Thresholds

Jinyoung Park

Stanford University

University of Oxford Discrete Maths and Probability Seminar

June 2022

Conjecture [Kahn-Kalai '06]; proved by P.-Pham ('22).

There exists a universal K > 0 such that for every finite set X and increasing property $\mathcal{F} \subseteq 2^X$,

$$p_c(\mathcal{F}) \leq K p_{\mathsf{E}}(\mathcal{F}) \log |X|$$

- $p_c(\mathcal{F})$: threshold for \mathcal{F}
- $p_{\rm E}(\mathcal{F})$: expectation threshold for \mathcal{F}

Basic definitions

- X: finite set; $2^X = {$ subsets of $X }$
- μ_p : *p*-biased product probability measure on 2^X

$$\mu_p(A) = p^{|A|}(1-p)^{|X\setminus A|} \quad A \subseteq X$$

• $X_p \sim \mu_p$ "*p*-random" subset of X e.g.1. $X = {[n] \choose 2} = E(K_n)$ $\rightarrow X_p = G_{n,p}$ Erdős-Rényi random graph e.g.2. $X = \{k\text{-clauses from } \{x_1, \dots, x_n\}\}$ $\rightarrow X_p$: random CNF formula

• $\mathcal{F} \subseteq 2^X$ is an increasing property if

$$B \supseteq A \in \mathcal{F} \Rightarrow B \in \mathcal{F}$$

e.g.1. $\mathcal{F} = \{\text{connected}\}; \mathcal{F} = \{\text{contain a triangle}\}\$ e.g.2. $\mathcal{F} = \{\text{not satisfiable}\}\$

Thresholds

Fact.

For any increasing property $\mathcal{F} \ (\neq \emptyset, 2^X)$, $\mu_p(\mathcal{F}) \ (= \mathbb{P}(X_p \in \mathcal{F}))$ is continuous and strictly increasing in p.

• cf. Erdős-Rényi: $p_0 = p_0(n)$ is a threshold function for \mathcal{F}_n if

$$\mu_{p}(\mathcal{F}_{n}) \rightarrow \begin{cases} 0 & \text{if } p \ll p_{0} \\ 1 & \text{if } p \gg p_{0} \end{cases} \quad \text{* } p_{c}(\mathcal{F}_{n}) \text{ is always an Erdős-Rényi} \\ \text{threshold (Bollobás-Thomason '87)} \end{cases}$$

The Kahn–Kalai Conjecture

"It would probably be more sensible to conjecture that it is **not** true." - Kahn and Kalai (2006)

Question.

What drives $p_c(\mathcal{F})$?

 \asymp : same order

•
$$X = {\binom{[n]}{2}}$$
 (so $X_{\rho} = G_{n,\rho}$); \mathcal{F}_H : contain a copy of H

Example 1.

What's the threshold for $G_{n,p}$ to contain a copy of H?

• Usual suspect: expectation calculation

$$\mathbb{E}[\texttt{\# H's in } G_{n,p}] \asymp n^4 p^5 \to \begin{cases} 0 & \text{if} \quad p \ll n^{-4/5} \\ \infty & \text{if} \quad p \gg n^{-4/5} \end{cases}$$

"threshold for \mathbb{E} " $\asymp n^{-4/5}$

• triv. $p_c(\mathcal{F}_H) \gtrsim n^{-4/5}$ (: $\mathbb{E}X \to 0 \Rightarrow X = 0$ with high probability)

• truth: $p_c(\mathcal{F}_H) \asymp n^{-4/5}$

Example 2. Containing a copy of K <

•
$$X = {[n] \choose 2}$$
 (so $X_p = G_{n,p}$); \mathcal{F}_K : contain a copy of K

Example 2.

What's the threshold for $G_{n,p}$ to contain a copy of K?

$$\mathbb{E}[\# \text{ K's in } G_{n,p}] \asymp n^5 p^6 \to \begin{cases} 0 & \text{if } p \ll n^{-5/6} \\ \infty & \text{if } p \gg n^{-5/6} \end{cases}$$

"threshold for \mathbb{E} " $symp n^{-5/6}$

- Q. $p_c(\mathcal{F}_K) \asymp n^{-5/6}$? (triv. $p_c(\mathcal{F}_K) \gtrsim n^{-5/6}$)
- truth: $p_c(\mathcal{F}_K) \asymp n^{-4/5}$

Erdős-Rényi ('60), Bollobás ('81)

(Rough:) For fixed graph K,

 $p_c(\mathcal{F}_K) \asymp$ "threshold for \mathbb{E} " of the "densest" subgraph of K

Example 3. Containing a perfect matching ... n vertices • $X = {\binom{[n]}{2}}$ (so $X_p = G_{n,p}$); \mathcal{F} : contain a perfect matching Example 3. What's the threshold for $G_{n,p}$ to contain a perfect matching? (2|n) $\mathbb{E}[\text{\# Perfact matchings in } G_{n,p}] \approx \left(\frac{np}{e}\right)^{n/2} \rightarrow \begin{cases} 0 & \text{if } p \ll 1/n \\ \infty & \text{if } p \gg 1/n \end{cases}$ "threshold for \mathbb{E} " $\simeq 1/n$ • Q. $p_c(\mathcal{F}) \simeq 1/n$? (triv. $p_c(\mathcal{F}) \gtrsim 1/n$) • truth: $p_c(\mathcal{F}) \asymp \log n/n$ Fact. $p \ll \log n/n \Rightarrow G_{n,p}$ has an isolated vertex w.h.p.

8/24

One more example: perfect hypergraph matchings

• Now, $X = {[n] \choose r}$

• X_{ρ} = random *r*-uniform hypergraph $\mathcal{H}_{n,\rho}^{r}$

Example 3'. (Shamir's Problem ('80s)) For $r \ge 3$, what's the threshold for $\mathcal{H}_{n,p}^r$ to contain a perfect matching? (r|n)

• cf. r = 2: Erdős-Rényi ('66) $r \ge 3$ much harder

• e.g. *r* = 3:

- \mathbb{E} [# perfect matchings in $\mathcal{H}_{n,p}^r$] $\asymp (n^2 p)^{n/3} \to$ "threshold for \mathbb{E} " $\asymp n^{-2}$
- Lower bound from coupon-collector:

 $p_c(\mathcal{F}) \gtrsim \log n/n^2$

• $p_c(\mathcal{F}) \asymp \log n/n^2$ (Johansson-Kahn-Vu '08) * $\log n$ gap again

What drives $p_c(\mathcal{F})$?

- We have some **trivial lower bounds** on *p_c*:
 - Ex 1, 2 (contain H/K): "threshold for \mathbb{E} "
 - Ex 3, 3' (contain a PM): coupon collector-ish behavior (log n gap)
- Historically, in many interesting cases, the main task is to find a **matching upper bound**.

The Kahn-Kalai Conjecture ('06): rough statement

For any increasing property, the threshold is at most $\log |X|$ times the "expectation threshold".

- This is a VERY strong conjecture: immediately implies (e.g.)
 - threshold for perfect hypergraph matchings (Johansson-Kahn-Vu '08)

$$p_{\scriptscriptstyle \mathsf{E}} \asymp n^{-(r-1)} \stackrel{\mathsf{KKC}}{\Longrightarrow} p_c \lesssim \log n/n^{r-1}$$

 threshold for bounded degree spanning trees ("tree conjecture"; Montgomery '19) • For abstract \mathcal{F} , it's unclear whose expectation we want to compute, so need a careful definition for the "threshold for \mathbb{E} ."

$p_{\rm E}(\mathcal{F})$: the expectation threshold

Observation

$$p_{c}(\mathcal{F}) \geq q \text{ if } \exists \mathcal{G} \subseteq 2^{X} \text{ such that}$$

$$\begin{array}{c} @ \ "\mathcal{G} \text{ covers } \mathcal{F}": \ \forall A \in \mathcal{F} \ \exists B \in \mathcal{G} \text{ such that } A \supseteq B \quad (\mathcal{F} \subseteq \langle \mathcal{G} \rangle) \\ \hline & \sum_{S \in \mathcal{G}} q^{|S|} \leq \frac{1}{2} \quad ("q\text{-cheap"}) & \text{the upset generated by } \mathcal{G} \\ \hline e.g. \text{ in Ex } 2, \ X = \binom{[n]}{2}, \ \mathcal{F}: \text{ contain a copy of } \mathcal{K} \\ \hline & \mathcal{G}_{1} = \{ \text{all (labeled) copies of } \mathcal{K} \quad \bigcirc \neg \cdot s \} \\ & \rightarrow \sum_{S \in \mathcal{G}_{1}} q^{|S|} \leq 1/2 \text{ for } q \lesssim n^{-5/6} \quad \rightarrow n^{-5/6} \lesssim p_{c}(\mathcal{F}) \\ \hline & \mathcal{G}_{2} = \{ \text{all (labeled) copies of } \mathcal{H} \quad \bigcirc \cdot s \} \end{array}$$

 $ightarrow \sum_{S\in \mathcal{G}_2} q^{|S|} \leq 1/2 ext{ for } q \lesssim n^{-4/5} \quad
ightarrow n^{-4/5} \lesssim p_c(\mathcal{F})$

$p_{\rm E}(\mathcal{F})$: the expectation threshold

Observation

 $p_c(\mathcal{F}) \geq q$ if $\exists \ \mathcal{G} \subseteq 2^X$ such that

1 " \mathcal{G} covers \mathcal{F} ": $\forall A \in \mathcal{F} \ \exists B \in \mathcal{G}$ such that $A \supseteq B$ $(\mathcal{F} \subseteq \langle \mathcal{G} \rangle)$ the upset generated by \mathcal{G}

• $p_{E}(\mathcal{F}) := \max\{q : \exists \mathcal{G}\} \to \text{a trivial lower bound on } p_{c}(\mathcal{F})$

The Kahn-Kalai Conjecture ('06)

There exists a universal K > 0 such that for every finite X and increasing $\mathcal{F} \subseteq 2^X$,

$$(p_{\mathsf{E}}(\mathcal{F}) \leq) p_{c}(\mathcal{F}) \leq Kp_{\mathsf{E}}(\mathcal{F}) \log |X|$$

Results and Proof Sketch

Conj of Talagrand: fractional version of Kahn-Kalai Conj

- $p_{_{\rm F}}^*(\mathcal{F})$: the fractional expectation threshold for \mathcal{F}
 - $\bullet\,$ skip def: roughly, replace cover ${\cal G}$ by "fractional cover"
- Easy. $p_{\mathsf{E}}(\mathcal{F}) \leq p_{\mathsf{E}}^*(\mathcal{F}) \leq p_{\mathsf{c}}(\mathcal{F})$

Conj (Talagrand '10); proved by Frankston-Kahn-Narayanan-P. ('19). There exists a universal K > 0 such that for every finite X and increasing $\mathcal{F} \subseteq 2^X$,

$$p_c(\mathcal{F}) \leq Kp_{E}^{*}(\mathcal{F}) \log \ell(\mathcal{F}).$$

* $\ell(\mathcal{F})$: the size of a largest minimal element of \mathcal{F}

- Weaker than KKC, but in all known applications, $p_{E}(\mathcal{F}) \asymp p_{F}^{*}(\mathcal{F})$
- Proof inspired by Alweiss-Lovett-Wu-Zhang

"Erdős-Rado Sunflower Conjecture"

• Recall. In all known applications, $p_{_{\rm E}}(\mathcal{F}) \asymp p_{_{\rm E}}^*(\mathcal{F})$

Conjecture (Talagrand '10) $p_{\rm E}(\mathcal{F}) \asymp p_{\rm E}^*(\mathcal{F})$

There exists a universal K such that for every finite X and increasing $\mathcal{F}\subseteq 2^X$,

$$(p_{\mathsf{E}}(\mathcal{F}) \leq) p_{\mathsf{E}}^*(\mathcal{F}) \leq K p_{\mathsf{E}}(\mathcal{F})$$

- Implies equivalence of KKC and fractional KKC
 - the most likely way to prove KKC?
- Even simple instances of the conjecture are not easy to establish; Talagrand suggested two test cases, proved by (respectively)
 DeMarco-Kahn ('15) and Frankston-Kahn-P. ('21)

New result

Conjecture (Kahn-Kalai '06); proved by P.-Pham ('22)

There exists a universal K > 0 such that for every finite X and increasing $\mathcal{F} \subseteq 2^X$,

$$p_c(\mathcal{F}) \leq Kp_{\mathsf{E}}(\mathcal{F}) \log \ell(\mathcal{F})$$

* $\ell(\mathcal{F})$: the size of a largest minimal element of \mathcal{F}

- Proofs inspired by ALWZ (sunflower) and FKNP (fractional Kahn-Kalai) but implementation very different
- Reformulation think: $\mathcal{H} = \{ \text{minimal elements of } \mathcal{F} \}$

Theorem (P.-Pham '22)

 $\exists L > 0$ such that $\forall \ell$ -bdd \mathcal{H} , if $p > p_{E}(\langle \mathcal{H} \rangle)$, then, with $m = Lp \log \ell |X|$,

$$\mathbb{P}(X_m \in \langle \mathcal{H} \rangle) = 1 - o_\ell(1)$$

Proof sketch

 $\exists L > 0$ such that $\forall \ell$ -bdd \mathcal{H} , if $p > p_{\mathsf{E}}(\langle \mathcal{H} \rangle)$, then, with $m = Lp \log \ell |X|$, $\mathbb{P}(X_m \in \langle \mathcal{H} \rangle) = 1 - o_{\ell}(1)$

- Choose $W(=X_m)$ little by little: $W = W_1 \sqcup W_2 \sqcup \ldots$
- At the end, want $W \supseteq S \in \mathcal{H}$ whp.
- Run algorithm: no assump \rightarrow two possible outputs
- (Recall) $p > p_{E}(\langle \mathcal{H} \rangle)$ means:

 $\langle \mathcal{H} \rangle$ does not admit a *p*-cheap cover.

 $\exists L > 0$ such that $\forall \ell$ -bdd \mathcal{H} , if $p > p_{\mathsf{E}}(\langle \mathcal{H} \rangle)$, then, with $m = Lp \log \ell |X|$, $\mathbb{P}(X_m \in \langle \mathcal{H} \rangle) = 1 - o_{\ell}(1)$

- $W = W_1 \sqcup W_2 \sqcup \ldots$
- At *i*th step: choose W_i of size $\approx Lp|X|$ at random

 \rightarrow **Construct** cover $\mathcal{U}_i = \mathcal{U}_i(W_i)$ of some $\mathcal{G}_i = \mathcal{G}_i(W_i) \subseteq \mathcal{H}_{i-1}$

- When terminates, with U = U₁ ∪ U₂ ∪ ... ("partial cover") either
 (1) U covers H; or (2) W ∈ ⟨H⟩
- [Main Point] Typically, \mathcal{U} is "p-cheap."

$$\mathcal{U}$$
 is cheap
Sample sp (choice of W) $\xrightarrow{\text{Ass. } p > p_{\mathsf{E}}(\langle \mathcal{H} \rangle)}$ (1) is unlikely \Box

Open Questions

Gap between $p_{E}(\mathcal{F})$ and $p_{c}(\mathcal{F})$

Theorem (P.-Pham '22)

$$(p_{\mathsf{E}}(\mathcal{F}) \leq) p_{c}(\mathcal{F}) \lesssim p_{\mathsf{E}}(\mathcal{F}) \log \ell(\mathcal{F})$$

Question

What characterizes the gap between $p_{E}(\mathcal{F})$ and $p_{c}(\mathcal{F})$?

• In many cases the $\log \ell(\mathcal{F})$ gap is tight:

e.g. perfect hypergraph matchings, spanning trees with bounded degree, Hamiltonian cycle, fixed subgraphs...

• There are some cases for which $\log \ell(\mathcal{F})$ is not tight:

e.g. clique factors, the k-th power of a Hamilton cycle, non-spanning large graphs... \rightarrow good test cases!

Test cases: gaps smaller than $\log \ell(\mathcal{F})_{\text{Thm. } p_c(\mathcal{F}) \leq K p_{\epsilon}(\mathcal{F}) \log \ell(\mathcal{F})}$

First successful test case

 \mathcal{F} : contain the square of a Hamilton cycle (HC^2)

Conjecture (Kühn-Osthus '12)

$$p_c(\mathcal{F}) \asymp n^{-1/2}$$

•
$$p_{\mathsf{E}}(\mathcal{F})(\asymp p_{\mathsf{E}}^*(\mathcal{F})) \asymp n^{-1/2} \to \text{no gap!}$$

- Kühn-Osthus ('12) $p^* \lesssim n^{-1/2+o(1)}$
- Nenadov-Škorić ('16) $p^* \lesssim n^{-1/2} \log^4 n$
- Fischer-Škorić-Steger-Trujić ('18) $p^* \lesssim n^{-1/2} \log^3 n$
- Montgomery $p^* \lesssim n^{-1/2} \log^2 n$
- Frankston-Kahn-Narayanan-P. $p^* \lesssim n^{-1/2} \log n$

Kahn-Narayanan-P. ('20)

$$p_c(\mathcal{F}) \asymp n^{-1/2}$$

[Ex 1] \mathcal{F} : contain a **triangle-factor** (or a *H*-factor for fixed *H*)

Johansson-Kahn-Vu ('08)

$$p_c(\mathcal{F}) \asymp n^{-2/3} (\log n)^{1/3}$$

[Ex 2] Perfect matchings in the "k-out model"

Frieze ('86)

$$\lim_{\substack{n \to \infty \\ n \text{ even}}} \mathbb{P}(G_{k-\text{out}} \text{ has a perfect matching}) = \begin{cases} 0 & \text{if } k = 1 \\ 1 & \text{if } k \ge 2 \end{cases}$$

Thank you!