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The Ryser-Brualdi-Stein conjecture

A Latin square of order n is an n by
n square with cells filled using n
symbols so that every symbol
appears once in each row and once in
each column. A transversal of
order k in a Latin square is a set of
k cells from distinct rows and
columns, containing distinct symbols.
A transversal of order n is called full
transversal.

Conjecture (Ryser, Brualdi, Stein )

Every n × n Latin square has a transversal of order n − 1. Moreover if n is
odd it has a full transversal.
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The Ryser-Brualdi-Stein conjecture

Conjecture (Ryser, Brualdi, Stein )

Every n × n Latin square has a transversal of order n − 1. Moreover if n is
odd it has a full transversal.

What size transversals we are guaranteed to have?

2n/3 + O(1) Koksma, ’69

3n/4 + O(1) Drake, ’77

n −
√
n Brouwer, De Vries, and Wieringa, ’78 and Woolbright,’78

n − O(log2 n) Shor, ’82, contained an error

n − O(log2 n) Hatami, Shor, 2008
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Our result

Conjecture (Ryser, Brualdi, Stein)

Every n × n Latin square has a transversal of order n − 1. Moreover if n is
odd it has a full transversal.

Theorem (Keevash, Pokrovskiy, Sudakov, Y.)

Every n × n Latin square contains a transversal of order n − O( log n
log log n ).
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Rainbow matchings in Kn,n

A transversal in a Latin square of order n with R rows, C columns and S
symbols corresponds to a perfect rainbow matching in Kn,n with
bipartition (R,C ) and colours S such that color(ricj) = sij .
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Rainbow matchings in Kn,n

A matching in an edge-coloured graph is called rainbow if no two edges
have the same colour.

Conjecture (Ryser, Brualdi, Stein)

Every properly edge-coloured Kn,n contains a rainbow matching of size
n − 1. Moreover if n is odd it has a perfect rainbow matching.

Theorem (Keevash, Pokrovskiy, Sudakov, Y.)

Every properly n-edge-coloured Kn,n has a rainbow matching of size

n − O( log n
log log n ).
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Rainbow matchings in Kn,n
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Matchings in hypergraphs

Given an n × n Latin square L filled with symbols {1, 2, . . . , n}, construct
the following hypergraph H.

V (H) = R ∪ C ∪ S where R are the rows of L, C the columns of L,
and S the symbols of L.

For i ∈ R, j ∈ C , s ∈ S , {i , j , s} is a hyperedge of H if (i , j)-th entry
of L has symbol s.

H is 3-uniform, every pair of vertices lying in different parts is in exactly
one edge, in other words, H is a 3-partite Steiner triple.

A transversal of size k in L −→←− a matching of size k in H.
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Brouwer’s conjecture

Conjecture (Brouwer, 1981)

Every Steiner triple system of order n contains a matching of size
(n − 4)/3.

2n/9− O(1) Wang, ’78

4n/15− O(1) Lindner and Phelps, ’78

n/3− O(n2/3) Brouwer, ’81

n/3− O(n1/2 log3/2 n) Alon, Kim, and Spencer 1997

Theorem (Keevash, Pokrovskiy, Sudakov, Y.)

Every Steiner triple system on n vertices has a matching of size at least
n/3− O(log n/ log log n).
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Our proof setting

Large transversals in n × n Latin squares filled with symbols
{1, 2, . . . , n}
Large rainbow matchings in properly edge-coloured Kn,n with n
colours

Large matchings in linear 3-partite Steiner systems
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Our proof setting

Large transversals in n × n Latin arrays

Large rainbow matchings in coloured quasirandom graphs

Large matchings in 3-partite, 3-uniform, linear hypergraphs
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Typical (quasirandom) graphs

A graph is typical if it “behaves” like a random graph of the same edge
density.

We call a bipartite graph G with parts X ,Y with |X | = |Y | = n is
(ε, p, n)-typical if

(P1) d(v) = pn(1± n−ε),

(P2) for every u, v ∈ X or u, v ∈ Y we have d(u, v) = p2n(1± n−ε),
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Coloured typical (quasirandom) graphs

We call a properly edge-coloured bipartite graph G with parts X ,Y with
|X | = |Y | = n and n colors coloured (ε, p, n)-typical if

(P1) d(v) = pn(1± n−ε),

(P2) for every u, v ∈ X or u, v ∈ Y we have d(u, v) = p2n(1± n−ε),

(P3) c ∈ C (G ) has |EG (c)| = (1± n−ε)pn,

(P4) c , c ′ have |VG (c) ∩ VG (c ′) ∩ X | = (1± n−ε)p2n and
|VG (c) ∩ VG (c ′) ∩ Y | = (1± n−ε)p2n.
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Coloured typical (quasirandom) graphs

We call a properly edge-coloured bipartite graph G with parts X ,Y with
|X | = |Y | = n and n colors coloured (ε, p, n)-typical coloured
(ε, p, n)-regular if

(P1) d(v) = pn(1± n−ε),
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|VG (c) ∩ VG (c ′) ∩ Y | = (1± n−ε)p2n.

Theorem (Frankl and Rödl, 1985 and Pippenger,unpublished)

Every coloured (ε, p, n)-regular graph has a rainbow matching of order
(1− o(1))n.

At this point better results are known in the literature where o(1) term
can be take to be n−γ , for some small γ > 0.
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Large matchings in coloured typical graphs

We prove that larger matchings exist if instead of regularity we require
typicality.

Theorem (Keevash, Pokrovskiy, Sudakov, Y.)

If G is a coloured (ε, p, n)-typical bipartite graph then it has a rainbow
matching of size n − O(log n/log log n).

Note that our first main result is a direct corollary of this statement since
Kn,n is (ε, p, n)-typical for p = 1 and (any) ε.

Corollary (Keevash, Pokrovskiy, Sudakov, Y.)

Every properly n-edge-coloured Kn,n has a rainbow matching of size

n − O( log n
log log n ).
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Large matchings in coloured typical graphs

Theorem (Keevash, Pokrovskiy, Sudakov, Y.)

If G is a coloured (ε, p, n)-typical bipartite graph then G has a rainbow
matching of size n − O(log n/log log n).

With some more work, via random sampling we can also obtain the second
result.

Corollary (Keevash, Pokrovskiy, Sudakov, Y.)

Every Steiner triple system on n vertices has a matching of size at least
n/3− O(log n/ log log n).
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Large matchings in coloured typical graphs

Theorem (Keevash, Pokrovskiy, Sudakov, Y.)

If G is a coloured (ε, p, n)-typical bipartite graph then G has a rainbow
matching of size n − O(log n/log log n).

I will sketch the proof of this result for G = Kn,n and the size of the
resulting matching being n − O(log n) rather than n − O(log n/ log log n).
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Rödl’s nibble, back to 1985

Let’s apply Rödl’s nibble to show the existence of a rainbow matching of
size n − O(n1−ε) in a properly n-edge-coloured Kn,n.

First bite: Fix α ∈ (0, 1) and select every edge of Kn,n with
probability α/n. Then we delete all edges which share vertices or
colours with other selected edges. M0 is a rainbow matching of size
roughly αn.

Repeat: Repeatedly take bites and delete the vertices/colours used in
each bite from the rest of the graph to obtain M until the remainder
has size < O(n1−ε), i.e. |M| ≥ n − O(n1−ε). This is possible since
after each step the remaining graph is coloured regular.

Our key new idea: We show that M0 (and thus, M) has nice
pseudorandom properties w.r.t. colours which allows us to do further
modifications to M until the remainder is O(log n).
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Large matchings in coloured typical graphs

(S1) Obtain M0 rainbow matching via the first bite and show it satisfies
certain pseudorandom properties w.r.t. colours, we call it expansion
properties.

(S2) Delete vertices and colours of M0 from Kn,n. The remaining graph
will be colour-typical, therefore we can extend M0 to a larger rainbow
matching M of size n − n1−ε via Rödl’s nibble as a black box. The
pseudorandom properties that M0 had get transferred to M.

(S3) Do switching-type arguments to increase M as long as we have log n
unused colours. We do this iteratively, at each step obtaining a
rainbow matching of size |Mi |+ 1 but such that the edit distance
between each Mi and M is still sufficiently small.

(S4) After at most O(n1−ε) times we get a matching with remainder at
most O(log n).
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pseudorandom properties that M0 had get transferred to M.

(S3) Do switching-type arguments to increase M as long as we have log n
unused colours. We do this iteratively, at each step obtaining a
rainbow matching of size |Mi |+ 1 but such that the edit distance
between each Mi and M is still sufficiently small.

(S4) After at most O(n1−ε) times we get a matching with remainder at
most O(log n).

Liana Yepremyan Ryser’s conjecture and more May 5, 2020 19 / 41



Large matchings in coloured typical graphs

(S1) Obtain M0 rainbow matching via the first bite and show it satisfies
certain pseudorandom properties w.r.t. colours, we call it expansion
properties.

(S2) Delete vertices and colours of M0 from Kn,n. The remaining graph
will be colour-typical, therefore we can extend M0 to a larger rainbow
matching M of size n − n1−ε via Rödl’s nibble as a black box. The
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Expansion

Definition (Expander)

Suppose we are given Kn,n with bipartition (X ,Y ). For any matching M in
Kn,n and a set of d colours D we say (D,M) is an expander if

every vertex set S ⊆ X or S ⊆ Y with |S | ≈ n/d

|ND,M,D,M(S)| = (1− o(1))n.

Here ND,M,D,M(S) is defined as the set of vertices which can be reached
from some s ∈ S via a D −M-alternating rainbow path of length four. We
will use d = log n.
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|S | ≈ n/d
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Expansion

Definition (Expander)

Suppose we are given Kn,n with bipartition (X ,Y ). For any matching M
and a set of d colours D we say (D,M) is an expander if

every vertex set S ⊆ X or S ⊆ Y with |S | ≈ n/d has

|ND,M,D,M(S) = (1− o(1))n.
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Expansion

Actually our definition of expander is slightly more technical.

Definition (Expander)

Suppose we are given Kn,n with bipartition (X ,Y ). For any matching M
and a set of d colours D we say (D,M) is an expander if

every vertex set S ⊆ X or S ⊆ Y with |S | ≈ n/d has a subset S ′ with
|S ′| ≈ n/d2 and

|ND,M,D,M(S ′)| = (1− o(1))n.

Here ND,M,D,M(S ′) is defined as the set of vertices which can be reached
from some s ∈ S ′ via a D −M-alternating rainbow path of length four.
We will use d = log n.
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Expansion

|S | ≈ n/d , |S ′| ≈ n/d2

o(n)o(n)

ND,M,D(S)ND,M,D,M(S)

S'
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Random matchings expand

Let M be obtained as described before:

(S1) Obtain M0 by selecting every edge G with probability α/n. Then we
delete all edges which share vertices or colours with other selected
edges.

(S2) Delete vertices and colours of M0 from Kn,n. Whp we can extend M0

to a larger rainbow matching M of size n− n1−γ via Rödl’s nibble, for
some small γ > 0.

Lemma

For any set of d colours D, (D,M) is an expander.

For proving this lemma we only analyse M0.
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Rainbow paths from expansion

Expansion properties of M allow us to get short rainbow D−M-alternating
paths between almost all vertices, for any set of colours D. Here is how.

ND(S) ND,M(S)

ND,M,D(S) ND,M,D,M(S)

|S|≈nd
_
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Rainbow paths from expansion

We can iterate this step: find S ′ of size n/d2 such that almost all vertices
have rainbow D −M-alternating paths of length eight going to S ′.

n
d
_

n
d2
_|S|≈'

o(n)

ND(S) ND,M(S)

ND,M,D(S) ND,M,D,M(S)

|S|≈nd
_
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Rainbow paths from expansion

We can iterate this step: find S ′ of size n/d2 such that almost all vertices
have rainbow D −M-alternating paths of length eight going to S ′.

n
d
_

n
d2
_|S|≈'

N1(S') N2(S')

N3(S') N4(S')
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Rainbow paths from expansion

We can iterate this step: find S ′ of size n/d2 such that almost all vertices
have rainbow D −M-alternating paths of length eight going to S ′.

n
d
_

n
d2
_|S|≈'

N5(S') N6(S')

N7(S') N8(S')

o(n)

N1(S') N2(S')

N3(S') N4(S')
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Rainbow paths from expansion

Applying this t times, we reach to St , such that |St | = 1 (i.e. n/d t = 1
which implies t ≈ log n/ log d = O(log n/ log log n)). This shows that all
but o(n) vertices have rainbow D −M-alternating paths of length at most
4t going to all but o(n) vertices.

εn

v
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Rainbow paths from expansion

This implies for almost all x ∈ X and y ∈ Y there is a rainbow
D −M-alternating path between x and y of length at most
O(log n/ log log n). This allows us to do modifications to M via
augmenting paths.
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Switchings

Preprocessing step: We split the graph Kn,n into three random pieces
G1,G2,G3 by selecting each colour/vertex with probability 1/3. Then find
a rainbow matching M as described before with expansion properties and
|M| ≥ n − n1−ε.
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Switchings

As long as there are some |D| = log n many colours unused on M we can
do the following switchings.

At each step |Mi4Mi+1| = O(log n/ log log n). Because of this after
O(n1−ε) steps, |Mi4M| ≤ O(n1−ε log n/ log log n)� |M|, thus Mi will
still have the expansion properties we discussed before thus we can find
the alternating paths.
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Recap: proof sketch

Find rainbow matchings of size n − O(log n) in properly n-edge coloured
Kn,n.

(S1) Obtain M0 rainbow matching via the first bite and show it satisfies
certain pseudorandom properties w.r.t. colours, we call it expansion
properties.

(S2) Delete vertices and colours of M0 from Kn,n. The remaining graph
will be colour-typical, therefore we can extend M0 to a larger rainbow
matching M of size n − n1−ε via Rödl’s nibble as a black box. The
pseudorandom properties that M0 had get transferred to M.

(S3) Do switching-type arguments to increase M as long as we have log n
unused colours. We do this iteratively, at each step obtaining a
rainbow matching of size |Mi |+ 1 but such that the edit distance
between each Mi and M is still sufficiently small.

(S4) After at most O(n1−ε) times we get a matching with remainder at
most O(log n).
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Our results

Theorem (Keevash, Pokrovskiy, Sudakov, Y.)

If G is a coloured typical bipartite graph then it has a rainbow matching of
size n − O(log n/log log n).

Theorem (Keevash, Pokrovskiy, Sudakov, Y.)

Every properly n-edge-coloured Kn,n has a rainbow matching of size

n − O( log n
log log n ).

Theorem (Keevash, Pokrovskiy, Sudakov, Y.)

Every Steiner triple system on n vertices has a matching of size at least
n/3− O(log n/ log log n).
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Further applications of our methods

Theorem (Keevash, Pokrovskiy, Sudakov, Y.)

Let H be a 3-uniform linear hypergraph on n vertices. Suppose that

(1) for every vertex v we have |N∂H(v)| = (1± n−ε)pn

(2) for every pair of vertices u, v, |N∂H(v)| = (1± n−ε)pn and
|N∂H(u) ∩ N∂H(v)| = (1± n−ε)p2n.

Then H has a matching of size n − O(log n/log log n).

Theorem (Keevash, Pokrovskiy, Sudakov, Y.)

There exists some k such that every n × n Latin array filled with
kn log n/ log log n many symbols contains a full transversal.

Previously known for Latin arrays filled with n2−ε symbols.
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Open problems and further line of research

Reduce, if possible, the error term in Ryser-Brualdi-Stein conjecture
from O(log n/ log log n) to some absolute constant c .

Reduce, if possible, the error term in Brouwer’s conjecture from
O(log n/ log log n) to some absolute constant c .

Do linear 3-uniform regular hypergraphs have matching covering all
but no(1) vertices?
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Thank you!
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