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Part I

Hadwiger’s: A History

Luke Postle Further Progress towards Hadwiger’s Conjecture



Coloring

Definition (Coloring)

A k-coloring of a graph G is an assignment of colors
1,2, . . . ,k to vertices of G s.t. no two adjacent vertices receive
the same color.

We say G is k-colorable if G has a k-coloring.

The chromatic number of G , denoted χ(G ), is the smallest
k such that G has k-coloring.
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Minors

Definition (Minors)

We say that a graph G has an H minor if a graph isomorphic to H
can be obtained from a subgraph of G by contracting edges.

Definition (Models)

Let H be a graph with V (H) = {v1, . . . ,vt}. A model of H in a
graph G is a collection of vertex-disjoint connected subgraphs
H1, . . . ,Ht such that ∀i 6= j ∈ [t] with vivj ∈ E (H), Hi is adjacent
to Hj (i.e. ∃ an edge with one end in Hi and the other end in Hj).

It is not hard to see that G has an H minor if and only if there
exists a model of H in G .

Do coloring and minors have any relation?
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Hadwiger’s Conjecture

Hadwiger’s conjecture (1943)

∀t ≥ 1, every graph with no Kt minor is (t−1)-colorable.

Hadwiger (1943) and independently Dirac (1952) proved it
for t ≤ 4.

Wagner (1937) showed that t = 5 case is equivalent to the
Four Color Theorem, which was proved by Appel and Haken
in 1977.

Robertson, Seymour and Thomas (1993) showed that the
t = 6 case is also equivalent to 4CT, and hence true.

Open for t ≥ 7.
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General Bounds from Degeneracy

Linear Hadwiger’s conjecture (e.g. Reed and Seymour 1998,
Kawarabayashi and Mohar 2007)

∃C ≥ 1 s.t. ∀t ≥ 1, every graph with no Kt minor is Ct-colorable.

A graph G is d-degenerate if every subgraph of G has a vertex of
degree at most d .

Greedy: If G is d-degenerate, then G is (d + 1)-colorable.

What is the degeneracy of graphs with no Kt minor?

Theorem (Kostochka 1982, Thomason 1984)

Every graph with no Kt minor is O(t
√

log t)-degenerate and hence
O(t
√

log t)-colorable.
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Recent Progress

Until recently, the only improvements (Thomason 2001, Wood
2013, Kelly and P. 2019) had been in the constant factor.

Theorem (Norin and Song 2019+)

∀ β ≥ .354, every graph with no Kt minor is O(t(log t)β )-colorable.

Theorem (P. 2019+)

∀ β > 1
4 , every graph with no Kt minor is O(t(log t)β )-colorable.
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Part II

Variants of Hadwiger’s
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Weakening of Hadwiger’s Conjecture: Independent Set and
Fractional Coloring

Theorem (Duchet and Meyniel 1982)

∀t ≥ 2, every graph G with no Kt minor has an independent set of
size at least v(G)

2(t−1) .

Woodall (1987) showed the stronger result that there exists

X ⊆ V (G ) with |X | ≥ v(G)
2 such that χ(G [X ])≤ t−1.

Theorem (Reed and Seymour 1998)

∀t ≥ 2, every graph G with no Kt minor satisfies χf (G )≤ 2(t−1).
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Weakening of Hadwiger’s Conjecture: Defective Coloring

A d-defective coloring of a graph G is an improper coloring of G
where each color class has maximum degree at most d .

Theorem (Edwards, Kang, Kim, Oum, Seymour 2015)

∀t > 0, ∃d such that if G has no Kt minor, then G has a
d-defective coloring with t−1 colors.

Defect is O(t2 log t).

Improved to defect t−2 by van den Heuvel and Wood (2018).
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Weakening of Hadwiger’s Conjecture: Clustered Coloring

A c-clustered coloring of a graph G is an improper coloring of G
where each color class has maximum component size at most c .

Theorem

∀t > 0, ∃c such that if G has no Kt minor, then G has a
c-defective coloring with f (t) colors

where f (t) =⌈
31t
2

⌉
(Kawarabayashi and Mohar 2007)⌈

7t−3
2

⌉
(Wood 2010)

4t−4 (Edwards et al. 2015)

3t−3 (Liu and Oum 2015)

2t−2 (van den Heuvel and Wood 2018)

t−1 (announced by Dvovrák and Norin)
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Generalizations of Hadwiger’s Conjecture: Odd Minors

Definition (Odd Minor)

A graph G contains H as an odd minor if a graph isomorphic to
H can be obtained from a subgraph G ′ of G by contracting a set
of edges forming a cut in G ′.

Odd Hadwiger’s Conjecture (Gerards and Seymour)

∀t ≥ 1, every graph with no odd Kt minor is (t−1)-colorable.

Geelen, Gerards, Reed, Seymour and Vetta (2008) -
O(t
√

log t)-colorable.

Norin and Song (2019+) - O(t(log t)β )-colorable for every β > 1
4 .
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Generalizations of Hadwiger’s Conjecture: List Coloring

Definition (List Coloring)

A graph G is k-list-colorable if for every assignment of lists
(L(v) : v ∈ V (G )) of colors to the vertices of G , there exists a
coloring φ of G with φ(v) ∈ L(v) for every v ∈ V (G ).

Voigt (1993): There exists a planar graph that is not
4-list-colorable. (Hence List Hadwiger’s is false)

Barát, Joret and Wood (2011): constructed graphs with no
K3t+2 minor which are not 4t-list-colorable for every t ≥ 1.

Kostochka (1982), Thomason (1984): degeneracy implies
O(t
√

log t)-list-colorable.

Norin and P. (2020+): O(t(log t)β )-list-colorable for every β > 1
4 .
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Part III

Main Results
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Further Progress

Our main result for today:

Theorem (P., Jun 2020+)

∀ β > 0, every graph with no Kt minor is O(t(log t)β )-colorable.

Additionally (details not in this talk):

Theorem (P., Sep 2020+)

Every graph with no Kt minor is O(t(log log t)6)-colorable.

Theorem (P., Oct 2020+)

Every graph with no Kt minor is O(t(log log t)6)-list-colorable.

Theorem (P., Oct 2020+)

Every graph with no odd Kt minor is O(t(log log t)6)-colorable.

Luke Postle Further Progress towards Hadwiger’s Conjecture



Further Progress

Our main result for today:

Theorem (P., Jun 2020+)

∀ β > 0, every graph with no Kt minor is O(t(log t)β )-colorable.

Additionally (details not in this talk):

Theorem (P., Sep 2020+)

Every graph with no Kt minor is O(t(log log t)6)-colorable.

Theorem (P., Oct 2020+)

Every graph with no Kt minor is O(t(log log t)6)-list-colorable.

Theorem (P., Oct 2020+)

Every graph with no odd Kt minor is O(t(log log t)6)-colorable.

Luke Postle Further Progress towards Hadwiger’s Conjecture



Further Progress

Our main result for today:

Theorem (P., Jun 2020+)

∀ β > 0, every graph with no Kt minor is O(t(log t)β )-colorable.

Additionally (details not in this talk):

Theorem (P., Sep 2020+)

Every graph with no Kt minor is O(t(log log t)6)-colorable.

Theorem (P., Oct 2020+)

Every graph with no Kt minor is O(t(log log t)6)-list-colorable.

Theorem (P., Oct 2020+)

Every graph with no odd Kt minor is O(t(log log t)6)-colorable.

Luke Postle Further Progress towards Hadwiger’s Conjecture



Further Progress

Our main result for today:

Theorem (P., Jun 2020+)

∀ β > 0, every graph with no Kt minor is O(t(log t)β )-colorable.

Additionally (details not in this talk):

Theorem (P., Sep 2020+)

Every graph with no Kt minor is O(t(log log t)6)-colorable.

Theorem (P., Oct 2020+)

Every graph with no Kt minor is O(t(log log t)6)-list-colorable.

Theorem (P., Oct 2020+)

Every graph with no odd Kt minor is O(t(log log t)6)-colorable.

Luke Postle Further Progress towards Hadwiger’s Conjecture



Further Progress

Our main result for today:

Theorem (P., Jun 2020+)

∀ β > 0, every graph with no Kt minor is O(t(log t)β )-colorable.

Additionally (details not in this talk):

Theorem (P., Sep 2020+)

Every graph with no Kt minor is O(t(log log t)6)-colorable.

Theorem (P., Oct 2020+)

Every graph with no Kt minor is O(t(log log t)6)-list-colorable.

Theorem (P., Oct 2020+)

Every graph with no odd Kt minor is O(t(log log t)6)-colorable.

Luke Postle Further Progress towards Hadwiger’s Conjecture



Further Progress

Our main result for today:

Theorem (P., Jun 2020+)

∀ β > 0, every graph with no Kt minor is O(t(log t)β )-colorable.

Additionally (details not in this talk):

Theorem (P., Sep 2020+)

Every graph with no Kt minor is O(t(log log t)6)-colorable.

Theorem (P., Oct 2020+)

Every graph with no Kt minor is O(t(log log t)6)-list-colorable.

Theorem (P., Oct 2020+)

Every graph with no odd Kt minor is O(t(log log t)6)-colorable.

Luke Postle Further Progress towards Hadwiger’s Conjecture



Part IV

Proof Overview for Norin, P., Song

Result
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Coloring Small Graphs

We have the following corollary of Duchet and Meyniel result:

Corollary

If G is a graph with no Kt minor, then

χ(G )≤
(

log2

(
v(G )

t

)
+ 2

)
t.
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A Density Increment Theorem

Let the density of a graph G , denoted d(G), be e(G)
v(G) .

Q: when does a graph of density d have a minor of density D?

Obstruction: small graphs v(G ) < D2

d and disjoint unions of such
graphs!

Theorem

∀s ≥ 1, ∃g(s) s.t. if G is a graph with d(G ) > 0, and we let
D = s ·d(G ), then G contains at least one of the following:

(i) a minor J with d(J)≥ D, or

(ii) a subgraph H with v(H)≤ g(s) · D2

d(G) and

d(H)≥ d(G)
g(s) .
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Density Increment Theorem Continued

Theorem

∀s ≥ 1, ∃g(s) s.t. if G is a graph with d(G ) > 0, and we let
D = s ·d(G ), then G contains at least one of the following:

(i) a minor J with d(J)≥ D, or

(ii) a subgraph H with v(H)≤ g(s) · D2

d(G) and

d(H)≥ d(G)
g(s) .

Norin and Song, 2019+: g(s) = sα for any α > .7095.

P. 2019+: g(s) = sα for any α > 0;

more specifically g(s) = 2O((log s)2/3+1).

P. 2020+: g(s) = O((1 + log s)6).
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Finding Many Small Dense Graphs

Let f (t) := 3.22 ·g(3.2
√

log t) = O((log log t)6).

Corollary

∀k ≥ t, if G is a graph with d(G )≥ k · f (t) and G contains no Kt

minor, then G contains a subgraph H with v(H)≤ t · f (t) · log t
and d(H)≥ 2k.

Mader’s Theorem (1972): if d(H)≥ 2k , then H contains a
k-connected subgraph.

Corollary

If G is a graph with no Kt minor and

χ(G )≥ k · f (t) + 2t log f (t) + 6t log r ,

then G contains r vertex-disjoint k-connected subgraphs H1, . . . ,Hr

with v(Hi )≤ t · f (t) · log t for every i ∈ [r ].
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Linked

Definition (Linked)

A graph G is k-linked if for any set of vertices s1, . . . ,sk , t1, . . . , tk
of G , there exist internally vertex-disjoint paths (Pi : i ∈ [k]) from
si to ti .

Theorem (Bollobás and Thomason 1996)

If a graph G is Ω(k)-connected, then G is k-linked.
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Woven

Definition (Woven)

A graph G is (a,b)-woven if for every three sets of vertices
R = {r1, . . . , ra}, S = {s1, . . . ,sb}, T = {t1, . . . , tb} in V (G ), there
exists a Ka model in G rooted at R internally vertex-disjoint from
a set of internally vertex-disjoint paths (Pi : i ∈ [k]) from si to ti .

Theorem (Norin and Song 2019+)

If a graph G is Ω(a
√

loga+b)-connected, then G is (a,b)-woven.
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Building a Minor when χ = Ω(t(log t)1/4 · f (t))

Let y = (log t)1/4 and x = t
y = t

(log t)1/4
.

By work of Kawarabayashi (2007), we may assume that G is
xy2 · f (t)-connected.

By Density Increment Corollary, G has y2+y
2 + 1 vertex-disjoint

Ω(xy2)-connected subgraphs H0,(Hi ,j : i ≤ j ∈ [y ]).

In H0: choose vertices Si = {si ,j ,k : j ∈ [y ],k ∈ [x ]} ∀i ∈ [y ].

In Hi ,j : choose vertices Ti ,j = {ti ,j ,k , tj ,i ,k : k ∈ [x ]}.

Since G is xy2-linked, there exists paths P from si ,j ,k to ti ,j ,k .
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Building a Minor Continued

∀i , j : weave in Hi ,j a K2x model rooted at Ti ,j while
“preserving” P.

∀i ,k , link all vertices in {si ,j ,k : j ∈ [y ]} in H0.
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Part V

Further Progress:

Breaking into Two Cases
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How to Build a Complete Minor?

Here are two additional ways to build a complete minor:

Recursive: Build three K2t/3 models and link them.

Sequential: Successively build up a Kt model by adding√
log t new vertices at a time.

In each case, we need recursively/sequentially many large, highly
connected subgraphs.

What resource do we have for forcing large graphs?
Chromatic number!

Can we also guarantee high connectivity?

Theorem (Girão and Narayanan 2020+)

For every positive integer k , if G is a graph with χ(G )≥ 7k , then
G contains a k-connected subgraph H with χ(H)≥ χ(G )−6k.
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Key Concept: Chromatic Separability

Definition (Chromatic Separable)

Let s ≥ 0. A graph G is s-chromatic-separable if there exist two
vertex-disjoint subgraphs H1,H2 of G s.t. ∀i ∈ {1,2}

χ(Hi )≥ χ(G )− s,

and that G is s-chromatic-inseparable otherwise.

Two Cases: Always Separable vs. Inseparable

Lemma (Always Separable Case)

Let s ≥ t. If G is a graph with χ(G )≥ Ω(s log log t) and every

subgraph H of G with χ(H)≥ χ(G)
2 is s-chromatic-separable, then

G contains a Kt minor.

Lemma (Inseparable Case)

Let s = Ω(t log log t). If G is a s-chromatic-inseparable graph with
χ(G )≥ Ω(t · (f (t) + log log t)), then G contains a Kt minor.
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Two Cases: Always Separable vs. Inseparable

Lemma (Always Separable Case)

Let s ≥ t. If G is a graph with χ(G )≥ Ω(s log log t) and every

subgraph H of G with χ(H)≥ χ(G)
2 is s-chromatic-separable, then

G contains a Kt minor.

Lemma (Inseparable Case)

Let s = Ω(t log log t). If G is a s-chromatic-inseparable graph with
χ(G )≥ Ω(t · (f (t) + log log t)), then G contains a Kt minor.

Luke Postle Further Progress towards Hadwiger’s Conjecture



Altogether

Lemma (Always Separable Case)

Let s ≥ t. If G is a graph with χ(G )≥ Ω(s log log t) and every

subgraph H of G with χ(H)≥ χ(G)
2 is s-chromatic-separable, then

G contains a Kt minor.

Lemma (Inseparable Case)

Let s = Ω(t log log t). If G is a s-chromatic-inseparable graph with
χ(G )≥ Ω(t · (f (t) + log log t)), then G contains a Kt minor.

Proof of Main Theorem.

Let s = Ω(t log log t). As χ(G )≥ Ω(t(log log t)6)≥ Ω(s log log t),
we have by the Always Separable Case Lemma that there exists a
subgraph H of G with χ(H)≥ χ(G)

2 is s-chromatic-inseparable.

Since χ(H)≥ Ω(t(log log t)6)≥ Ω(t · (f (t) + log log t)), we have by
the Inseparable Case Lemma that H contains a Kt minor.

Luke Postle Further Progress towards Hadwiger’s Conjecture



Altogether

Lemma (Always Separable Case)

Let s ≥ t. If G is a graph with χ(G )≥ Ω(s log log t) and every

subgraph H of G with χ(H)≥ χ(G)
2 is s-chromatic-separable, then

G contains a Kt minor.

Lemma (Inseparable Case)

Let s = Ω(t log log t). If G is a s-chromatic-inseparable graph with
χ(G )≥ Ω(t · (f (t) + log log t)), then G contains a Kt minor.

Proof of Main Theorem.

Let s = Ω(t log log t). As χ(G )≥ Ω(t(log log t)6)≥ Ω(s log log t),
we have by the Always Separable Case Lemma that there exists a
subgraph H of G with χ(H)≥ χ(G)

2 is s-chromatic-inseparable.

Since χ(H)≥ Ω(t(log log t)6)≥ Ω(t · (f (t) + log log t)), we have by
the Inseparable Case Lemma that H contains a Kt minor.

Luke Postle Further Progress towards Hadwiger’s Conjecture



Altogether

Lemma (Always Separable Case)

Let s ≥ t. If G is a graph with χ(G )≥ Ω(s log log t) and every

subgraph H of G with χ(H)≥ χ(G)
2 is s-chromatic-separable, then

G contains a Kt minor.

Lemma (Inseparable Case)

Let s = Ω(t log log t). If G is a s-chromatic-inseparable graph with
χ(G )≥ Ω(t · (f (t) + log log t)), then G contains a Kt minor.

Proof of Main Theorem.

Let s = Ω(t log log t). As χ(G )≥ Ω(t(log log t)6)≥ Ω(s log log t),
we have by the Always Separable Case Lemma that there exists a
subgraph H of G with χ(H)≥ χ(G)

2 is s-chromatic-inseparable.

Since χ(H)≥ Ω(t(log log t)6)≥ Ω(t · (f (t) + log log t)), we have by
the Inseparable Case Lemma that H contains a Kt minor.

Luke Postle Further Progress towards Hadwiger’s Conjecture



Altogether

Lemma (Always Separable Case)

Let s ≥ t. If G is a graph with χ(G )≥ Ω(s log log t) and every

subgraph H of G with χ(H)≥ χ(G)
2 is s-chromatic-separable, then

G contains a Kt minor.

Lemma (Inseparable Case)

Let s = Ω(t log log t). If G is a s-chromatic-inseparable graph with
χ(G )≥ Ω(t · (f (t) + log log t)), then G contains a Kt minor.

Proof of Main Theorem.

Let s = Ω(t log log t). As χ(G )≥ Ω(t(log log t)6)≥ Ω(s log log t),
we have by the Always Separable Case Lemma that there exists a
subgraph H of G with χ(H)≥ χ(G)

2 is s-chromatic-inseparable.

Since χ(H)≥ Ω(t(log log t)6)≥ Ω(t · (f (t) + log log t)), we have by
the Inseparable Case Lemma that H contains a Kt minor.

Luke Postle Further Progress towards Hadwiger’s Conjecture



Part VI

Always Separable Case

Luke Postle Further Progress towards Hadwiger’s Conjecture



Recursive Weaving: Finding Subgraphs

Let a = t and b = 0, we will show that G is (a,0)-woven.
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Recursive Weaving: Finding Subgraphs

Let a = t and b = 0, we will show that G is (a,0)-woven.

Since G is s-chromatic-separable, there exist vertex-disjoint
subgraph H ′1,H

′
0 of G with

χ(H ′1),χ(H ′0)≥ χ(G )− s.
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Recursive Weaving: Finding Subgraphs

Let a = t and b = 0, we will show that G is (a,0)-woven.

Since χ(H ′0)≥ χ(G)
2 , H ′0 is s-chromatic-separable. So there

exists vertex-disjoint subgraph H ′2,H
′
3 of H ′0 with

χ(H ′2),χ(H ′3)≥ χ(G )−2s.
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Recursive Weaving: Finding Subgraphs

Let a = t and b = 0, we will show that G is (a,0)-woven.

By the Girão-Narayanan Theorem, ∀i ∈ [3], there exists a
k-connected subgraph Hi of H ′i with

χ(Hi )≥ χ(H ′i )−6k ≥ χ(G )−2s−6k.
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Recursive Weaving: Building a Minor

We are given R = {r1, . . . , ra}. Let

Ri = {ra(i−1)/3+1, . . . , rai/3}, ∀i ∈ [3].

si = st+i = ri , ∀i ∈ [t].

Ti = {t2a(i−1)/3+1, . . . , t2ai/3} ⊆ V (Hi ), ∀i ∈ [3].

Since G is 2a-linked, there exists paths P from si to ti ∀i ∈ [2a].

∀i ∈ [3]: recursively weave a K2a/3 model rooted at Ti in Hi while
“preserving” P.
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Checking the parameters

Inductively show (a,b)-woven:

i ai bi

0 t 0

1 2
3 · t 2a0

2
(
2
3

)2 · t 2a0 + 2a1

i
(
2
3

)i · t 2 ·∑i
j=0 aj

. . . . . . ≤ 2t ·∑∞
j=0

(
2
3

)j
Ω(log log t) ≤ t

log t ≤ 6t

So by Norin-Song Woven Theorem, we are done!

How much chromatic number did we use?

χ(G )− (2s + 6k) ·Ω(log log t)≥ χ(G )/2

where k = Ω(t).
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Part VII

Inseparable Case
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Building a Minor Sequentially

The Plan: build a Kt model in y =
√

log t stages, where in each
stage we ensure that a set of x = t

y new parts are adjacent to
every other part.

Definition

A model H = {H1, . . . ,Hv(H)} of H in a graph G is tangent to a
subgraph G ′ of G if ∀i ∈ [v(H)], |V (Hi )|∩ |V (G ′)|= 1.

Goal: ∀i ∈ [y ]

1 Extend a Kix model Hi to a K(i+1)x model Hi+1 in Gi

(i.e. add Hix+1, . . . ,H(i+1)x adjacent to all Hj while
preserving previous adjacencies).

2 Ensure χ(Gi −Hi+1) is large enough;
allows us to find a high chromatic, high connected
subgraph Gi+1 disjoint from Hi+1.

3 Make Hi+1 tangent to Gi+1.
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Step One: The Old Plan

Since Hi is tangent to Gi , let {um}= V (Hm)∩V (Gi ), ∀m ∈ [i ].

By Density Increment Corollary, Gi has i + 2 vertex-disjoint
Ω(t)-connected subgraphs H0,(Hj ,i+1 : j ∈ [i + 1]).

In Hj ,i+1: choose vertices Tj ,i+1 = {tj ,i+1,k , ti+1,j ,k : k ∈ [x ]}.

By Menger’s theorem there exists vertex-disjoint paths P
from {um : m ∈ [i ]}∪

⋃
j∈[i+1]Tj ,i to H0.

Since H0/Hi ,j is Ω(t)-linked/woven, we can link/weave as
needed to form Hi+1.
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Step Two: Large χ

The Small Graphs: Let
J = G [{um : m ∈ [i ]}∪V (H0)∪

⋃
j∈[i+1]V (Hi ,j)].

By Small Graphs Lemma, χ(J)≤ O(t log log t).

The Paths: Let L = G [
⋃

P∈P V (P)].

If we assume the paths are induced, then χ(L)≤ 6t.

Remaining:

χ(Gi −Hi+1)≥ χ(Gi )−χ(J)−χ(L)≥ χ(Gi )−O(t log log t).
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Step Three?

Option 1: Use Menger’s to find paths from Gi+1 to the
hub H0?

Bad! May intersect the paths P.

Option 2: Start over and get paths from Gi+1 to H0

while constructing P?

Bad! New P may intersect Gi+1 destroying chromatic
number/tangency.

Option 3: Ensure redundancy.

Works!
Make double the paths for P.
Then using Menger’s make double the paths from Gi+1 to H0.
Menger’s then gives single copy paths for both.

Luke Postle Further Progress towards Hadwiger’s Conjecture



Step Three?

Option 1: Use Menger’s to find paths from Gi+1 to the
hub H0?

Bad! May intersect the paths P.

Option 2: Start over and get paths from Gi+1 to H0

while constructing P?

Bad! New P may intersect Gi+1 destroying chromatic
number/tangency.

Option 3: Ensure redundancy.

Works!
Make double the paths for P.
Then using Menger’s make double the paths from Gi+1 to H0.
Menger’s then gives single copy paths for both.

Luke Postle Further Progress towards Hadwiger’s Conjecture



Step Three?

Option 1: Use Menger’s to find paths from Gi+1 to the
hub H0?

Bad! May intersect the paths P.

Option 2: Start over and get paths from Gi+1 to H0

while constructing P?

Bad! New P may intersect Gi+1 destroying chromatic
number/tangency.

Option 3: Ensure redundancy.

Works!
Make double the paths for P.
Then using Menger’s make double the paths from Gi+1 to H0.
Menger’s then gives single copy paths for both.

Luke Postle Further Progress towards Hadwiger’s Conjecture



Step Three?

Option 1: Use Menger’s to find paths from Gi+1 to the
hub H0?

Bad! May intersect the paths P.

Option 2: Start over and get paths from Gi+1 to H0

while constructing P?

Bad! New P may intersect Gi+1 destroying chromatic
number/tangency.

Option 3: Ensure redundancy.

Works!
Make double the paths for P.
Then using Menger’s make double the paths from Gi+1 to H0.
Menger’s then gives single copy paths for both.

Luke Postle Further Progress towards Hadwiger’s Conjecture



Step Three?

Option 1: Use Menger’s to find paths from Gi+1 to the
hub H0?

Bad! May intersect the paths P.

Option 2: Start over and get paths from Gi+1 to H0

while constructing P?

Bad! New P may intersect Gi+1 destroying chromatic
number/tangency.

Option 3: Ensure redundancy.

Works!
Make double the paths for P.
Then using Menger’s make double the paths from Gi+1 to H0.
Menger’s then gives single copy paths for both.

Luke Postle Further Progress towards Hadwiger’s Conjecture



Step Three?

Option 1: Use Menger’s to find paths from Gi+1 to the
hub H0?

Bad! May intersect the paths P.

Option 2: Start over and get paths from Gi+1 to H0

while constructing P?

Bad! New P may intersect Gi+1 destroying chromatic
number/tangency.

Option 3: Ensure redundancy.

Works!
Make double the paths for P.
Then using Menger’s make double the paths from Gi+1 to H0.
Menger’s then gives single copy paths for both.

Luke Postle Further Progress towards Hadwiger’s Conjecture



Step Three?

Option 1: Use Menger’s to find paths from Gi+1 to the
hub H0?

Bad! May intersect the paths P.

Option 2: Start over and get paths from Gi+1 to H0

while constructing P?

Bad! New P may intersect Gi+1 destroying chromatic
number/tangency.

Option 3: Ensure redundancy.

Works!
Make double the paths for P.
Then using Menger’s make double the paths from Gi+1 to H0.
Menger’s then gives single copy paths for both.

Luke Postle Further Progress towards Hadwiger’s Conjecture



Back to Step Two: Still Large χ?

Is χ(Gi −Hi+1) really large enough?

No! We lose t log log t each step. But there are
√

log t steps!

Solution: Rebuild the minor at each step.

What does the minor need from each Hi?

Just to connect the tangent vertex with its vertices in the
K2x ’s!

Lemma

If G is a connected graph and S ⊆ V (G ) with S 6= /0, then ∃ an
induced connected subgraph H of G and S ′ ⊆ V (H) s.t. S ⊆ S ′,
|S ′| ≤ 3|S | and χ(H \S ′)≤ 2.

Apply lemma to each Hj in Hi+1 with |Sj | ≤ t log3 t. Hence ∃
H ′

i+1 tangent to Gi+1 with

χ(Gi −H ′
i+1)≥ χ(G )−O(t log log t).

Luke Postle Further Progress towards Hadwiger’s Conjecture



Back to Step Two: Still Large χ?

Is χ(Gi −Hi+1) really large enough?

No! We lose t log log t each step. But there are
√

log t steps!

Solution: Rebuild the minor at each step.

What does the minor need from each Hi?

Just to connect the tangent vertex with its vertices in the
K2x ’s!

Lemma

If G is a connected graph and S ⊆ V (G ) with S 6= /0, then ∃ an
induced connected subgraph H of G and S ′ ⊆ V (H) s.t. S ⊆ S ′,
|S ′| ≤ 3|S | and χ(H \S ′)≤ 2.

Apply lemma to each Hj in Hi+1 with |Sj | ≤ t log3 t. Hence ∃
H ′

i+1 tangent to Gi+1 with

χ(Gi −H ′
i+1)≥ χ(G )−O(t log log t).

Luke Postle Further Progress towards Hadwiger’s Conjecture



Back to Step Two: Still Large χ?

Is χ(Gi −Hi+1) really large enough?

No! We lose t log log t each step. But there are
√

log t steps!

Solution:

Rebuild the minor at each step.

What does the minor need from each Hi?

Just to connect the tangent vertex with its vertices in the
K2x ’s!

Lemma

If G is a connected graph and S ⊆ V (G ) with S 6= /0, then ∃ an
induced connected subgraph H of G and S ′ ⊆ V (H) s.t. S ⊆ S ′,
|S ′| ≤ 3|S | and χ(H \S ′)≤ 2.

Apply lemma to each Hj in Hi+1 with |Sj | ≤ t log3 t. Hence ∃
H ′

i+1 tangent to Gi+1 with

χ(Gi −H ′
i+1)≥ χ(G )−O(t log log t).

Luke Postle Further Progress towards Hadwiger’s Conjecture



Back to Step Two: Still Large χ?

Is χ(Gi −Hi+1) really large enough?

No! We lose t log log t each step. But there are
√

log t steps!

Solution: Rebuild the minor at each step.

What does the minor need from each Hi?

Just to connect the tangent vertex with its vertices in the
K2x ’s!

Lemma

If G is a connected graph and S ⊆ V (G ) with S 6= /0, then ∃ an
induced connected subgraph H of G and S ′ ⊆ V (H) s.t. S ⊆ S ′,
|S ′| ≤ 3|S | and χ(H \S ′)≤ 2.

Apply lemma to each Hj in Hi+1 with |Sj | ≤ t log3 t. Hence ∃
H ′

i+1 tangent to Gi+1 with

χ(Gi −H ′
i+1)≥ χ(G )−O(t log log t).

Luke Postle Further Progress towards Hadwiger’s Conjecture



Back to Step Two: Still Large χ?

Is χ(Gi −Hi+1) really large enough?

No! We lose t log log t each step. But there are
√

log t steps!

Solution: Rebuild the minor at each step.

What does the minor need from each Hi?

Just to connect the tangent vertex with its vertices in the
K2x ’s!

Lemma

If G is a connected graph and S ⊆ V (G ) with S 6= /0, then ∃ an
induced connected subgraph H of G and S ′ ⊆ V (H) s.t. S ⊆ S ′,
|S ′| ≤ 3|S | and χ(H \S ′)≤ 2.

Apply lemma to each Hj in Hi+1 with |Sj | ≤ t log3 t. Hence ∃
H ′

i+1 tangent to Gi+1 with

χ(Gi −H ′
i+1)≥ χ(G )−O(t log log t).

Luke Postle Further Progress towards Hadwiger’s Conjecture



Back to Step Two: Still Large χ?

Is χ(Gi −Hi+1) really large enough?

No! We lose t log log t each step. But there are
√

log t steps!

Solution: Rebuild the minor at each step.

What does the minor need from each Hi?

Just to connect the tangent vertex with its vertices in the
K2x ’s!

Lemma

If G is a connected graph and S ⊆ V (G ) with S 6= /0, then ∃ an
induced connected subgraph H of G and S ′ ⊆ V (H) s.t. S ⊆ S ′,
|S ′| ≤ 3|S | and χ(H \S ′)≤ 2.

Apply lemma to each Hj in Hi+1 with |Sj | ≤ t log3 t. Hence ∃
H ′

i+1 tangent to Gi+1 with

χ(Gi −H ′
i+1)≥ χ(G )−O(t log log t).

Luke Postle Further Progress towards Hadwiger’s Conjecture



Back to Step Two: Still Large χ?

Is χ(Gi −Hi+1) really large enough?

No! We lose t log log t each step. But there are
√

log t steps!

Solution: Rebuild the minor at each step.

What does the minor need from each Hi?

Just to connect the tangent vertex with its vertices in the
K2x ’s!

Lemma

If G is a connected graph and S ⊆ V (G ) with S 6= /0, then ∃ an
induced connected subgraph H of G and S ′ ⊆ V (H) s.t. S ⊆ S ′,
|S ′| ≤ 3|S | and χ(H \S ′)≤ 2.

Apply lemma to each Hj in Hi+1 with |Sj | ≤ t log3 t. Hence ∃
H ′

i+1 tangent to Gi+1 with

χ(Gi −H ′
i+1)≥ χ(G )−O(t log log t).

Luke Postle Further Progress towards Hadwiger’s Conjecture



Back to Step Two: Still Large χ?

Is χ(Gi −Hi+1) really large enough?

No! We lose t log log t each step. But there are
√

log t steps!

Solution: Rebuild the minor at each step.

What does the minor need from each Hi?

Just to connect the tangent vertex with its vertices in the
K2x ’s!

Lemma

If G is a connected graph and S ⊆ V (G ) with S 6= /0, then ∃ an
induced connected subgraph H of G and S ′ ⊆ V (H) s.t. S ⊆ S ′,
|S ′| ≤ 3|S | and χ(H \S ′)≤ 2.

Apply lemma to each Hj in Hi+1 with |Sj | ≤ t log3 t. Hence ∃
H ′

i+1 tangent to Gi+1 with

χ(Gi −H ′
i+1)≥ χ(G )−O(t log log t).

Luke Postle Further Progress towards Hadwiger’s Conjecture



Back to Step Three: Still Tangent?

Hence by the Girão-Narayanan Theorem, there exists a subgraph
G ′i+1 disjoint from H ′

i+1 with

χ(G ′i+1)≥ χ(G )−O(t log log t).

Is the model H ′
i+1 tangent to G ′i+1?

Case 1 - |V (Gi+1)|∩ |V (G ′i+1)| ≥ k:

Then G ′′i+1 = Gi+1∪G ′i+1 is k-connected and tangent to H ′
i+1.

Case 2 - otherwise:

Gi+1 and G ′i+1 \V (Gi+1) are vertex-disjoint and have

χ ≥ χ(G )−O(t log log t),

contradicting that G is O(t log log t)-inseparable!
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Summary

We proved:

Theorem (P. 2020+)

∀ β > 0, every graph with no Kt minor is O(t(log t)β )-colorable.

The key was dividing into cases:

Always Separable

Inseparable

With the better density increment theorem, we get:

Theorem (P. 2020+)

Every graph with no Kt minor is O(t(log log t)6)-colorable.
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Future Directions

Improve the density increment theorem?
Say to (1 + log s)?

Avoid dividing into cases?

Color small graphs better?

Use just connectivity instead of chromatic number?

Theorem (Norin and P. 2020+)

∀β > 1
4 , if G is Ω(t(log t)β )-connected and has no Kt minor, then

v(G )≤ t(log t)7/4.
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