Further Progress towards Hadwiger's Conjecture

Luke Postle

University of Waterloo

Oxford Discrete Mathematics and Probability Seminar

October 27, 2020

Part I

Hadwiger's: A History

Luke Postle Further Progress towards Hadwiger's Conjecture

Coloring

Definition (Coloring)

- A *k*-coloring of a graph *G* is an assignment of colors 1,2,...,*k* to vertices of *G* s.t. no two adjacent vertices receive the same color.
- We say G is k-colorable if G has a k-coloring.
- The chromatic number of G, denoted χ(G), is the smallest k such that G has k-coloring.

Minors

Definition (Minors)

We say that a graph G has an H minor if a graph isomorphic to H can be obtained from a subgraph of G by contracting edges.

Definition (Minors)

We say that a graph G has an H minor if a graph isomorphic to H can be obtained from a subgraph of G by contracting edges.

Definition (Models)

Let *H* be a graph with $V(H) = \{v_1, ..., v_t\}$. A model of *H* in a graph *G* is a collection of vertex-disjoint connected subgraphs $H_1, ..., H_t$ such that $\forall i \neq j \in [t]$ with $v_i v_j \in E(H)$, H_i is adjacent to H_j (i.e. \exists an edge with one end in H_i and the other end in H_j).

Definition (Minors)

We say that a graph G has an H minor if a graph isomorphic to H can be obtained from a subgraph of G by contracting edges.

Definition (Models)

Let *H* be a graph with $V(H) = \{v_1, \ldots, v_t\}$. A model of *H* in a graph *G* is a collection of vertex-disjoint connected subgraphs H_1, \ldots, H_t such that $\forall i \neq j \in [t]$ with $v_i v_j \in E(H)$, H_i is adjacent to H_j (i.e. \exists an edge with one end in H_i and the other end in H_j).

It is not hard to see that G has an H minor if and only if there exists a model of H in G.

Definition (Minors)

We say that a graph G has an H minor if a graph isomorphic to H can be obtained from a subgraph of G by contracting edges.

Definition (Models)

Let *H* be a graph with $V(H) = \{v_1, ..., v_t\}$. A model of *H* in a graph *G* is a collection of vertex-disjoint connected subgraphs $H_1, ..., H_t$ such that $\forall i \neq j \in [t]$ with $v_i v_j \in E(H)$, H_i is adjacent to H_j (i.e. \exists an edge with one end in H_i and the other end in H_j).

It is not hard to see that G has an H minor if and only if there exists a model of H in G.

Do coloring and minors have any relation?

 $\forall t \geq 1$, every graph with no K_t minor is (t-1)-colorable.

• Hadwiger (1943) and independently Dirac (1952) proved it for $t \leq 4$.

- Hadwiger (1943) and independently Dirac (1952) proved it for $t \leq 4$.
- Wagner (1937) showed that t = 5 case is equivalent to the Four Color Theorem, which was proved by **Appel** and **Haken** in 1977.

- Hadwiger (1943) and independently Dirac (1952) proved it for $t \leq 4$.
- Wagner (1937) showed that t = 5 case is equivalent to the Four Color Theorem, which was proved by **Appel** and **Haken** in 1977.
- **Robertson**, **Seymour** and **Thomas** (1993) showed that the t = 6 case is also equivalent to 4CT, and hence true.

- Hadwiger (1943) and independently Dirac (1952) proved it for $t \leq 4$.
- Wagner (1937) showed that t = 5 case is equivalent to the Four Color Theorem, which was proved by **Appel** and **Haken** in 1977.
- **Robertson**, **Seymour** and **Thomas** (1993) showed that the t = 6 case is also equivalent to 4CT, and hence true.
- Open for $t \geq 7$.

 $\exists C \geq 1 \text{ s.t. } \forall t \geq 1$, every graph with no K_t minor is Ct-colorable.

 $\exists C \geq 1 \text{ s.t. } \forall t \geq 1$, every graph with no K_t minor is Ct-colorable.

A graph G is *d*-degenerate if every subgraph of G has a vertex of degree at most d.

Greedy: If G is d-degenerate, then G is (d+1)-colorable.

 $\exists C \geq 1 \text{ s.t. } \forall t \geq 1$, every graph with no K_t minor is Ct-colorable.

A graph G is *d*-degenerate if every subgraph of G has a vertex of degree at most d.

Greedy: If G is d-degenerate, then G is (d+1)-colorable.

What is the degeneracy of graphs with no K_t minor?

 $\exists C \geq 1 \text{ s.t. } \forall t \geq 1$, every graph with no K_t minor is Ct-colorable.

A graph G is *d*-degenerate if every subgraph of G has a vertex of degree at most d.

Greedy: If G is d-degenerate, then G is (d+1)-colorable.

What is the degeneracy of graphs with no K_t minor?

Theorem (Kostochka 1982, Thomason 1984)

Every graph with no K_t minor is $O(t\sqrt{\log t})$ -degenerate and hence $O(t\sqrt{\log t})$ -colorable.

Until recently, the only improvements (**Thomason** 2001, **Wood** 2013, **Kelly** and **P.** 2019) had been in the constant factor.

Until recently, the only improvements (**Thomason** 2001, **Wood** 2013, **Kelly** and **P.** 2019) had been in the constant factor.

Theorem (Norin and Song 2019+)

 $\forall \beta \geq .354$, every graph with no K_t minor is $O(t(\log t)^{\beta})$ -colorable.

Until recently, the only improvements (**Thomason** 2001, **Wood** 2013, **Kelly** and **P.** 2019) had been in the constant factor.

Theorem (Norin and Song 2019+)

 $\forall \beta \geq .354$, every graph with no K_t minor is $O(t(\log t)^{\beta})$ -colorable.

Theorem (P. 2019+)

 $\forall \beta > \frac{1}{4}$, every graph with no K_t minor is $O(t(\log t)^{\beta})$ -colorable.

Part II

Variants of Hadwiger's

Luke Postle Further Progress towards Hadwiger's Conjecture

Weakening of Hadwiger's Conjecture: Independent Set and Fractional Coloring

Theorem (Duchet and Meyniel 1982)

 $\forall t \geq 2$, every graph G with no K_t minor has an independent set of size at least $\frac{v(G)}{2(t-1)}$.

Weakening of Hadwiger's Conjecture: Independent Set and Fractional Coloring

Theorem (Duchet and Meyniel 1982)

 $\forall t \geq 2$, every graph G with no K_t minor has an independent set of size at least $\frac{\vee(G)}{2(t-1)}$.

Woodall (1987) showed the stronger result that there exists $X \subseteq V(G)$ with $|X| \ge \frac{v(G)}{2}$ such that $\chi(G[X]) \le t - 1$.

Weakening of Hadwiger's Conjecture: Independent Set and Fractional Coloring

Theorem (Duchet and Meyniel 1982)

 $\forall t \geq 2$, every graph G with no K_t minor has an independent set of size at least $\frac{\vee(G)}{2(t-1)}$.

Woodall (1987) showed the stronger result that there exists $X \subseteq V(G)$ with $|X| \ge \frac{v(G)}{2}$ such that $\chi(G[X]) \le t - 1$.

Theorem (Reed and Seymour 1998)

 $\forall t \geq 2$, every graph G with no K_t minor satisfies $\chi_f(G) \leq 2(t-1)$.

Theorem (Edwards, Kang, Kim, Oum, Seymour 2015)

 $\forall t > 0$, $\exists d$ such that if G has no K_t minor, then G has a d-defective coloring with t-1 colors.

Theorem (Edwards, Kang, Kim, Oum, Seymour 2015)

 $\forall t > 0$, $\exists d$ such that if G has no K_t minor, then G has a d-defective coloring with t-1 colors.

Defect is $O(t^2 \log t)$.

Theorem (Edwards, Kang, Kim, Oum, Seymour 2015)

 $\forall t > 0$, $\exists d$ such that if G has no K_t minor, then G has a d-defective coloring with t-1 colors.

Defect is $O(t^2 \log t)$.

Improved to defect t - 2 by van den Heuvel and Wood (2018).

A *c*-clustered coloring of a graph G is an improper coloring of G where each color class has maximum component size at most c.

A *c*-clustered coloring of a graph G is an improper coloring of G where each color class has maximum component size at most c.

Theorem

 $\forall t > 0$, $\exists c \text{ such that if } G \text{ has no } K_t \text{ minor, then } G \text{ has a } c$ -defective coloring with f(t) colors

A *c*-clustered coloring of a graph G is an improper coloring of G where each color class has maximum component size at most c.

Theorem

 $\forall t > 0$, $\exists c \text{ such that if } G \text{ has no } K_t \text{ minor, then } G \text{ has a } c$ -defective coloring with f(t) colors

where f(t) =

A *c*-clustered coloring of a graph G is an improper coloring of G where each color class has maximum component size at most c.

Theorem

 $\forall t > 0$, $\exists c$ such that if G has no K_t minor, then G has a c-defective coloring with f(t) colors

where f(t) =

- $\left\lceil \frac{31t}{2} \right\rceil$ (Kawarabayashi and Mohar 2007)
- $\left\lceil \frac{7t-3}{2} \right\rceil$ (Wood 2010)
- 4*t*-4 (**Edwards** et al. 2015)
- 3*t*-3 (Liu and Oum 2015)
- 2t-2 (van den Heuvel and Wood 2018)
- t-1 (announced by **Dvovrák** and **Norin**)

A graph G contains H as an **odd minor** if a graph isomorphic to H can be obtained from a subgraph G' of G by contracting a set of edges forming a cut in G'.

A graph G contains H as an **odd minor** if a graph isomorphic to H can be obtained from a subgraph G' of G by contracting a set of edges forming a cut in G'.

Odd Hadwiger's Conjecture (Gerards and Seymour)

A graph G contains H as an **odd minor** if a graph isomorphic to H can be obtained from a subgraph G' of G by contracting a set of edges forming a cut in G'.

Odd Hadwiger's Conjecture (Gerards and Seymour)

 $\forall t \geq 1$, every graph with no odd K_t minor is (t-1)-colorable.

Geelen, Gerards, Reed, Seymour and Vetta (2008) - $O(t\sqrt{\log t})$ -colorable.

A graph G contains H as an **odd minor** if a graph isomorphic to H can be obtained from a subgraph G' of G by contracting a set of edges forming a cut in G'.

Odd Hadwiger's Conjecture (Gerards and Seymour)

 $\forall t \geq 1$, every graph with no odd K_t minor is (t-1)-colorable.

Geelen, Gerards, Reed, Seymour and Vetta (2008) - $O(t\sqrt{\log t})$ -colorable.

Norin and Song (2019+) - $O(t(\log t)^{\beta})$ -colorable for every $\beta > \frac{1}{4}$.

Definition (List Coloring)

A graph G is *k*-list-colorable if for every assignment of lists $(L(v) : v \in V(G))$ of colors to the vertices of G, there exists a coloring ϕ of G with $\phi(v) \in L(v)$ for every $v \in V(G)$.
A graph G is *k*-list-colorable if for every assignment of lists $(L(v) : v \in V(G))$ of colors to the vertices of G, there exists a coloring ϕ of G with $\phi(v) \in L(v)$ for every $v \in V(G)$.

Voigt (1993): There exists a planar graph that is not 4-list-colorable. (Hence List Hadwiger's is false)

A graph G is *k*-list-colorable if for every assignment of lists $(L(v) : v \in V(G))$ of colors to the vertices of G, there exists a coloring ϕ of G with $\phi(v) \in L(v)$ for every $v \in V(G)$.

Voigt (1993): There exists a planar graph that is not 4-list-colorable. (Hence List Hadwiger's is false)

Barát, **Joret** and **Wood** (2011): constructed graphs with no K_{3t+2} minor which are not 4*t*-list-colorable for every $t \ge 1$.

A graph G is *k*-list-colorable if for every assignment of lists $(L(v) : v \in V(G))$ of colors to the vertices of G, there exists a coloring ϕ of G with $\phi(v) \in L(v)$ for every $v \in V(G)$.

Voigt (1993): There exists a planar graph that is not 4-list-colorable. (Hence List Hadwiger's is false)

Barát, **Joret** and **Wood** (2011): constructed graphs with no K_{3t+2} minor which are not 4*t*-list-colorable for every $t \ge 1$.

Kostochka (1982), **Thomason** (1984): degeneracy implies $O(t\sqrt{\log t})$ -list-colorable.

A graph *G* is *k*-list-colorable if for every assignment of lists $(L(v) : v \in V(G))$ of colors to the vertices of *G*, there exists a coloring ϕ of *G* with $\phi(v) \in L(v)$ for every $v \in V(G)$.

Voigt (1993): There exists a planar graph that is not 4-list-colorable. (Hence List Hadwiger's is false)

Barát, **Joret** and **Wood** (2011): constructed graphs with no K_{3t+2} minor which are not 4t-list-colorable for every $t \ge 1$.

Kostochka (1982), **Thomason** (1984): degeneracy implies $O(t\sqrt{\log t})$ -list-colorable.

Norin and **P.** (2020+): $O(t(\log t)^{\beta})$ -list-colorable for every $\beta > \frac{1}{4}$.

Part III

Main Results

Luke Postle Further Progress towards Hadwiger's Conjecture

Our main result for today:

Our main result for today:

Theorem (P., Jun 2020+)

 $\forall \beta > 0$, every graph with no K_t minor is $O(t(\log t)^{\beta})$ -colorable.

Our main result for today:

Theorem (P., Jun 2020+)

 $\forall \beta > 0$, every graph with no K_t minor is $O(t(\log t)^{\beta})$ -colorable.

Additionally (details not in this talk):

Our main result for today:

Theorem (P., Jun 2020+)

 $\forall \beta > 0$, every graph with no K_t minor is $O(t(\log t)^{\beta})$ -colorable.

Additionally (details not in this talk):

Theorem (P., Sep 2020+)

Every graph with no K_t minor is $O(t(\log \log t)^6)$ -colorable.

Our main result for today:

Theorem (P., Jun 2020+)

 $\forall \beta > 0$, every graph with no K_t minor is $O(t(\log t)^{\beta})$ -colorable.

Additionally (details not in this talk):

Theorem (P., Sep 2020+)

Every graph with no K_t minor is $O(t(\log \log t)^6)$ -colorable.

Theorem (P., Oct 2020+)

Every graph with no K_t minor is $O(t(\log \log t)^6)$ -list-colorable.

Our main result for today:

Theorem (P., Jun 2020+)

 $\forall \beta > 0$, every graph with no K_t minor is $O(t(\log t)^{\beta})$ -colorable.

Additionally (details not in this talk):

Theorem (P., Sep 2020+)

Every graph with no K_t minor is $O(t(\log \log t)^6)$ -colorable.

Theorem (P., Oct 2020+)

Every graph with no K_t minor is $O(t(\log \log t)^6)$ -list-colorable.

Theorem (P., Oct 2020+)

Every graph with no odd K_t minor is $O(t(\log \log t)^6)$ -colorable.

Part IV

Proof Overview for Norin, P., Song Result

Luke Postle Further Progress towards Hadwiger's Conjecture

We have the following corollary of Duchet and Meyniel result:

Corollary If G is a graph with no K_t minor, then $\chi(G) \le \left(\log_2\left(\frac{v(G)}{t}\right) + 2\right) t.$

A Density Increment Theorem

Let the **density** of a graph *G*, denoted d(G), be $\frac{e(G)}{v(G)}$.

Q: when does a graph of density d have a minor of density D?

Q: when does a graph of density d have a minor of density D? Obstruction: small graphs $v(G) < \frac{D^2}{d}$

Q: when does a graph of density d have a minor of density D?

Obstruction: small graphs $v(G) < \frac{D^2}{d}$ and disjoint unions of such graphs!

Q: when does a graph of density d have a minor of density D?

Obstruction: small graphs $v(G) < \frac{D^2}{d}$ and disjoint unions of such graphs!

Theorem

 $\forall s \ge 1, \exists g(s) \text{ s.t. if } G \text{ is a graph with } d(G) > 0, \text{ and we let} \\ D = s \cdot d(G), \text{ then } G \text{ contains at least one of the following:} \\ (i) \text{ a minor } J \text{ with } d(J) \ge D, \text{ or} \\ (ii) \text{ a subgraph } H \text{ with } v(H) \le g(s) \cdot \frac{D^2}{d(G)} \text{ and} \\ d(H) \ge \frac{d(G)}{g(s)}.$

 $\begin{aligned} \forall s \geq 1, \ \exists g(s) \ s.t. \ if \ G \ is \ a \ graph \ with \ \mathsf{d}(G) > 0, \ and \ we \ let \\ D = s \cdot \mathsf{d}(G), \ then \ G \ contains \ at \ least \ one \ of \ the \ following: \\ (i) \ a \ minor \ J \ with \ \mathsf{d}(J) \geq D, \ or \\ (ii) \ a \ subgraph \ H \ with \ \mathsf{v}(H) \leq g(s) \cdot \frac{D^2}{\mathsf{d}(G)} \ and \\ \mathsf{d}(H) \geq \frac{\mathsf{d}(G)}{g(s)}. \end{aligned}$

• Norin and Song, 2019+: $g(s) = s^{\alpha}$ for any $\alpha > .7095$.

- Norin and Song, 2019+: $g(s) = s^{\alpha}$ for any $\alpha > .7095$.
- **P.** 2019+: $g(s) = s^{\alpha}$ for any $\alpha > 0$;

- Norin and Song, 2019+: $g(s) = s^{\alpha}$ for any $\alpha > .7095$.
- P. 2019+: g(s) = s^α for any α > 0; more specifically g(s) = 2^{O((log s)^{2/3}+1)}.

- Norin and Song, 2019+: $g(s) = s^{\alpha}$ for any $\alpha > .7095$.
- P. 2019+: g(s) = s^α for any α > 0; more specifically g(s) = 2^{O((log s)^{2/3}+1)}.
- **P.** 2020+: $g(s) = O((1 + \log s)^6)$.

Let
$$f(t) := 3.2^2 \cdot g(3.2\sqrt{\log t}) = O((\log \log t)^6).$$

Corollary

 $\forall k \geq t$, if G is a graph with $d(G) \geq k \cdot f(t)$ and G contains no K_t minor, then G contains a subgraph H with $v(H) \leq t \cdot f(t) \cdot \log t$ and $d(H) \geq 2k$.

Let
$$f(t) := 3.2^2 \cdot g(3.2\sqrt{\log t}) = O((\log \log t)^6).$$

Corollary

 $\forall k \geq t$, if G is a graph with $d(G) \geq k \cdot f(t)$ and G contains no K_t minor, then G contains a subgraph H with $v(H) \leq t \cdot f(t) \cdot \log t$ and $d(H) \geq 2k$.

Mader's Theorem (1972): if $d(H) \ge 2k$, then H contains a k-connected subgraph.

Let
$$f(t) := 3.2^2 \cdot g(3.2\sqrt{\log t}) = O((\log \log t)^6).$$

Corollary

 $\forall k \geq t$, if G is a graph with $d(G) \geq k \cdot f(t)$ and G contains no K_t minor, then G contains a k-connected subgraph H with $v(H) \leq t \cdot f(t) \cdot \log t$.

Mader's Theorem (1972): if $d(H) \ge 2k$, then H contains a k-connected subgraph.

Let
$$f(t) := 3.2^2 \cdot g(3.2\sqrt{\log t}) = O((\log \log t)^6).$$

Corollary

 $\forall k \geq t$, if G is a graph with $d(G) \geq k \cdot f(t)$ and G contains no K_t minor, then G contains a k-connected subgraph H with $v(H) \leq t \cdot f(t) \cdot \log t$.

Mader's Theorem (1972): if $d(H) \ge 2k$, then H contains a k-connected subgraph.

Corollary

If G is a graph with no K_t minor and

 $\chi(G) \ge k \cdot f(t) + 2t \log f(t) + 6t \log r,$

then G contains r vertex-disjoint k-connected subgraphs H_1, \ldots, H_r with $v(H_i) \leq t \cdot f(t) \cdot \log t$ for every $i \in [r]$.

Definition (Linked)

A graph G is k-linked if for any set of vertices $s_1, \ldots, s_k, t_1, \ldots, t_k$ of G, there exist internally vertex-disjoint paths $(P_i : i \in [k])$ from s_i to t_i .

Linked

Definition (Linked)

A graph G is k-linked if for any set of vertices $s_1, \ldots, s_k, t_1, \ldots, t_k$ of G, there exist internally vertex-disjoint paths $(P_i : i \in [k])$ from s_i to t_i .

Linked

Definition (Linked)

A graph G is k-linked if for any set of vertices $s_1, \ldots, s_k, t_1, \ldots, t_k$ of G, there exist internally vertex-disjoint paths $(P_i : i \in [k])$ from s_i to t_i .

Theorem (Bollobás and Thomason 1996)

If a graph G is $\Omega(k)$ -connected, then G is k-linked.

Woven

Definition (Woven)

A graph G is (a, b)-woven if for every three sets of vertices $R = \{r_1, \ldots, r_a\}, S = \{s_1, \ldots, s_b\}, T = \{t_1, \ldots, t_b\}$ in V(G), there exists a K_a model in G rooted at R internally vertex-disjoint from a set of internally vertex-disjoint paths $(P_i : i \in [k])$ from s_i to t_i .

Woven

Definition (Woven)

A graph G is (a, b)-woven if for every three sets of vertices $R = \{r_1, \ldots, r_a\}, S = \{s_1, \ldots, s_b\}, T = \{t_1, \ldots, t_b\}$ in V(G), there exists a K_a model in G rooted at R internally vertex-disjoint from a set of internally vertex-disjoint paths $(P_i : i \in [k])$ from s_i to t_i .

Woven

Definition (Woven)

A graph G is (a, b)-woven if for every three sets of vertices $R = \{r_1, \ldots, r_a\}, S = \{s_1, \ldots, s_b\}, T = \{t_1, \ldots, t_b\}$ in V(G), there exists a K_a model in G rooted at R internally vertex-disjoint from a set of internally vertex-disjoint paths $(P_i : i \in [k])$ from s_i to t_i .

Theorem (Norin and Song 2019+)

If a graph G is $\Omega(a\sqrt{\log a}+b)$ -connected, then G is (a,b)-woven.

Building a Minor when $\chi = \Omega(t(\log t)^{1/4} \cdot f(t))$

Let
$$y = (\log t)^{1/4}$$
 and $x = \frac{t}{y} = \frac{t}{(\log t)^{1/4}}$.

Building a Minor when $\chi = \Omega(t(\log t)^{1/4} \cdot f(t))$

Let
$$y = (\log t)^{1/4}$$
 and $x = \frac{t}{y} = \frac{t}{(\log t)^{1/4}}$.

By work of Kawarabayashi (2007), we may assume that G is $xy^2 \cdot f(t)$ -connected.

Building a Minor when $\chi = \Omega(t(\log t)^{1/4} \cdot f(t))$

Let
$$y = (\log t)^{1/4}$$
 and $x = \frac{t}{y} = \frac{t}{(\log t)^{1/4}}$.

By work of Kawarabayashi (2007), we may assume that G is $xy^2 \cdot f(t)$ -connected.

By Density Increment Corollary, *G* has $\frac{y^2+y}{2}+1$ vertex-disjoint $\Omega(xy^2)$ -connected subgraphs $H_0, (H_{i,j}: i \leq j \in [y])$.
Building a Minor when $\chi = \Omega(t(\log t)^{1/4} \cdot f(t))$

Let
$$y = (\log t)^{1/4}$$
 and $x = \frac{t}{y} = \frac{t}{(\log t)^{1/4}}$.

By work of Kawarabayashi (2007), we may assume that G is $xy^2 \cdot f(t)$ -connected.

By Density Increment Corollary, G has $\frac{y^2+y}{2}+1$ vertex-disjoint $\Omega(xy^2)$ -connected subgraphs $H_0, (H_{i,j} : i \leq j \in [y])$.

• In H_0 : choose vertices $S_i = \{s_{i,j,k} : j \in [y], k \in [x]\} \ \forall i \in [y].$

• In $H_{i,j}$: choose vertices $T_{i,j} = \{t_{i,j,k}, t_{j,i,k} : k \in [x]\}$.

Building a Minor when $\chi = \Omega(t(\log t)^{1/4} \cdot f(t))$

Let
$$y = (\log t)^{1/4}$$
 and $x = \frac{t}{y} = \frac{t}{(\log t)^{1/4}}$.

By work of Kawarabayashi (2007), we may assume that G is $xy^2 \cdot f(t)$ -connected.

By Density Increment Corollary, *G* has $\frac{y^2+y}{2}+1$ vertex-disjoint $\Omega(xy^2)$ -connected subgraphs $H_0, (H_{i,j} : i \leq j \in [y])$.

• In H_0 : choose vertices $S_i = \{s_{i,j,k} : j \in [y], k \in [x]\} \quad \forall i \in [y].$

- In $H_{i,j}$: choose vertices $T_{i,j} = \{t_{i,j,k}, t_{j,i,k} : k \in [x]\}$.
- Since G is xy^2 -linked, there exists paths \mathscr{P} from $s_{i,j,k}$ to $t_{i,j,k}$.

Building a Minor Continued

 ∀i,j: weave in H_{i,j} a K_{2x} model rooted at T_{i,j} while "preserving" 𝒫.

Building a Minor Continued

 ∀i,j: weave in H_{i,j} a K_{2x} model rooted at T_{i,j} while "preserving" 𝒫.

• $\forall i, k$, link all vertices in $\{s_{i,j,k} : j \in [y]\}$ in H_0 .

Part V

Further Progress: Breaking into Two Cases

Luke Postle Further Progress towards Hadwiger's Conjecture

Here are two additional ways to build a complete minor:

Here are two additional ways to build a complete minor:

- **Recursive**: Build three $K_{2t/3}$ models and link them.
- **Sequential**: Successively build up a K_t model by adding $\sqrt{\log t}$ new vertices at a time.

Here are two additional ways to build a complete minor:

- **Recursive**: Build three $K_{2t/3}$ models and link them.
- **Sequential**: Successively build up a K_t model by adding $\sqrt{\log t}$ new vertices at a time.

In each case, we need recursively/sequentially many large, highly connected subgraphs.

What resource do we have for forcing large graphs?

Here are two additional ways to build a complete minor:

- **Recursive**: Build three $K_{2t/3}$ models and link them.
- **Sequential**: Successively build up a K_t model by adding $\sqrt{\log t}$ new vertices at a time.

In each case, we need recursively/sequentially many large, highly connected subgraphs.

What resource do we have for forcing large graphs? Chromatic number!

Here are two additional ways to build a complete minor:

- **Recursive**: Build three $K_{2t/3}$ models and link them.
- **Sequential**: Successively build up a K_t model by adding $\sqrt{\log t}$ new vertices at a time.

In each case, we need recursively/sequentially many large, highly connected subgraphs.

What resource do we have for forcing large graphs? Chromatic number!

Can we also guarantee high connectivity?

Here are two additional ways to build a complete minor:

- **Recursive**: Build three $K_{2t/3}$ models and link them.
- **Sequential**: Successively build up a K_t model by adding $\sqrt{\log t}$ new vertices at a time.

In each case, we need recursively/sequentially many large, highly connected subgraphs.

What resource do we have for forcing large graphs? Chromatic number!

Can we also guarantee high connectivity?

Theorem (Girão and Narayanan 2020+)

For every positive integer k, if G is a graph with $\chi(G) \ge 7k$, then G contains a k-connected subgraph H with $\chi(H) \ge \chi(G) - 6k$.

Definition (Chromatic Separable)

Let $s \ge 0$. A graph G is s-chromatic-separable if there exist two vertex-disjoint subgraphs H_1, H_2 of G s.t. $\forall i \in \{1, 2\}$

 $\chi(H_i) \geq \chi(G) - s,$

and that G is *s*-chromatic-inseparable otherwise.

Definition (Chromatic Separable)

Let $s \ge 0$. A graph G is s-chromatic-separable if there exist two vertex-disjoint subgraphs H_1, H_2 of G s.t. $\forall i \in \{1, 2\}$

 $\chi(H_i) \geq \chi(G) - s,$

and that G is *s*-chromatic-inseparable otherwise.

Two Cases: Always Separable vs. Inseparable

Definition (Chromatic Separable)

Let $s \ge 0$. A graph G is s-chromatic-separable if there exist two vertex-disjoint subgraphs H_1, H_2 of G s.t. $\forall i \in \{1, 2\}$

 $\chi(H_i) \geq \chi(G) - s,$

and that G is *s*-chromatic-inseparable otherwise.

Two Cases: Always Separable vs. Inseparable

Lemma (Always Separable Case)

Let $s \ge t$. If G is a graph with $\chi(G) \ge \Omega(s \log \log t)$ and every subgraph H of G with $\chi(H) \ge \frac{\chi(G)}{2}$ is s-chromatic-separable, then G contains a K_t minor.

Definition (Chromatic Separable)

Let $s \ge 0$. A graph G is s-chromatic-separable if there exist two vertex-disjoint subgraphs H_1, H_2 of G s.t. $\forall i \in \{1, 2\}$

 $\chi(H_i) \geq \chi(G) - s,$

and that G is *s*-chromatic-inseparable otherwise.

Two Cases: Always Separable vs. Inseparable

Lemma (Always Separable Case)

Let $s \ge t$. If G is a graph with $\chi(G) \ge \Omega(s \log \log t)$ and every subgraph H of G with $\chi(H) \ge \frac{\chi(G)}{2}$ is s-chromatic-separable, then G contains a K_t minor.

Lemma (Inseparable Case)

Let $s = \Omega(t \log \log t)$. If G is a s-chromatic-inseparable graph with $\chi(G) \ge \Omega(t \cdot (f(t) + \log \log t))$, then G contains a K_t minor.

Let $s \ge t$. If G is a graph with $\chi(G) \ge \Omega(s \log \log t)$ and every subgraph H of G with $\chi(H) \ge \frac{\chi(G)}{2}$ is s-chromatic-separable, then G contains a K_t minor.

Lemma (Inseparable Case)

Let $s = \Omega(t \log \log t)$. If G is a s-chromatic-inseparable graph with $\chi(G) \ge \Omega(t \cdot (f(t) + \log \log t))$, then G contains a K_t minor.

Let $s \ge t$. If G is a graph with $\chi(G) \ge \Omega(s \log \log t)$ and every subgraph H of G with $\chi(H) \ge \frac{\chi(G)}{2}$ is s-chromatic-separable, then G contains a K_t minor.

Lemma (Inseparable Case)

Let $s = \Omega(t \log \log t)$. If G is a s-chromatic-inseparable graph with $\chi(G) \ge \Omega(t \cdot (f(t) + \log \log t))$, then G contains a K_t minor.

Proof of Main Theorem.

Let $s \ge t$. If G is a graph with $\chi(G) \ge \Omega(s \log \log t)$ and every subgraph H of G with $\chi(H) \ge \frac{\chi(G)}{2}$ is s-chromatic-separable, then G contains a K_t minor.

Lemma (Inseparable Case)

Let $s = \Omega(t \log \log t)$. If G is a s-chromatic-inseparable graph with $\chi(G) \ge \Omega(t \cdot (f(t) + \log \log t))$, then G contains a K_t minor.

Proof of Main Theorem.

Let $s = \Omega(t \log \log t)$. As $\chi(G) \ge \Omega(t (\log \log t)^6) \ge \Omega(s \log \log t)$, we have by the Always Separable Case Lemma that there exists a subgraph H of G with $\chi(H) \ge \frac{\chi(G)}{2}$ is *s*-chromatic-inseparable.

Let $s \ge t$. If G is a graph with $\chi(G) \ge \Omega(s \log \log t)$ and every subgraph H of G with $\chi(H) \ge \frac{\chi(G)}{2}$ is s-chromatic-separable, then G contains a K_t minor.

Lemma (Inseparable Case)

Let $s = \Omega(t \log \log t)$. If G is a s-chromatic-inseparable graph with $\chi(G) \ge \Omega(t \cdot (f(t) + \log \log t))$, then G contains a K_t minor.

Proof of Main Theorem.

Let $s = \Omega(t \log \log t)$. As $\chi(G) \ge \Omega(t (\log \log t)^6) \ge \Omega(s \log \log t)$, we have by the Always Separable Case Lemma that there exists a subgraph H of G with $\chi(H) \ge \frac{\chi(G)}{2}$ is *s*-chromatic-inseparable.

Since $\chi(H) \ge \Omega(t(\log \log t)^6) \ge \Omega(t \cdot (f(t) + \log \log t))$, we have by the Inseparable Case Lemma that H contains a K_t minor.

Part VI

Always Separable Case

Luke Postle Further Progress towards Hadwiger's Conjecture

Let a = t and b = 0, we will show that G is (a, 0)-woven.

Let a = t and b = 0, we will show that G is (a, 0)-woven.

• Since G is s-chromatic-separable, there exist vertex-disjoint subgraph H'_1, H'_0 of G with

 $\chi(H'_1), \chi(H'_0) \geq \chi(G) - s.$

Let a = t and b = 0, we will show that G is (a, 0)-woven.

• Since $\chi(H'_0) \ge \frac{\chi(G)}{2}$, H'_0 is *s*-chromatic-separable. So there exists vertex-disjoint subgraph H'_2, H'_3 of H'_0 with

 $\chi(H'_2), \chi(H'_3) \geq \chi(G) - 2s.$

Luke Postle Further Progress towards Hadwiger's Conjecture

Let a = t and b = 0, we will show that G is (a, 0)-woven.

• By the **Girão-Narayanan** Theorem, $\forall i \in [3]$, there exists a *k*-connected subgraph H_i of H'_i with

 $\chi(H_i) \geq \chi(H'_i) - 6k \geq \chi(G) - 2s - 6k.$

Luke Postle Further Progress towards Hadwiger's Conjecture

Recursive Weaving: Building a Minor

We are given
$$R = \{r_1, ..., r_a\}$$
. Let
• $R_i = \{r_{a(i-1)/3+1}, ..., r_{ai/3}\}, \forall i \in [3]$.
• $s_i = s_{t+i} = r_i, \forall i \in [t]$.
• $T_i = \{t_i, t_{i-1}, t_{i-1}, t_{i-1}\} \subset V(H_i), \forall i \in [3]$

• $T_i = \{t_{2a(i-1)/3+1}, \ldots, t_{2ai/3}\} \subseteq V(H_i), \forall i \in [3].$

Recursive Weaving: Building a Minor

We are given
$$R = \{r_1, ..., r_a\}$$
. Let
• $R_i = \{r_{a(i-1)/3+1}, ..., r_{ai/3}\}, \forall i \in [3]$.
• $s_i = s_{t+i} = r_i, \forall i \in [t]$.
• $T_i = \{t_{a_i}(r_i, s_i) \in [t_i], t_{a_i}(s_i) \in V(H_i), \forall i \in [3]\}$

• $T_i = \{t_{2a(i-1)/3+1}, \ldots, t_{2ai/3}\} \subseteq V(H_i), \forall i \in [3].$

Since *G* is 2*a*-linked, there exists paths \mathscr{P} from s_i to $t_i \forall i \in [2a]$.

Recursive Weaving: Building a Minor

We are given
$$R = \{r_1, ..., r_a\}$$
. Let
• $R_i = \{r_{a(i-1)/3+1}, ..., r_{ai/3}\}, \forall i \in [3]$.
• $s_i = s_{t+i} = r_i, \forall i \in [t]$.
• $T_i = \{t_{a_i}(t_i, t_i) \mid i \in [3], \forall i \in [3]\}$

• $T_i = \{t_{2a(i-1)/3+1}, \dots, t_{2ai/3}\} \subseteq V(H_i), \forall i \in [3].$

Since G is 2a-linked, there exists paths \mathscr{P} from s_i to $t_i \forall i \in [2a]$.

 $\forall i \in [3]$: recursively weave a $K_{2a/3}$ model rooted at T_i in H_i while "preserving" \mathscr{P} .

Inductively show (a, b)-woven:

i	ai	b _i
0	t	0
1	$\frac{2}{3} \cdot t$	2 <i>a</i> 0
2	$\left(\frac{2}{3}\right)^2 \cdot t$	$2a_0 + 2a_1$
i	$\left(\frac{2}{3}\right)^i \cdot t$	$2\cdot \sum_{j=0}^i a_j$
		$\leq 2t \cdot \sum_{j=0}^{\infty} \left(rac{2}{3} ight)^{j}$
$\Omega(\log \log t)$	$\leq \frac{t}{\log t}$	$\leq 6t$

Inductively show (a, b)-woven:

i	ai	b _i
0	t	0
1	$\frac{2}{3} \cdot t$	2 <i>a</i> 0
2	$\left(\frac{2}{3}\right)^2 \cdot t$	$2a_0 + 2a_1$
i	$\left(\frac{2}{3}\right)^i \cdot t$	$2\cdot \sum_{j=0}^i a_j$
		$\leq 2t \cdot \sum_{j=0}^{\infty} \left(rac{2}{3} ight)^{j}$
$\Omega(\log \log t)$	$\leq \frac{t}{\log t}$	$\leq 6t$

So by Norin-Song Woven Theorem, we are done!

Inductively show (a, b)-woven:

i	ai	bi
0	t	0
1	$\frac{2}{3} \cdot t$	2 <i>a</i> 0
2	$\left(\frac{2}{3}\right)^2 \cdot t$	$2a_0 + 2a_1$
i	$\left(\frac{2}{3}\right)^{i} \cdot t$	$2\cdot \sum_{j=0}^i a_j$
		$\leq 2t \cdot \sum_{j=0}^{\infty} \left(rac{2}{3} ight)^{j}$
$\Omega(\log \log t)$	$\leq \frac{t}{\log t}$	$\leq 6t$

So by Norin-Song Woven Theorem, we are done!

How much chromatic number did we use?

Inductively show (a, b)-woven:

i	ai	bi
0	t	0
1	$\frac{2}{3} \cdot t$	2 <i>a</i> 0
2	$\left(\frac{2}{3}\right)^2 \cdot t$	$2a_0 + 2a_1$
i	$\left(\frac{2}{3}\right)^{i} \cdot t$	$2\cdot \sum_{j=0}^i a_j$
		$\leq 2t \cdot \sum_{j=0}^{\infty} \left(rac{2}{3} ight)^{j}$
$\Omega(\log \log t)$	$\leq \frac{t}{\log t}$	$\leq 6t$

So by Norin-Song Woven Theorem, we are done!

How much chromatic number did we use?

 $\chi(G) - (2s + 6k) \cdot \Omega(\log \log t) \geq \chi(G)/2$

where $k = \Omega(t)$.

Part VII

Inseparable Case

Luke Postle Further Progress towards Hadwiger's Conjecture

The Plan: build a K_t model in $y = \sqrt{\log t}$ stages, where in each stage we ensure that a set of $x = \frac{t}{y}$ new parts are adjacent to every other part.

The Plan: build a K_t model in $y = \sqrt{\log t}$ stages, where in each stage we ensure that a set of $x = \frac{t}{y}$ new parts are adjacent to every other part.

Definition

A model $\mathscr{H} = \{H_1, \dots, H_{v(H)}\}$ of H in a graph G is **tangent** to a subgraph G' of G if $\forall i \in [v(H)], |V(H_i)| \cap |V(G')| = 1$.

The Plan: build a K_t model in $y = \sqrt{\log t}$ stages, where in each stage we ensure that a set of $x = \frac{t}{y}$ new parts are adjacent to every other part.

Definition

A model $\mathscr{H} = \{H_1, \dots, H_{v(H)}\}$ of H in a graph G is **tangent** to a subgraph G' of G if $\forall i \in [v(H)], |V(H_i)| \cap |V(G')| = 1$.

Goal: $\forall i \in [y]$

The Plan: build a K_t model in $y = \sqrt{\log t}$ stages, where in each stage we ensure that a set of $x = \frac{t}{y}$ new parts are adjacent to every other part.

Definition

A model $\mathscr{H} = \{H_1, \dots, H_{v(H)}\}$ of H in a graph G is **tangent** to a subgraph G' of G if $\forall i \in [v(H)], |V(H_i)| \cap |V(G')| = 1$.

Goal: $\forall i \in [y]$

Extend a K_{ix} model *H_i* to a K_{(i+1)x} model *H_{i+1}* in G_i (i.e. add H_{ix+1},..., H_{(i+1)x} adjacent to all H_j while preserving previous adjacencies).
Building a Minor Sequentially

The Plan: build a K_t model in $y = \sqrt{\log t}$ stages, where in each stage we ensure that a set of $x = \frac{t}{y}$ new parts are adjacent to every other part.

Definition

A model $\mathscr{H} = \{H_1, \dots, H_{v(H)}\}$ of H in a graph G is **tangent** to a subgraph G' of G if $\forall i \in [v(H)], |V(H_i)| \cap |V(G')| = 1$.

Goal: $\forall i \in [y]$

- Extend a K_{ix} model *H_i* to a K_{(i+1)x} model *H_{i+1}* in G_i (i.e. add H_{ix+1},..., H_{(i+1)x} adjacent to all H_j while preserving previous adjacencies).
- Ensure χ(G_i ℋ_{i+1}) is large enough; allows us to find a high chromatic, high connected subgraph G_{i+1} disjoint from ℋ_{i+1}.

Building a Minor Sequentially

The Plan: build a K_t model in $y = \sqrt{\log t}$ stages, where in each stage we ensure that a set of $x = \frac{t}{y}$ new parts are adjacent to every other part.

Definition

A model $\mathscr{H} = \{H_1, \dots, H_{v(H)}\}$ of H in a graph G is **tangent** to a subgraph G' of G if $\forall i \in [v(H)], |V(H_i)| \cap |V(G')| = 1$.

Goal: $\forall i \in [y]$

- Extend a K_{ix} model *H_i* to a K_{(i+1)x} model *H_{i+1}* in G_i (i.e. add H_{ix+1},..., H_{(i+1)x} adjacent to all H_j while preserving previous adjacencies).
- Ensure χ(G_i ℋ_{i+1}) is large enough; allows us to find a high chromatic, high connected subgraph G_{i+1} disjoint from ℋ_{i+1}.
- **③** Make \mathscr{H}_{i+1} tangent to G_{i+1} .

Since \mathscr{H}_i is tangent to G_i , let $\{u_m\} = V(H_m) \cap V(G_i), \forall m \in [i]$.

Since \mathscr{H}_i is tangent to G_i , let $\{u_m\} = V(H_m) \cap V(G_i)$, $\forall m \in [i]$. By Density Increment Corollary, G_i has i + 2 vertex-disjoint $\Omega(t)$ -connected subgraphs $H_0, (H_{j,i+1} : j \in [i+1])$.

In $H_{j,i+1}$: choose vertices $T_{j,i+1} = \{t_{j,i+1,k}, t_{i+1,j,k} : k \in [x]\}$.

Since \mathscr{H}_i is tangent to G_i , let $\{u_m\} = V(H_m) \cap V(G_i)$, $\forall m \in [i]$. By Density Increment Corollary, G_i has i + 2 vertex-disjoint $\Omega(t)$ -connected subgraphs $H_0, (H_{j,i+1} : j \in [i+1])$.

In $H_{j,i+1}$: choose vertices $T_{j,i+1} = \{t_{j,i+1,k}, t_{i+1,j,k} : k \in [x]\}$.

 By Menger's theorem there exists vertex-disjoint paths 𝒫 from {u_m : m ∈ [i]} ∪ ∪_{j∈[i+1]} T_{j,i} to H₀.

Since \mathscr{H}_i is tangent to G_i , let $\{u_m\} = V(H_m) \cap V(G_i)$, $\forall m \in [i]$. By Density Increment Corollary, G_i has i + 2 vertex-disjoint $\Omega(t)$ -connected subgraphs $H_0, (H_{j,i+1} : j \in [i+1])$.

In $H_{j,i+1}$: choose vertices $T_{j,i+1} = \{t_{j,i+1,k}, t_{i+1,j,k} : k \in [x]\}$.

- By Menger's theorem there exists vertex-disjoint paths 𝒫 from {u_m : m ∈ [i]} ∪ ⋃_{j∈[i+1]} T_{j,i} to H₀.
- Since H₀/H_{i,j} is Ω(t)-linked/woven, we can link/weave as needed to form ℋ_{i+1}.

- The Small Graphs: Let
 - $J = G[\{u_m : m \in [i]\} \cup V(H_0) \cup \bigcup_{j \in [i+1]} V(H_{i,j})].$

- The Small Graphs: Let
 - $J = G[\{u_m : m \in [i]\} \cup V(H_0) \cup \bigcup_{j \in [i+1]} V(H_{i,j})].$

By Small Graphs Lemma, $\chi(J) \leq O(t \log \log t)$.

• The Small Graphs: Let $J = G[\{u_m : m \in [i]\} \cup V(H_0) \cup \bigcup_{j \in [i+1]} V(H_{i,j})].$

By Small Graphs Lemma, $\chi(J) \leq O(t \log \log t)$.

• The Paths: Let $L = G[\bigcup_{P \in \mathscr{P}} V(P)]$.

• The Small Graphs: Let $J = G[\{u_m : m \in [i]\} \cup V(H_0) \cup \bigcup_{j \in [i+1]} V(H_{i,j})].$

By Small Graphs Lemma, $\chi(J) \leq O(t \log \log t)$.

• The Paths: Let $L = G[\bigcup_{P \in \mathscr{P}} V(P)]$.

If we assume the paths are **induced**, then $\chi(L) \leq 6t$.

• The Small Graphs: Let $J = G[\{u_m : m \in [i]\} \cup V(H_0) \cup \bigcup_{j \in [i+1]} V(H_{i,j})].$

By Small Graphs Lemma, $\chi(J) \leq O(t \log \log t)$.

• The Paths: Let $L = G[\bigcup_{P \in \mathscr{P}} V(P)]$.

If we assume the paths are **induced**, then $\chi(L) \leq 6t$.

• Remaining:

 $\chi(G_i - \mathscr{H}_{i+1}) \geq \chi(G_i) - \chi(J) - \chi(L) \geq \chi(G_i) - O(t \log \log t).$

Step Three?

Bad! May intersect the paths \mathcal{P} .

Bad! May intersect the paths \mathcal{P} .

• Option 2: Start over and get paths from G_{i+1} to H_0 while constructing \mathscr{P} ?

Bad! May intersect the paths \mathcal{P} .

• Option 2: Start over and get paths from G_{i+1} to H_0 while constructing \mathscr{P} ?

Bad! New \mathscr{P} may intersect G_{i+1} destroying chromatic number/tangency.

Bad! May intersect the paths \mathcal{P} .

• Option 2: Start over and get paths from G_{i+1} to H_0 while constructing \mathscr{P} ?

Bad! New \mathscr{P} may intersect G_{i+1} destroying chromatic number/tangency.

• Option 3: Ensure redundancy.

Bad! May intersect the paths \mathcal{P} .

• Option 2: Start over and get paths from G_{i+1} to H_0 while constructing \mathcal{P} ?

Bad! New \mathscr{P} may intersect G_{i+1} destroying chromatic number/tangency.

• Option 3: Ensure redundancy.

Works!

- Make double the paths for $\mathscr{P}.$
- Then using **Menger**'s make double the paths from G_{i+1} to H_0 .
- Menger's then gives single copy paths for both.

Is $\chi(G_i - \mathscr{H}_{i+1})$ really large enough?

Is $\chi(G_i - \mathscr{H}_{i+1})$ really large enough?

No! We lose $t \log \log t$ each step. But there are $\sqrt{\log t}$ steps!

Is $\chi(G_i - \mathscr{H}_{i+1})$ really large enough?

No! We lose $t \log \log t$ each step. But there are $\sqrt{\log t}$ steps! **Solution**:

Is $\chi(G_i - \mathscr{H}_{i+1})$ really large enough?

No! We lose $t \log \log t$ each step. But there are $\sqrt{\log t}$ steps!

Solution: Rebuild the minor at each step.

Is $\chi(G_i - \mathscr{H}_{i+1})$ really large enough?

No! We lose $t \log \log t$ each step. But there are $\sqrt{\log t}$ steps!

Solution: Rebuild the minor at each step.

What does the minor need from each H_i ?

Is $\chi(G_i - \mathscr{H}_{i+1})$ really large enough?

No! We lose $t \log \log t$ each step. But there are $\sqrt{\log t}$ steps!

Solution: Rebuild the minor at each step.

What does the minor need from each H_i ?

Just to connect the tangent vertex with its vertices in the K_{2x} 's!

Is $\chi(G_i - \mathscr{H}_{i+1})$ really large enough?

No! We lose $t \log \log t$ each step. But there are $\sqrt{\log t}$ steps!

Solution: Rebuild the minor at each step.

What does the minor need from each H_i ?

Just to connect the tangent vertex with its vertices in the K_{2x} 's!

Lemma

If G is a connected graph and $S \subseteq V(G)$ with $S \neq \emptyset$, then \exists an induced connected subgraph H of G and $S' \subseteq V(H)$ s.t. $S \subseteq S'$, $|S'| \leq 3|S|$ and $\chi(H \setminus S') \leq 2$.

Is $\chi(G_i - \mathscr{H}_{i+1})$ really large enough?

No! We lose $t \log \log t$ each step. But there are $\sqrt{\log t}$ steps!

Solution: Rebuild the minor at each step.

What does the minor need from each H_i ?

Just to connect the tangent vertex with its vertices in the K_{2x} 's!

Lemma

If G is a connected graph and $S \subseteq V(G)$ with $S \neq \emptyset$, then \exists an induced connected subgraph H of G and $S' \subseteq V(H)$ s.t. $S \subseteq S'$, $|S'| \leq 3|S|$ and $\chi(H \setminus S') \leq 2$.

Apply lemma to each H_j in \mathscr{H}_{i+1} with $|S_j| \le t \log^3 t$. Hence $\exists \mathscr{H}'_{i+1}$ tangent to G_{i+1} with

 $\chi(G_i - \mathscr{H}'_{i+1}) \geq \chi(G) - O(t \log \log t).$

Hence by the **Girão-Narayanan** Theorem, there exists a subgraph G'_{i+1} disjoint from \mathscr{H}'_{i+1} with

 $\chi(G'_{i+1}) \geq \chi(G) - O(t \log \log t).$

Hence by the **Girão-Narayanan** Theorem, there exists a subgraph G'_{i+1} disjoint from \mathscr{H}'_{i+1} with

 $\chi(G'_{i+1}) \geq \chi(G) - O(t \log \log t).$

Is the model \mathscr{H}'_{i+1} tangent to G'_{i+1} ?

Hence by the **Girão-Narayanan** Theorem, there exists a subgraph G'_{i+1} disjoint from \mathscr{H}'_{i+1} with

 $\chi(G'_{i+1}) \geq \chi(G) - O(t \log \log t).$

Is the model \mathscr{H}'_{i+1} tangent to G'_{i+1} ?

• Case 1 - $|V(G_{i+1})| \cap |V(G'_{i+1})| \ge k$:

Then $G''_{i+1} = G_{i+1} \cup G'_{i+1}$ is k-connected and tangent to \mathscr{H}'_{i+1} .

Hence by the **Girão-Narayanan** Theorem, there exists a subgraph G'_{i+1} disjoint from \mathscr{H}'_{i+1} with

 $\chi(G'_{i+1}) \geq \chi(G) - O(t \log \log t).$

Is the model \mathscr{H}'_{i+1} tangent to G'_{i+1} ?

• Case 1 - $|V(G_{i+1})| \cap |V(G'_{i+1})| \ge k$:

Then $G''_{i+1} = G_{i+1} \cup G'_{i+1}$ is k-connected and tangent to \mathscr{H}'_{i+1} .

• Case 2 - otherwise:

 G_{i+1} and $G'_{i+1} \setminus V(G_{i+1})$ are vertex-disjoint and have

 $\chi \geq \chi(G) - O(t \log \log t),$

contradicting that G is $O(t \log \log t)$ -inseparable!

We proved:

Theorem (P. 2020+)

 $\forall \beta > 0$, every graph with no K_t minor is $O(t(\log t)^{\beta})$ -colorable.

The key was dividing into cases:

- Always Separable
- Inseparable

With the better density increment theorem, we get:

Theorem (P. 2020+)

Every graph with no K_t minor is $O(t(\log \log t)^6)$ -colorable.

Future Directions

- Improve the density increment theorem? Say to $(1 + \log s)$?
- Avoid dividing into cases?
- Color small graphs better?
- Use just connectivity instead of chromatic number?

Theorem (Norin and P. 2020+)

 $\forall \beta > \frac{1}{4}$, if G is $\Omega(t(\log t)^{\beta})$ -connected and has no K_t minor, then $v(G) \leq t(\log t)^{7/4}$.