{E}}(\mathcal{F})$: expectation threshold for \mathcal{F}

Basic definitions

- X : finite set; $\quad 2^{X}=\{$ subsets of $X\}$
- $\mu_{p}: p$-biased product probability measure on 2^{X}

$$
\mu_{p}(A)=p^{|A|}(1-p)^{|X \backslash A|} \quad A \subseteq X
$$

- $X_{p} \sim \mu_{p} \quad$ " p-random" subset of X
e.g.1. $X=\binom{[n]}{2}=E\left(K_{n}\right)$
$\rightarrow X_{p}=G_{n, p} \quad$ Erdős-Rényi random graph
e.g.2. $X=\left\{k\right.$-clauses from $\left.\left\{x_{1}, \ldots, x_{n}\right\}\right\}$
$\rightarrow X_{p}$: random CNF formula
- $\mathcal{F} \subseteq 2^{X}$ is an increasing property if

$$
B \supseteq A \in \mathcal{F} \Rightarrow B \in \mathcal{F}
$$

e.g.1. $\mathcal{F}=\{$ connected $\} ; \mathcal{F}=\{$ contain a triangle $\}$
e.g.2. $\mathcal{F}=\{$ not satisfiable $\}$

Thresholds

Fact.

For any increasing property $\mathcal{F}\left(\neq \emptyset, 2^{X}\right), \mu_{p}(\mathcal{F})\left(=\mathbb{P}\left(X_{p} \in \mathcal{F}\right)\right)$ is continuous and strictly increasing in p.

- $p_{c}(\mathcal{F})$ is called the threshold for \mathcal{F}.
- cf. Erdős-Rényi: $p_{0}=p_{0}(n)$ is a threshold function for \mathcal{F}_{n} if

$$
\mu_{p}\left(\mathcal{F}_{n}\right) \rightarrow\left\{\begin{array}{ll}
0 & \text { if } p \ll p_{0} \\
1 & \text { if } p \gg p_{0}
\end{array} \quad\right. \text { threshold (Bollobás-Thomason '87) }
$$

The Kahn-Kalai Conjecture

"It would probably be more sensible to conjecture that it is not true."

- Kahn and Kalai (2006)

Question.
What drives $p_{c}(\mathcal{F})$?

Example 1. Containing a copy of H

\asymp : same order

- $X=\binom{[n]}{2}\left(\right.$ so $\left.X_{p}=G_{n, p}\right) ; \quad \mathcal{F}_{H}$: contain a copy of H

Example 1.

What's the threshold for $G_{n, p}$ to contain a copy of H ?

- Usual suspect: expectation calculation

$$
\mathbb{E}\left[\# H \text { 's in } G_{n, p}\right] \asymp n^{4} p^{5} \rightarrow\left\{\begin{array}{lcc}
0 & \text { if } & p \ll n^{-4 / 5} \\
\infty & \text { if } & p \gg n^{-4 / 5}
\end{array}\right.
$$

"threshold for $\mathbb{E} " \asymp n^{-4 / 5}$

- triv. $p_{c}\left(\mathcal{F}_{H}\right) \gtrsim n^{-4 / 5} \quad(\because \mathbb{E} X \rightarrow 0 \Rightarrow X=0$ with high probability $)$
- truth: $p_{C}\left(\mathcal{F}_{H}\right) \asymp n^{-4 / 5}$

Example 2. Containing a copy of K

- $X=\binom{[n]}{2}\left(\right.$ so $\left.X_{p}=G_{n, p}\right) ; \quad \mathcal{F}_{K}$: contain a copy of K

Example 2.

What's the threshold for $G_{n, p}$ to contain a copy of K ?

$$
\mathbb{E}\left[\# \text { K's in } G_{n, p}\right] \asymp n^{5} p^{6} \rightarrow\left\{\begin{array}{lll}
0 & \text { if } & p \ll n^{-5 / 6} \\
\infty & \text { if } & p \gg n^{-5 / 6}
\end{array}\right.
$$

"threshold for \mathbb{E} " $\asymp n^{-5 / 6}$

- Q. $p_{c}\left(\mathcal{F}_{K}\right) \asymp n^{-5 / 6}$? (triv. $p_{c}\left(\mathcal{F}_{K}\right) \gtrsim n^{-5 / 6}$)
- truth: $p_{c}\left(\mathcal{F}_{K}\right) \asymp n^{-4 / 5}$

Erdős-Rényi ('60), Bollobás ('81)
(Rough:) For fixed graph K,
$p_{c}\left(\mathcal{F}_{K}\right) \asymp "$ threshold for \mathbb{E} " of the "densest" subgraph of K

Example 3. Containing a perfect matching

- $X=\left({ }^{[n]}\right)($ so $X=G, \quad \mathcal{F}$. contain a perfect marcn vertices
- $X=\binom{[n]}{2}\left(\right.$ so $\left.X_{p}=G_{n, p}\right) ; \mathcal{F}$: contain a perfect matcnıng

Example 3.

What's the threshold for $G_{n, p}$ to contain a perfect matching?
$\mathbb{E}\left[\#\right.$ Perfact matchings in $\left.G_{n, p}\right] \approx\left(\frac{n p}{e}\right)^{n / 2} \rightarrow\left\{\begin{array}{lcc}0 & \text { if } & p \ll 1 / n \\ \infty & \text { if } & p \gg 1 / n\end{array}\right.$

$$
\text { "threshold for } \mathbb{E} \text { " } \asymp 1 / n
$$

- Q. $p_{c}(\mathcal{F}) \asymp 1 / n$? (triv. $\left.p_{c}(\mathcal{F}) \gtrsim 1 / n\right)$
- truth: $p_{c}(\mathcal{F}) \asymp \log n / n$

Fact. $p \ll \log n / n \Rightarrow G_{n, p}$ has an isolated vertex w.h.p.

One more example: perfect hypergraph matchings

- Now, $X=\binom{[n]}{r}$
- $X_{p}=$ random r-uniform hypergraph $\mathcal{H}_{n, p}^{r}$

Example 3'. (Shamir's Problem ('80s))

For $r \geq 3$, what's the threshold for $\mathcal{H}_{n, p}^{r}$ to contain a perfect matching? $(r \mid n)$

- cf. $r=2$: Erdős-Rényi ('66) $r \geq 3$ much harder
- e.g. $r=3$:
- $\mathbb{E}\left[\#\right.$ perfect matchings in $\left.\mathcal{H}_{n, p}^{r}\right] \asymp\left(n^{2} p\right)^{n / 3} \rightarrow$ "threshold for $\mathbb{E}^{\prime \prime} \asymp n^{-2}$
- Lower bound from coupon-collector:

$$
p_{c}(\mathcal{F}) \gtrsim \log n / n^{2}
$$

- $p_{c}(\mathcal{F}) \asymp \log n / n^{2} \quad$ (Johansson-Kahn-Vu '08) \quad * $\log n$ gap again

What drives $p_{c}(\mathcal{F})$?

- We have some trivial lower bounds on p_{c} :
- Ex 1, 2 (contain H / K): "threshold for \mathbb{E} "
- Ex 3, 3^{\prime} (contain a PM): coupon collector-ish behavior ($\log n$ gap)
- Historically, in many interesting cases, the main task is to find a matching upper bound.

The Kahn-Kalai Conjecture ('06): rough statement

For any increasing property, the threshold is at most $\log |X|$ times the "expectation threshold".

- This is a VERY strong conjecture: immediately implies (e.g.)
- threshold for perfect hypergraph matchings (Johansson-Kahn-Vu '08)

$$
p_{\mathrm{E}} \asymp n^{-(r-1)} \stackrel{\mathrm{KKC}}{\Longrightarrow} p_{c} \lesssim \log n / n^{r-1}
$$

- threshold for bounded degree spanning trees ("tree conjecture"; Montgomery '19)

$p_{\mathrm{E}}(\mathcal{F})$: the expectation threshold

- For abstract \mathcal{F}, it's unclear whose expectation we want to compute, so need a careful definition for the "threshold for \mathbb{E}."
$p_{\mathrm{E}}(\mathcal{F})$: the expectation threshold

Observation

$p_{c}(\mathcal{F}) \geq q$ if $\exists \mathcal{G} \subseteq 2^{X}$ such that
(1) " \mathcal{G} covers $\mathcal{F}^{\prime \prime}: \forall A \in \mathcal{F} \exists B \in \mathcal{G}$ such that $A \supseteq B \quad(\mathcal{F} \subseteq\langle\mathcal{G}\rangle)$
(2) $\sum_{S \in \mathcal{G}} q^{|S|} \leq \frac{1}{2} \quad($ " q-cheap")
e.g. in Ex $2, X=\binom{[n]}{2}, \mathcal{F}$: contain a copy of $K \boxtimes$.

- $\mathcal{G}_{1}=\left\{\right.$ all (labeled) copies of $\left.K \nabla^{\prime} s\right\}$

$$
\rightarrow \sum_{S \in \mathcal{G}_{1}} q^{|S|} \leq 1 / 2 \text { for } q \lesssim n^{-5 / 6} \quad \rightarrow n^{-5 / 6} \lesssim p_{c}(\mathcal{F})
$$

- $\mathcal{G}_{2}=\left\{\right.$ all (labeled) copies of $\left.H \nabla^{\prime} s\right\}$

$$
\rightarrow \sum_{S \in \mathcal{G}_{2}} q^{|S|} \leq 1 / 2 \text { for } q \lesssim n^{-4 / 5} \rightarrow n^{-4 / 5} \lesssim p_{c}(\mathcal{F})
$$

$p_{\mathrm{E}}(\mathcal{F})$: the expectation threshold

Observation

$p_{c}(\mathcal{F}) \geq q$ if $\exists \mathcal{G} \subseteq 2^{X}$ such that
(1) " \mathcal{G} covers $\mathcal{F}^{\prime}: \forall A \in \mathcal{F} \exists B \in \mathcal{G}$ such that $A \supseteq B \quad(\mathcal{F} \subseteq\langle\mathcal{G}\rangle)$
(2) $\sum_{S \in \mathcal{G}} q^{|S|} \leq \frac{1}{2}$

- $p_{\mathrm{E}}(\mathcal{F}):=\max \{q: \exists \mathcal{G}\} \quad \rightarrow$ a trivial lower bound on $p_{c}(\mathcal{F})$

The Kahn-Kalai Conjecture ('06)
There exists a universal $K>0$ such that for every finite X and increasing $\mathcal{F} \subseteq 2^{X}$,

$$
\left(p_{\mathbf{E}}(\mathcal{F}) \leq\right) p_{c}(\mathcal{F}) \leq K p_{\mathbf{E}}(\mathcal{F}) \log |X|
$$

Results and Proof Sketch

Conj of Talagrand: fractional version of Kahn-Kalai Conj

- $p_{\mathrm{E}}^{*}(\mathcal{F})$: the fractional expectation threshold for \mathcal{F}
- skip def: roughly, replace cover \mathcal{G} by "fractional cover"
- Easy. $p_{\mathrm{E}}(\mathcal{F}) \leq p_{\mathrm{E}}^{*}(\mathcal{F}) \leq p_{c}(\mathcal{F})$

Conj (Talagrand '10); proved by Frankston-Kahn-Narayanan-P. ('19).
There exists a universal $K>0$ such that for every finite X and increasing $\mathcal{F} \subseteq 2^{X}$,

$$
p_{c}(\mathcal{F}) \leq K p_{\mathbf{E}}^{*}(\mathcal{F}) \log \ell(\mathcal{F})
$$

* $\ell(\mathcal{F})$: the size of a largest minimal element of \mathcal{F}
- Weaker than KKC, but in all known applications, $p_{\mathrm{E}}(\mathcal{F}) \asymp p_{\mathrm{E}}^{*}(\mathcal{F})$
- Proof inspired by Alweiss-Lovett-Wu-Zhang
"Erdős-Rado Sunflower Conjecture"
- Recall. In all known applications, $p_{\mathrm{E}}(\mathcal{F}) \asymp p_{\mathrm{E}}^{*}(\mathcal{F})$

Conjecture (Talagrand '10) $p_{\mathrm{E}}(\mathcal{F}) \asymp p_{\mathrm{E}}^{*}(\mathcal{F})$

There exists a universal K such that for every finite X and increasing $\mathcal{F} \subseteq 2^{X}$,

$$
\left(p_{\mathrm{E}}(\mathcal{F}) \leq\right) p_{\mathrm{E}}^{*}(\mathcal{F}) \leq K p_{\mathrm{E}}(\mathcal{F})
$$

- Implies equivalence of KKC and fractional KKC
- the most likely way to prove KKC?
- Even simple instances of the conjecture are not easy to establish;

Talagrand suggested two test cases, proved by (respectively) DeMarco-Kahn ('15) and Frankston-Kahn-P. ('21)

New result

Conjecture (Kahn-Kalai '06); proved by P.-Pham ('22)
There exists a universal $K>0$ such that for every finite X and increasing $\mathcal{F} \subseteq 2^{X}$,

$$
p_{c}(\mathcal{F}) \leq K p_{\mathrm{E}}(\mathcal{F}) \log \ell(\mathcal{F})
$$

* $\ell(\mathcal{F})$: the size of a largest minimal element of \mathcal{F}
- Proofs inspired by ALWZ (sunflower) and FKNP (fractional Kahn-Kalai) but implementation very different
- Reformulation - think: $\mathcal{H}=\{$ minimal elements of $\mathcal{F}\}$

Theorem (P.-Pham '22)
$\exists L>0$ such that $\forall \ell$-bdd \mathcal{H}, if $p>p_{\mathrm{E}}(\langle\mathcal{H}\rangle)$, then, with $m=L p \log \ell|X|$,

$$
\mathbb{P}\left(X_{m} \in\langle\mathcal{H}\rangle\right)=1-o_{\ell}(1)
$$

Proof sketch

$\exists L>0$ such that $\forall \ell$-bdd \mathcal{H}, if $p>p_{\mathrm{E}}(\langle\mathcal{H}\rangle)$, then, with $m=L p \log \ell|X|$,

$$
\mathbb{P}\left(X_{m} \in\langle\mathcal{H}\rangle\right)=1-o_{\ell}(1)
$$

$$
O \in \mathcal{H}
$$

$$
x
$$

- Choose $W\left(=X_{m}\right)$ little by little: $W=W_{1} \sqcup W_{2} \sqcup \ldots$
- At the end, want $W \supseteq S \in \mathcal{H}$ whp.
- Run algorithm: no assump \rightarrow two possible outputs
- (Recall) $p>p_{\mathrm{E}}(\langle\mathcal{H}\rangle)$ means:
$\langle\mathcal{H}\rangle$ does not admit a p-cheap cover.
$\exists L>0$ such that $\forall \ell$-dd \mathcal{H}, if $p>p_{\mathbf{E}}(\langle\mathcal{H}\rangle)$, then, with $m=L p \log \ell|X|$,

$$
\mathbb{P}\left(X_{m} \in\langle\mathcal{H}\rangle\right)=1-o_{\ell}(1)
$$

- $W=W_{1} \sqcup W_{2} \sqcup \ldots$
- At i th step: choose W_{i} of size $\approx L p|X|$ at random
\rightarrow Construct cover $\mathcal{U}_{i}=\mathcal{U}_{i}\left(W_{i}\right)$ of some $\mathcal{G}_{i}=\mathcal{G}_{i}\left(W_{i}\right) \subseteq \mathcal{H}_{i-1}$

- When terminates, with $\mathcal{U}=\mathcal{U}_{1} \cup \mathcal{U}_{2} \cup \ldots$ ("partial cover") either
(1) \mathcal{U} covers \mathcal{H}; or
(2) $W \in\langle\mathcal{H}\rangle$
- [Main Point] Typically, \mathcal{U} is " p-cheap."
u is cheap

$$
\xrightarrow{\text { Ass. } p>p_{\mathrm{E}}(\langle\mathcal{H}\rangle)}
$$

(1) is unlikely

Open Questions

Gap between $p_{\mathrm{E}}(\mathcal{F})$ and $p_{c}(\mathcal{F})$

Theorem (P.-Pham '22)

$$
\left(p_{\mathbf{E}}(\mathcal{F}) \leq\right) p_{c}(\mathcal{F}) \lesssim p_{\mathbf{E}}(\mathcal{F}) \log \ell(\mathcal{F})
$$

Question

What characterizes the gap between $p_{\mathrm{E}}(\mathcal{F})$ and $p_{c}(\mathcal{F})$?

- In many cases the $\log \ell(\mathcal{F})$ gap is tight:
e.g. perfect hypergraph matchings, spanning trees with bounded degree, Hamiltonian cycle, fixed subgraphs. . .
- There are some cases for which $\log \ell(\mathcal{F})$ is not tight: e.g. clique factors, the k-th power of a Hamilton cycle, non-spanning large graphs... \rightarrow good test cases!

Test cases: gaps smaller than $\log \ell(\mathcal{F})_{\text {Thm. }} p_{c}(\mathcal{F}) \leq K p_{E}(\mathcal{F}) \log \ell(\mathcal{F})$

First successful test case
\mathcal{F} : contain the square of a Hamilton cycle ($H C^{2}$)
Conjecture (Kühn-Osthus '12)

$$
p_{c}(\mathcal{F}) \asymp n^{-1 / 2}
$$

- $p_{\mathrm{E}}(\mathcal{F})\left(\asymp p_{\mathrm{E}}^{*}(\mathcal{F})\right) \asymp n^{-1 / 2} \quad \rightarrow$ no gap!
- Kühn-Osthus ('12) $p^{*} \lesssim n^{-1 / 2+o(1)}$
- Nenadov-Škorić ('16) $p^{*} \lesssim n^{-1 / 2} \log ^{4} n$
- Fischer-Škorić-Steger-Trujić ('18) $p^{*} \lesssim n^{-1 / 2} \log ^{3} n$
- Montgomery $p^{*} \lesssim n^{-1 / 2} \log ^{2} n$
- Frankston-Kahn-Narayanan-P. $p^{*} \lesssim n^{-1 / 2} \log n$

Kahn-Narayanan-P. ('20)

$$
p_{c}(\mathcal{F}) \asymp n^{-1 / 2}
$$

Good test cases: gaps smaller than $\log \ell(\mathcal{F})$

[Ex 1] \mathcal{F} : contain a triangle-factor (or a H-factor for fixed H)
Johansson-Kahn-Vu ('08)

$$
p_{c}(\mathcal{F}) \asymp n^{-2 / 3}(\log n)^{1 / 3}
$$

[Ex 2] Perfect matchings in the " k-out model"
Frieze ('86)

$$
\lim _{\substack{n \rightarrow \infty \\ n \text { even }}} \mathbb{P}\left(G_{k \text {-out }} \text { has a perfect matching }\right)= \begin{cases}0 & \text { if } k=1 \\ 1 & \text { if } k \geq 2\end{cases}
$$

Thank you!

