Hypergraph Matchings Avoiding Forbidden Submatchings

Michelle Delcourt
Toronto Metropolitan University

Oxford Discrete Mathematics and Probability Seminar

joint work with Luke Postle

November 22, 2022

Part I

Avoiding Submatchings

General Question and Key Definition

General Question and Key Definition

Question

When can we find a large matching in a hypergraph avoiding certain forbidden submatchings?

General Question and Key Definition

Question
 When can we find a large matching in a hypergraph avoiding certain forbidden submatchings?

Definition
Let G be a (multi)-hypergraph;

General Question and Key Definition

Question
 When can we find a large matching in a hypergraph avoiding certain forbidden submatchings?

Definition
Let G be a (multi)-hypergraph; H is a configuration hypergraph for G

General Question and Key Definition

Question

When can we find a large matching in a hypergraph avoiding certain forbidden submatchings?

Definition

Let G be a (multi)-hypergraph; H is a configuration hypergraph for G if $V(H)=E(G)$ and $E(H)$ consists of a set of matchings of G of size at least two.

General Question and Key Definition

Question

When can we find a large matching in a hypergraph avoiding certain forbidden submatchings?

Definition

Let G be a (multi)-hypergraph; H is a configuration hypergraph for G if $V(H)=E(G)$ and $E(H)$ consists of a set of matchings of G of size at least two.

A matching of G is H -avoiding if it spans no edge of H .

General Question and Key Definition

Question

When can we find a large matching in a hypergraph avoiding certain forbidden submatchings?

General Question and Key Definition

Question

When can we find a large matching in a hypergraph avoiding certain forbidden submatchings?

Definition

The line graph $L(G)$ of a hypergraph G is the graph where $V(L(G))=E(G)$ and $E(L(G))=\{u v: u, v \in E(G), u \cap v \neq \emptyset\}$.

General Question and Key Definition

Question

When can we find a large matching in a hypergraph avoiding certain forbidden submatchings?

Definition

The line graph $L(G)$ of a hypergraph G is the graph where $V(L(G))=E(G)$ and $E(L(G))=\{u v: u, v \in E(G), u \cap v \neq \emptyset\}$.

Equivalently, we want a good lower bound on $\alpha(L(G) \cup H)$.

General Question and Key Definition

Question

When can we find a large matching in a hypergraph avoiding certain forbidden submatchings?

Definition

The line graph $L(G)$ of a hypergraph G is the graph where $V(L(G))=E(G)$ and $E(L(G))=\{u v: u, v \in E(G), u \cap v \neq \emptyset\}$.

Equivalently, we want a good lower bound on $\alpha(L(G) \cup H)$.

Question

Under what conditions does $L(G) \cup H$ have independence number almost the minimum of the independence numbers of H and $L(G)$?

Edge+Vertex Phenomenon

Edge+Vertex Phenomenon

Question

More generally, when can we almost decompose the edges of G into large H -avoiding matchings?

Edge+Vertex Phenomenon

Question

More generally, when can we almost decompose the edges of G into large H -avoiding matchings?

This is related to upper bounding $\chi(L(G) \cup H)$.

Edge+Vertex Phenomenon

Question

More generally, when can we almost decompose the edges of G into large H -avoiding matchings?

This is related to upper bounding $\chi(L(G) \cup H)$.

Question

Under what conditions does $L(G) \cup H$ have chromatic number almost the maximum of the chromatic numbers of H and $L(G)$?

Definitions

Before our main result, first recall:

Definitions

Before our main result, first recall:

Definition

The codegree of vertices $u, v \in V(G)$ is the number of edges containing both.

Definition

The girth of a hypergraph H is the smallest integer $g \geq 2$ for which H has a g-Berge cycle.

Definition

The i-degree $d_{i}(v)$ of a vertex $v \in V(H)$ is the number of edges of H of size i containing v.

Main Result

Theorem (D. and Postle 2022+)
Let G be an r-uniform hypergraph on n vertices with

Main Result

Theorem (D. and Postle 2022+)
Let G be an r-uniform hypergraph on n vertices with

- maximum degree D

Main Result

Theorem (D. and Postle 2022+)
Let G be an r-uniform hypergraph on n vertices with

- maximum degree D and
- codegrees at most $D^{1-\beta}$.

Main Result

Theorem (D. and Postle 2022+)
Let G be an r-uniform hypergraph on n vertices with

- maximum degree D and
- codegrees at most $D^{1-\beta}$.

Let H be a configuration hypergraph of G with

Main Result

Theorem (D. and Postle 2022+)
Let G be an r-uniform hypergraph on n vertices with

- maximum degree D and
- codegrees at most $D^{1-\beta}$.

Let H be a configuration hypergraph of G with

- girth at least 5

Main Result

Theorem (D. and Postle 2022+)
Let G be an r-uniform hypergraph on n vertices with

- maximum degree D and
- codegrees at most $D^{1-\beta}$.

Let H be a configuration hypergraph of G with

- girth at least 5 or small codegrees,

Main Result

Theorem (D. and Postle 2022+)
Let G be an r-uniform hypergraph on n vertices with

- maximum degree D and
- codegrees at most $D^{1-\beta}$.

Let H be a configuration hypergraph of G with

- girth at least 5 or small codegrees,
- each edge containing at most g vertices, and

Main Result

Theorem (D. and Postle 2022+)
Let G be an r-uniform hypergraph on n vertices with

- maximum degree D and
- codegrees at most $D^{1-\beta}$.

Let H be a configuration hypergraph of G with

- girth at least 5 or small codegrees,
- each edge containing at most g vertices, and
- maximum i-degree $\leq O\left(D^{i-1} \log D\right)$.

Main Result

Theorem (D. and Postle 2022+)
Let G be an r-uniform hypergraph on n vertices with

- maximum degree D and
- codegrees at most $D^{1-\beta}$.

Let H be a configuration hypergraph of G with

- girth at least 5 or small codegrees,
- each edge containing at most g vertices, and
- maximum i-degree $\leq O\left(D^{i-1} \log D\right)$.

$$
\text { Then } \chi(L(G) \cup H) \leq \chi_{\ell}(L(G) \cup H) \leq\left(1+D^{-\frac{\beta}{16 r}}\right) D \text {. }
$$

Main Result

Theorem (D. and Postle 2022+)
Let G be an r-uniform hypergraph on n vertices with

- maximum degree D and
- codegrees at most $D^{1-\beta}$.

Let H be a configuration hypergraph of G with

- girth at least 5 or small codegrees,
- each edge containing at most g vertices, and
- maximum i-degree $\leq O\left(D^{i-1} \log D\right)$.

Then $\chi(L(G) \cup H) \leq \chi_{\ell}(L(G) \cup H) \leq\left(1+D^{-\frac{\beta}{16 r}}\right) D$.
Recall that χ_{ℓ} denotes the list chromatic number (generalizing chromatic number).

Part II

Combining Two Streams

What does this imply if H has no edges?

Our main theorem implies (but with more restrictive codegree assumptions):

What does this imply if H has no edges?

Our main theorem implies (but with more restrictive codegree assumptions):

Theorem (Pippenger-Spencer 1989)
$\forall r>0, \exists \gamma>0$ s.t. if G is an r-uniform hypergraph with maximum degree D and codegrees at most γD, then

$$
\chi(L(G))=(1+o(1)) D .
$$

What does this imply if H has no edges?

Our main theorem implies

 (but with more restrictive codegree assumptions):Theorem (Pippenger-Spencer 1989)
$\forall r>0, \exists \gamma>0$ s.t. if G is an r-uniform hypergraph with maximum degree D and codegrees at most γD, then

$$
\chi(L(G))=(1+o(1)) D .
$$

This generalizes Rödl's "nibble method" from designs.

What does this imply if H has no edges?

Our main theorem implies

 (but with more restrictive codegree assumptions):Theorem (Pippenger-Spencer 1989)
$\forall r>0, \exists \gamma>0$ s.t. if G is an r-uniform hypergraph with maximum degree D and codegrees at most γD, then

$$
\chi(L(G))=(1+o(1)) D .
$$

This generalizes Rödl's "nibble method" from designs.

Theorem (Kahn 1996)

$\forall r>0, \exists \gamma>0$ s.t. if G is an r-uniform hypergraph with maximum degree D and codegrees at most γD, then

$$
\chi_{\ell}(L(G))=(1+o(1)) D .
$$

What does this imply if H has no edges?

Our main theorem implies (but with more restrictive codegree assumptions):
Theorem (Pippenger-Spencer 1989)
$\forall r>0, \exists \gamma>0$ s.t. if G is an r-uniform hypergraph with maximum degree D and codegrees at most γD, then

$$
\chi(L(G))=(1+o(1)) D .
$$

This generalizes Rödl's "nibble method" from designs.

Theorem (Kahn 1996)

$\forall r>0, \exists \gamma>0$ s.t. if G is an r-uniform hypergraph with maximum degree D and codegrees at most γD, then

$$
\chi_{\ell}(L(G))=(1+o(1)) D .
$$

This asymptotically proved the List Coloring Conjecture.

What does this imply if $L(G)$ has no edges?

What does this imply if $L(G)$ has no edges?

Equivalently then G is a matching.

What does this imply if $L(G)$ has no edges?

Equivalently then G is a matching.
Theorem (Ajtai, Komlós, Pintz, Spencer, Szemerédi 1982)
If H is an r-uniform hypergraph on n vertices of girth at least five and maximum degree Δ, then

$$
\alpha(H) \geq \Omega\left(n \cdot \frac{\log \Delta}{\Delta^{1 /(r-1)}}\right) .
$$

What does this imply if $L(G)$ has no edges?

Equivalently then G is a matching.
Theorem (Ajtai, Komlós, Pintz, Spencer, Szemerédi 1982)
If H is an r-uniform hypergraph on n vertices of girth at least five and maximum degree Δ, then

$$
\alpha(H) \geq \Omega\left(n \cdot \frac{\log \Delta}{\Delta^{1 /(r-1)}}\right) .
$$

Improvements:

- with girth at least three, Duke-Lefmann-Rödl 1995

What does this imply if $L(G)$ has no edges?

Equivalently then G is a matching.
Theorem (Ajtai, Komlós, Pintz, Spencer, Szemerédi 1982)
If H is an r-uniform hypergraph on n vertices of girth at least five and maximum degree Δ, then

$$
\alpha(H) \geq \Omega\left(n \cdot \frac{\log \Delta}{\Delta^{1 /(r-1)}}\right) .
$$

Improvements:

- with girth at least three, Duke-Lefmann-Rödl 1995
- plus coloring, Frieze-Mubayi 2013

What does this imply if $L(G)$ has no edges?

Equivalently then G is a matching.
Theorem (Ajtai, Komlós, Pintz, Spencer, Szemerédi 1982)
If H is an r-uniform hypergraph on n vertices of girth at least five and maximum degree Δ, then

$$
\alpha(H) \geq \Omega\left(n \cdot \frac{\log \Delta}{\Delta^{1 /(r-1)}}\right) .
$$

Improvements:

- with girth at least three, Duke-Lefmann-Rödl 1995
- plus coloring, Frieze-Mubayi 2013
- plus bounded codegree, Cooper-Mubayi 2016

What does this imply if $L(G)$ has no edges?

Equivalently then G is a matching.
Theorem (Ajtai, Komlós, Pintz, Spencer, Szemerédi 1982)
If H is an r-uniform hypergraph on n vertices of girth at least five and maximum degree Δ, then

$$
\alpha(H) \geq \Omega\left(n \cdot \frac{\log \Delta}{\Delta^{1 /(r-1)}}\right) .
$$

Improvements:

- with girth at least three, Duke-Lefmann-Rödl 1995
- plus coloring, Frieze-Mubayi 2013
- plus bounded codegree, Cooper-Mubayi 2016
- plus mixed uniformity, Li-Postle 2022+

Proof Ideas

Proof Ideas

> 'These two threads of research, of edge-colouring and of vertex-colouring with the "nibble" method, have developed somewhat in parallel, sometimes intertwining.'
> -Kang, Kelly, Kühn, Methuku, Osthus 2021+

Proof Ideas

'These two threads of research, of edge-colouring and of vertex-colouring with the "nibble" method, have developed somewhat in parallel, sometimes intertwining.'
-Kang, Kelly, Kühn, Methuku, Osthus 2021+

Key Ideas:

- for H track a "weighted degree"

Proof Ideas

'These two threads of research, of edge-colouring and of vertex-colouring with the "nibble" method, have developed somewhat in parallel, sometimes intertwining.'
-Kang, Kelly, Kühn, Methuku, Osthus 2021+

Key Ideas:

- for H track a "weighted degree" because H has a mix of uniformities

Proof Ideas

'These two threads of research, of edge-colouring and of vertex-colouring with the "nibble" method, have developed somewhat in parallel, sometimes intertwining.'
-Kang, Kelly, Kühn, Methuku, Osthus 2021+

Key Ideas:

- for H track a "weighted degree" because H has a mix of uniformities
- nibble calculations for G and nibble calculations for H interweave perfectly

Proof Ideas

'These two threads of research, of edge-colouring and of vertex-colouring with the "nibble" method, have developed somewhat in parallel, sometimes intertwining.'
-Kang, Kelly, Kühn, Methuku, Osthus 2021+

Key Ideas:

- for H track a "weighted degree" because H has a mix of uniformities
- nibble calculations for G and nibble calculations for H interweave perfectly
- introduce a new linear Talagrand's Inequality to concentrate

Proof Ideas

'These two threads of research, of edge-colouring and of vertex-colouring with the "nibble" method, have developed somewhat in parallel, sometimes intertwining.'
-Kang, Kelly, Kühn, Methuku, Osthus 2021+

Key Ideas:

- for H track a "weighted degree" because H has a mix of uniformities
- nibble calculations for G and nibble calculations for H interweave perfectly
- introduce a new linear Talagrand's Inequality to concentrate and use Lovász Local Lemma to finish

Part III

Application: Steiner Systems

Steiner Systems

Steiner Systems

Definition

For $n \geq q>r \geq 2$, a partial (n, q, r)-Steiner system is a set S of q-subsets of an n-set V s.t. every r-subset of V is contained in at most one q-set in S.

Steiner Systems

Definition

For $n \geq q>r \geq 2$, a partial (n, q, r)-Steiner system is a set S of q-subsets of an n-set V s.t. every r-subset of V is contained in at most one q-set in S.

Definition

An (n, q, r)-Steiner system is a partial (n, q, r)-Steiner system S with $|S|=\binom{n}{r} /\binom{q}{r}$.

Steiner Systems

Definition

For $n \geq q>r \geq 2$, a partial (n, q, r)-Steiner system is a set S of q-subsets of an n-set V s.t. every r-subset of V is contained in at most one q-set in S.

Definition

An (n, q, r)-Steiner system is a partial (n, q, r)-Steiner system S with $|S|=\binom{n}{r} /\binom{q}{r}$.
I.e., every r-subset is in exactly one q-set

Steiner Systems

Definition

For $n \geq q>r \geq 2$, a partial (n, q, r)-Steiner system is a set S of q-subsets of an n-set V s.t. every r-subset of V is contained in at most one q-set in S.

Definition

An (n, q, r)-Steiner system is a partial (n, q, r)-Steiner system S with $|S|=\binom{n}{r} /\binom{q}{r}$.
I.e., every r-subset is in exactly one q-set

Example: Fano Plane, (7,3,2)-Steiner system

Steiner Systems

Definition

For $n \geq q>r \geq 2$, a partial (n, q, r)-Steiner system is a set S of q-subsets of an n-set V s.t. every r-subset of V is contained in at most one q-set in S.

Definition

An (n, q, r)-Steiner system is a partial (n, q, r)-Steiner system S with $|S|=\binom{n}{r} /\binom{q}{r}$.
I.e., every r-subset is in exactly one q-set

Example: Fano Plane, (7,3, 2)-Steiner system $\binom{7}{2} /\binom{3}{2}=7$

Steiner Systems

Definition

n is admissible if $\left.\binom{q-i}{r-i} \right\rvert\,\binom{ n-i}{r-i}$ for all $0 \leq i \leq r-1$

Steiner Systems

Definition
 n is admissible if $\left.\binom{q-i}{r-i} \right\rvert\,\binom{ n-i}{r-i}$ for all $0 \leq i \leq r-1$

Notorious conjecture from the mid-1800's:

Existence Conjecture

For sufficiently large n, there exists an (n, q, r)-Steiner system whenever n is admissible.

Steiner Systems

Definition

n is admissible if $\left.\binom{q-i}{r-i} \right\rvert\,\binom{ n-i}{r-i}$ for all $0 \leq i \leq r-1$
Notorious conjecture from the mid-1800's:

Existence Conjecture

For sufficiently large n, there exists an (n, q, r)-Steiner system whenever n is admissible.

- $q=3$ and $r=2$, Kirkman 1847
- $r=2$, Wilson 1975
- approximate version - "nibble method", Rödl 1985
- full conjecture - algebraic techniques, Keevash 2014+
- full conjecture - combinatorial techniques, Kühn, Lo, Glock, and Osthus 2016+

High Girth Steiner Systems

High Girth Steiner Systems

Definition

In a partial (n, q, r)-Steiner system, a (j, i)-configuration is a set of $i q$-subsets spanning at most j elements.

High Girth Steiner Systems

Definition

In a partial (n, q, r)-Steiner system, a (j,i)-configuration is a set of $i q$-subsets spanning at most j elements.

Observation

An (n,3,2)-Steiner system S contains an
($i+3, i$)-configuration for every fixed i.

High Girth Steiner Systems

Definition

In a partial (n, q, r)-Steiner system, a (j,i)-configuration is a set of $i q$-subsets spanning at most j elements.

Observation

An ($n, 3,2$)-Steiner system S contains an
($i+3, i$)-configuration for every fixed i.
Question
What about ($i+2, i$)-configurations?

High Girth Steiner Systems

Definition

In a partial (n, q, r)-Steiner system, a (j,i)-configuration is a set of $i q$-subsets spanning at most j elements.

Observation

An ($n, 3,2$)-Steiner system S contains an
($i+3, i$)-configuration for every fixed i.

Question

What about ($i+2, i$)-configurations?

Conjecture (Erdős 1973)

For every integer $g \geq 2$, there exists n_{g} such that for all admissible $n \geq n_{g}$, there exists an ($n, 3,2$)-Steiner system with no ($i+2, i$)-configuration for all $2 \leq i \leq g$.

High Girth Steiner Systems

Definition

The girth of an ($n, 3,2$)-Steiner system is the smallest integer $g \geq 2$ for which it has a $(g+2, g)$-configuration.

High Girth Steiner Systems

Definition

The girth of an ($n, 3,2$)-Steiner system is the smallest integer $g \geq 2$ for which it has a $(g+2, g)$-configuration.

Conjecture (Erdős 1973)

For sufficiently large n, there exists an ($n, 3,2$)-Steiner system with arbitrarily high girth whenever n is admissible.

High Girth Steiner Systems

Definition

The girth of an ($n, 3,2$)-Steiner system is the smallest integer $g \geq 2$ for which it has a $(g+2, g)$-configuration.

Conjecture (Erdős 1973)

For sufficiently large n, there exists an ($n, 3,2$)-Steiner system with arbitrarily high girth whenever n is admissible.

- there is a partial Steiner triple system of girth at least g and size at least $c_{g} \cdot n^{2}\left(c_{g} \rightarrow 0\right.$ as $\left.g \rightarrow \infty\right)$, Lefmann, Phelps, and Rödl 1993

High Girth Steiner Systems

Definition

The girth of an ($n, 3,2$)-Steiner system is the smallest integer $g \geq 2$ for which it has a $(g+2, g)$-configuration.

Conjecture (Erdős 1973)

For sufficiently large n, there exists an ($n, 3,2$)-Steiner system with arbitrarily high girth whenever n is admissible.

- there is a partial Steiner triple system of girth at least g and size at least $c_{g} \cdot n^{2}\left(c_{g} \rightarrow 0\right.$ as $\left.g \rightarrow \infty\right)$, Lefmann, Phelps, and Rödl 1993
- approximate version, Bohman and Warnke 2019 and Glock, Kühn, Lo, and Osthus 2020

High Girth Steiner Systems

Definition

The girth of an ($n, 3,2$)-Steiner system is the smallest integer $g \geq 2$ for which it has a $(g+2, g)$-configuration.

Conjecture (Erdős 1973)

For sufficiently large n, there exists an ($n, 3,2$)-Steiner system with arbitrarily high girth whenever n is admissible.

- there is a partial Steiner triple system of girth at least g and size at least $c_{g} \cdot n^{2}\left(c_{g} \rightarrow 0\right.$ as $\left.g \rightarrow \infty\right)$, Lefmann, Phelps, and Rödl 1993
- approximate version, Bohman and Warnke 2019 and Glock, Kühn, Lo, and Osthus 2020
- full conjecture, Kwan, Sah, Sawhney, and Simkin 2022+

What about (n, q, r)-Steiner systems?

What about (n, q, r)-Steiner systems?

Observation (Glock, Kühn, Lo, and Osthus 2020)
Every (n, q, r)-Steiner system contains an
$(i(q-r)+r+1, i)$-configuration for every fixed i.

What about (n, q, r)-Steiner systems?

Observation (Glock, Kühn, Lo, and Osthus 2020)

Every (n, q, r)-Steiner system contains an $(i(q-r)+r+1, i)$-configuration for every fixed i.

For $q=3, r=2$ this is an $(i+3, i)$-configuration.

What about (n, q, r)-Steiner systems?

Observation (Glock, Kühn, Lo, and Osthus 2020)

Every (n, q, r)-Steiner system contains an
$(i(q-r)+r+1, i)$-configuration for every fixed i.

For $q=3, r=2$ this is an $(i+3, i)$-configuration.

Definition

The girth of an (n, q, r)-Steiner system is the smallest integer $g \geq 2$ for which it has a $(g(q-r)+r, g)$-configuration.

A More General Conjecture

Conjecture (Glock, Kühn, Lo, and Osthus 2020, Keevash and Long 2020)

For sufficiently large n, there exists an (n, q, r)-Steiner system with arbitrarily high girth whenever n is admissible.

A More General Conjecture

Conjecture (Glock, Kühn, Lo, and Osthus 2020, Keevash and Long 2020)

For sufficiently large n, there exists an (n, q, r)-Steiner system with arbitrarily high girth whenever n is admissible.

We show the approximate version:

A More General Conjecture

Conjecture (Glock, Kühn, Lo, and Osthus 2020, Keevash and Long 2020)

For sufficiently large n, there exists an (n, q, r)-Steiner system with arbitrarily high girth whenever n is admissible.

We show the approximate version:
Theorem (D. and Postle 2022+)
\forall int. $q>r \geq 2$ and int. $g \geq 2, \exists n_{0}$ and $\beta \in(0,1)$ s.t.
$\forall n \geq n_{0}, \exists$ a partial (n, q, r)-Steiner system S with

$$
|S| \geq\left(1-n^{-\beta}\right)\binom{n}{r}
$$

and no $(i(q-r)+r, i)$-configurations $\forall 2 \leq i \leq g$.

A More General Conjecture

Conjecture (Glock, Kühn, Lo, and Osthus 2020, Keevash and Long 2020)

For sufficiently large n, there exists an (n, q, r)-Steiner system with arbitrarily high girth whenever n is admissible.

We show the approximate version:
Theorem (D. and Postle 2022+,
Glock, Joos, Kim, Kühn, and Lichev 2022+)
\forall int. $q>r \geq 2$ and int. $g \geq 2, \exists n_{0}$ and $\beta \in(0,1)$ s.t.
$\forall n \geq n_{0}, \exists$ a partial (n, q, r)-Steiner system S with

$$
|S| \geq\left(1-n^{-\beta}\right) \frac{\binom{n}{r}}{\binom{q}{r}}
$$

and no $(i(q-r)+r, i)$-configurations $\forall 2 \leq i \leq g$.

Configurations in Steiner Systems

The auxiliary hypergraph G :

Configurations in Steiner Systems

The auxiliary hypergraph G : V is all r-sets of [n]

Configurations in Steiner Systems

The auxiliary hypergraph G :
V is all r-sets of [n]
E the is collections of $\binom{q}{r} r$-sets that lie in a q-set.

Configurations in Steiner Systems

The auxiliary hypergraph G :
V is all r-sets of [n]
E the is collections of $\binom{q}{r} r$-sets that lie in a q-set.
Here an (almost) perfect matching corresponds to a (partial) Steiner System.

Configurations in Steiner Systems

The auxiliary hypergraph G :
V is all r-sets of [n]
E the is collections of $\binom{q}{r} r$-sets that lie in a q-set.
Here an (almost) perfect matching corresponds to a (partial) Steiner System.
G is a $\binom{q}{r}$-uniform

Configurations in Steiner Systems

The auxiliary hypergraph G :
V is all r-sets of [n]
E the is collections of $\binom{q}{r} r$-sets that lie in a q-set.
Here an (almost) perfect matching corresponds to a (partial) Steiner System.
G is a $\binom{q}{r}$-uniform and $D=\binom{n-r}{q-r}$-regular.

Configurations in Steiner Systems

The auxiliary hypergraph G :
V is all r-sets of [n]
E the is collections of $\binom{q}{r} r$-sets that lie in a q-set.
Here an (almost) perfect matching corresponds to a (partial) Steiner System.
G is a $\binom{q}{r}$-uniform and $D=\binom{n-r}{q-r}$-regular.
Two distinct vertices lie in at most
$\binom{n-r-1}{q-r-1}=O\left(\binom{n-r}{q-r}\right)=o(D)$ common edges.
Question
What do the forbidden configurations become?

Configurations in Steiner Systems

A vertex v in H is an edge in G

Configurations in Steiner Systems

A vertex v in H is an edge in G and a q-set of $[n]$.

Configurations in Steiner Systems

A vertex v in H is an edge in G and a q-set of $[n]$.
How many edges of H of size i is it in?

Configurations in Steiner Systems

A vertex v in H is an edge in G and a q-set of $[n]$.
How many edges of H of size i is it in?
Recall we forbid $(i(q-r)+r, i)$-configurations so there are $i(q-r)+r-q=(i-1)(q-r)$ other vertices to choose from.

Configurations in Steiner Systems

A vertex v in H is an edge in G and a q-set of $[n]$.
How many edges of H of size i is it in?
Recall we forbid $(i(q-r)+r, i)$-configurations so there are $i(q-r)+r-q=(i-1)(q-r)$ other vertices to choose from.

Thus v is in $O\left(n^{(i-1)(q-r)}\right)=O\left(\binom{n-r}{q-r}^{i-1}\right)=O\left(D^{i-1}\right)$ edges of size i.

Configurations in Steiner Systems

A vertex v in H is an edge in G and a q-set of $[n]$.
How many edges of H of size i is it in?
Recall we forbid $(i(q-r)+r, i)$-configurations so there are $i(q-r)+r-q=(i-1)(q-r)$ other vertices to choose from.

Thus v is in $O\left(n^{(i-1)(q-r)}\right)=O\left(\binom{n-r}{q-r}^{i-1}\right)=O\left(D^{i-1}\right)$ edges of size i.

One can check H has small codegree and small codegree with G.

Configurations in Steiner Systems

A vertex v in H is an edge in G and a q-set of $[n]$.
How many edges of H of size i is it in?
Recall we forbid $(i(q-r)+r, i)$-configurations so there are $i(q-r)+r-q=(i-1)(q-r)$ other vertices to choose from.

Thus v is in $O\left(n^{(i-1)(q-r)}\right)=O\left(\binom{n-r}{q-r}^{i-1}\right)=O\left(D^{i-1}\right)$ edges of size i.

One can check H has small codegree and small codegree with G.

Our Theorem implies that $\chi(L(G) \cup H)=(1+o(1)) D$.

Configurations in Steiner Systems

A vertex v in H is an edge in G and a q-set of $[n]$.
How many edges of H of size i is it in?
Recall we forbid $(i(q-r)+r, i)$-configurations so there are $i(q-r)+r-q=(i-1)(q-r)$ other vertices to choose from.

Thus v is in $O\left(n^{(i-1)(q-r)}\right)=O\left(\binom{n-r}{q-r}^{i-1}\right)=O\left(D^{i-1}\right)$ edges of size i.

One can check H has small codegree and small codegree with G.

Our Theorem implies that $\chi(L(G) \cup H)=(1+o(1)) D$.
This not only implies the theorem but an almost decomposition into approximate high girth Steiner systems!

Part IV

Matchings in Bipartite Hypergraphs

Bipartite Hypergraphs

Definition

A hypergraph $G=(A, B)$ is bipartite with parts A and B if $V(G)=A \cup B$ and every edge of G contains exactly one vertex from A.

Bipartite Hypergraphs

Definition

A hypergraph $G=(A, B)$ is bipartite with parts A and B if $V(G)=A \cup B$ and every edge of G contains exactly one vertex from A.

A matching containing every vertex of A is an A-perfect matching.

Bipartite Hypergraphs

Definition

A hypergraph $G=(A, B)$ is bipartite with parts A and B if $V(G)=A \cup B$ and every edge of G contains exactly one vertex from A.

A matching containing every vertex of A is an A-perfect matching.

Theorem (D. and Postle 2022+)

\forall int. $r \geq 2$, real $\beta>0$, ヨ int. $D_{r, \beta} \geq 0$, real $\alpha>0$ s.t. $\forall D \geq D_{r, \beta}$: Let $G=(A, B)$ be a bipartite, r-bounded (multi)-hypergraph with codegrees at most $D^{1-\beta}$ satisfying

1. every vertex in A has degree at least $\left(1+D^{-\alpha}\right) D$, and
2. every vertex in B has degree at most D, then there exists an A-perfect matching of G.

Bipartite Hypergraphs

Indeed we prove this with configuration hypergraph H subject to the conditions of our main result to find an A-perfect H-avoiding matching of G.

Bipartite Hypergraphs

Indeed we prove this with configuration hypergraph H subject to the conditions of our main result to find an A-perfect H-avoiding matching of G.

This implies our previous main theorem as follows:

Bipartite Hypergraphs

Indeed we prove this with configuration hypergraph H subject to the conditions of our main result to find an A-perfect H-avoiding matching of G.

This implies our previous main theorem as follows: Let G be a hypergraph with a list assignment L of $E(G)$.

Bipartite Hypergraphs

Indeed we prove this with configuration hypergraph H subject to the conditions of our main result to find an A-perfect H-avoiding matching of G.

This implies our previous main theorem as follows: Let G be a hypergraph with a list assignment L of $E(G)$.

Consider the auxiliary hypergraph $G_{L}=\left(A_{L}, B_{L}\right)$

Bipartite Hypergraphs

Indeed we prove this with configuration hypergraph H subject to the conditions of our main result to find an A-perfect H-avoiding matching of G.

This implies our previous main theorem as follows: Let G be a hypergraph with a list assignment L of $E(G)$.

Consider the auxiliary hypergraph $G_{L}=\left(A_{L}, B_{L}\right)$ $A_{L}=E(G)$,

Bipartite Hypergraphs

Indeed we prove this with configuration hypergraph H subject to the conditions of our main result to find an A-perfect H-avoiding matching of G.

This implies our previous main theorem as follows: Let G be a hypergraph with a list assignment L of $E(G)$.

Consider the auxiliary hypergraph $G_{L}=\left(A_{L}, B_{L}\right)$

$$
A_{L}=E(G), B_{L}=\bigcup\left\{(v, c): v \in V(G), c \in \bigcup_{e \in E(G)} L(e)\right\}
$$

Bipartite Hypergraphs

Indeed we prove this with configuration hypergraph H subject to the conditions of our main result to find an A-perfect H-avoiding matching of G.

This implies our previous main theorem as follows:
Let G be a hypergraph with a list assignment L of $E(G)$.
Consider the auxiliary hypergraph $G_{L}=\left(A_{L}, B_{L}\right)$

$$
\begin{gathered}
A_{L}=E(G), B_{L}=\bigcup\left\{(v, c): v \in V(G), c \in \bigcup_{e \in E(G)} L(e)\right\} \\
E\left(G_{L}\right)=\left\{e_{c}: e \in E(G), c \in L(e)\right\}
\end{gathered}
$$

where $e_{c}=\{(v, c): v \in e\} \cup\{e\}$.

Bipartite Hypergraphs

Indeed we prove this with configuration hypergraph H subject to the conditions of our main result to find an A-perfect H-avoiding matching of G.

This implies our previous main theorem as follows:
Let G be a hypergraph with a list assignment L of $E(G)$.
Consider the auxiliary hypergraph $G_{L}=\left(A_{L}, B_{L}\right)$
$A_{L}=E(G), B_{L}=\bigcup\left\{(v, c): v \in V(G), c \in \bigcup_{e \in E(G)} L(e)\right\}$

$$
E\left(G_{L}\right)=\left\{e_{c}: e \in E(G), c \in L(e)\right\}
$$

where $e_{c}=\{(v, c): v \in e\} \cup\{e\}$.
An A_{L}-perfect matching of G_{L} is equivalent to an L-coloring of $E(G)$.

Part V

Application: Latin Squares

Latin Squares

Definition

A Latin square is an $n \times n$ array filled with n different symbols, each occurring exactly once in each row and exactly once in each column.

1	2	3	4
5			
2	4	5	1
3			
3	5	4	2
4	1		
4	3	1	5
5	1	2	3

Latin Squares

Question

For all n does there exist an $n \times n$ Latin square with no intercalate (a 2×2 sub-Latin square)?

Latin Squares

Question

For all n does there exist an $n \times n$ Latin square with no intercalate (a 2×2 sub-Latin square)?

1	2	3	4	5
2	4	5	1	3
3	5	4	2	1
4	3	1	5	2
5	1	2	3	4

Latin Squares

For an $n \times n$ Latin square L,
consider a 3-uniform hypergraph H on $3 n$ vertices:

Latin Squares

For an $n \times n$ Latin square L, consider a 3-uniform hypergraph H on $3 n$ vertices:
$V=$ Rows \cup Columns \cup Symbols

Latin Squares

For an $n \times n$ Latin square L, consider a 3-uniform hypergraph H on $3 n$ vertices:
$V=$ Rows \cup Columns \cup Symbols
$E=\{\{i, j, s\}$: entry $\{i, j\}$ contains symbol $s\}$

Latin Squares

For an $n \times n$ Latin square L,
consider a 3-uniform hypergraph H on $3 n$ vertices:
$V=$ Rows \cup Columns \cup Symbols
$E=\{\{i, j, s\}$: entry $\{i, j\}$ contains symbol $s\}$
Theorem (D. and Postle 2022+)
Approximate high girth Latin squares exist.
Theorem (D. and Postle 2022+)
Approximate high girth permutations exist.

Part VI

Application: Rainbow Matchings

Rainbow Matchings

Rainbow Matchings

Definition

A matching M of a (not necessarily properly) edge colored hypergraph G is rainbow if every edge of M is colored differently.

Definition

A rainbow matching is full if every color of the coloring appears on some edge of M.

Aharoni-Berger Conjecture

A typical example of a rainbow matching conjecture:

Conjecture (Aharoni and Berger 2009)

If G is a bipartite multigraph properly edge colored with q colors where every color appears at least $q+1$ times, then there exists a full rainbow matching.

Aharoni-Berger Conjecture

A typical example of a rainbow matching conjecture:

Conjecture (Aharoni and Berger 2009)

If G is a bipartite multigraph properly edge colored with q colors where every color appears at least $q+1$ times, then there exists a full rainbow matching.

A version for non-bipartite graphs:

Conjecture

If G is a multigraph properly edge colored with q colors where every color appears at least $q+2$ times, then there exists a full rainbow matching.

Rainbow Matchings

There are three natural ways to weaken these conjectures.

Rainbow Matchings

There are three natural ways to weaken these conjectures.

1. find a slightly smaller rainbow matching

Rainbow Matchings

There are three natural ways to weaken these conjectures.

1. find a slightly smaller rainbow matching
(i.e. $(1-o(1)) q$ in the conjectures above),

Rainbow Matchings

There are three natural ways to weaken these conjectures.

1. find a slightly smaller rainbow matching
(i.e. $(1-o(1)) q$ in the conjectures above), what Munhá Correia, Pokrovskiy, and Sudakov called the 'weak asymptotic'

Rainbow Matchings

There are three natural ways to weaken these conjectures.

1. find a slightly smaller rainbow matching
(i.e. $(1-o(1)) q$ in the conjectures above), what Munhá Correia, Pokrovskiy, and Sudakov called the 'weak asymptotic'
2. assume that each color appears slightly more times,

Rainbow Matchings

There are three natural ways to weaken these conjectures.

1. find a slightly smaller rainbow matching
(i.e. $(1-o(1)) q$ in the conjectures above), what Munhá Correia, Pokrovskiy, and Sudakov called the 'weak asymptotic'
2. assume that each color appears slightly more times, (i.e. $(1+o(1)) q$ times above),

Rainbow Matchings

There are three natural ways to weaken these conjectures.

1. find a slightly smaller rainbow matching
(i.e. $(1-o(1)) q$ in the conjectures above), what Munhá Correia, Pokrovskiy, and Sudakov called the 'weak asymptotic'
2. assume that each color appears slightly more times, (i.e. $(1+o(1)) q$ times above), what Munhá Correia, Pokrovskiy, and Sudakov called the 'strong asymptotic'

Rainbow Matchings

There are three natural ways to weaken these conjectures.

1. find a slightly smaller rainbow matching
(i.e. $(1-o(1)) q$ in the conjectures above), what Munhá Correia, Pokrovskiy, and Sudakov called the 'weak asymptotic'
2. assume that each color appears slightly more times, (i.e. $(1+o(1)) q$ times above), what Munhá Correia, Pokrovskiy, and Sudakov called the 'strong asymptotic'
3. assume the number of colors is slightly more,

Rainbow Matchings

There are three natural ways to weaken these conjectures.

1. find a slightly smaller rainbow matching
(i.e. $(1-o(1)) q$ in the conjectures above), what Munhá Correia, Pokrovskiy, and Sudakov called the 'weak asymptotic'
2. assume that each color appears slightly more times, (i.e. $(1+o(1)) q$ times above), what Munhá Correia, Pokrovskiy, and Sudakov called the 'strong asymptotic'
3. assume the number of colors is slightly more, (i.e. $(1+o(1)) q$ colors above).

Rainbow Matchings

There are three natural ways to weaken these conjectures.

1. find a slightly smaller rainbow matching
(i.e. $(1-o(1)) q$ in the conjectures above), what Munhá Correia, Pokrovskiy, and Sudakov called the 'weak asymptotic'
2. assume that each color appears slightly more times, (i.e. $(1+o(1)) q$ times above), what Munhá Correia, Pokrovskiy, and Sudakov called the 'strong asymptotic'
3. assume the number of colors is slightly more, (i.e. $(1+o(1)) q$ colors above).

Note: 2. and 3. imply 1.

The Dense Setting vs. the Sparse Setting

For rainbow conjectures and their weakenings:

The Dense Setting vs. the Sparse Setting

For rainbow conjectures and their weakenings:

- 'dense setting':

The Dense Setting vs. the Sparse Setting

For rainbow conjectures and their weakenings:

- 'dense setting': number of colors/desired size of a rainbow matching are on the order of number of times a color appears

The Dense Setting vs. the Sparse Setting

For rainbow conjectures and their weakenings:

- 'dense setting': number of colors/desired size of a rainbow matching are on the order of number of times a color appears
- 'sparse setting':

The Dense Setting vs. the Sparse Setting

For rainbow conjectures and their weakenings:

- 'dense setting': number of colors/desired size of a rainbow matching are on the order of number of times a color appears
- 'sparse setting': number of colors can be much larger than number of times a color appears;

The Dense Setting vs. the Sparse Setting

For rainbow conjectures and their weakenings:

- 'dense setting': number of colors/desired size of a rainbow matching are on the order of number of times a color appears
- 'sparse setting': number of colors can be much larger than number of times a color appears; number of times a color appears is related to degree of the graph

Sparse Versions of the Aharoni-Berger Conjecture

Sparse setting versions of the previous conjectures:

Abstract

Conjecture If G is a bipartite multigraph properly edge colored where every color appears at least $\Delta(G)+1$ times, then there exists a full rainbow matching.

[^0]
An Equivalence

A-perfect matchings in bipartite hypergraphs are equivalent to full rainbow matchings in hypergraphs.

An Equivalence

A-perfect matchings in bipartite hypergraphs are equivalent to full rainbow matchings in hypergraphs.

Let G be a hypergraph whose edges are colored by a (not necessarily proper) coloring ϕ.

An Equivalence

A-perfect matchings in bipartite hypergraphs are equivalent to full rainbow matchings in hypergraphs.

Let G be a hypergraph whose edges are colored by a (not necessarily proper) coloring ϕ.

Consider the auxiliary hypergraph Rainbow $(G, \phi):=(A, B)$

An Equivalence

A-perfect matchings in bipartite hypergraphs are equivalent to full rainbow matchings in hypergraphs.

Let G be a hypergraph whose edges are colored by a (not necessarily proper) coloring ϕ.

Consider the auxiliary hypergraph Rainbow $(G, \phi):=(A, B)$ $A=\bigcup_{e \in E(G)} \phi(e)$ is the set of colors

An Equivalence

A-perfect matchings in bipartite hypergraphs are equivalent to full rainbow matchings in hypergraphs.

Let G be a hypergraph whose edges are colored by a (not necessarily proper) coloring ϕ.

Consider the auxiliary hypergraph Rainbow $(G, \phi):=(A, B)$ $A=\bigcup_{e \in E(G)} \phi(e)$ is the set of colors
$B=V(G)$ is the set of vertices of G

An Equivalence

A-perfect matchings in bipartite hypergraphs are equivalent to full rainbow matchings in hypergraphs.

Let G be a hypergraph whose edges are colored by a (not necessarily proper) coloring ϕ.

Consider the auxiliary hypergraph Rainbow $(G, \phi):=(A, B)$ $A=\bigcup_{e \in E(G)} \phi(e)$ is the set of colors
$B=V(G)$ is the set of vertices of G
extend every edge e of G to include its color $\phi(e)$,

An Equivalence

A-perfect matchings in bipartite hypergraphs are equivalent to full rainbow matchings in hypergraphs.

Let G be a hypergraph whose edges are colored by a (not necessarily proper) coloring ϕ.

Consider the auxiliary hypergraph Rainbow $(G, \phi):=(A, B)$ $A=\bigcup_{e \in E(G)} \phi(e)$ is the set of colors
$B=V(G)$ is the set of vertices of G
extend every edge e of G to include its color $\phi(e)$, $E(\operatorname{Rainbow}(G, \phi))=\{e \cup \phi(e): e \in E(G)\}$.

Aharoni-Berger Conjecture

Our bipartite theorem is equivalent to:

Aharoni-Berger Conjecture

Our bipartite theorem is equivalent to:
Theorem (D. and Postle 2022+)
\forall int. $r \geq 2$, real $\beta>0, \exists$ int. $D_{\beta} \geq 0$, real $\alpha>0$ s.t. $\forall D \geq D_{\beta}$: Let G be a r-bounded (multi)-hypergraph with $\Delta(G) \leq D$ and codegrees at most $D^{1-\beta}$ that is (not necessarily properly) edge colored satisfying

1. every color appears at least $\left(1+D^{-\alpha}\right) D$ times, and
2. every color appears at most $D^{1-\beta}$ times around a vertex, then there exists a full rainbow matching of G.

Aharoni-Berger Conjecture

Our bipartite theorem is equivalent to:

Theorem (D. and Postle 2022+)

\forall int. $r \geq 2$, real $\beta>0, \exists$ int. $D_{\beta} \geq 0$, real $\alpha>0$ s.t. $\forall D \geq D_{\beta}$:
Let G be a r-bounded (multi)-hypergraph with $\Delta(G) \leq D$ and codegrees at most $D^{1-\beta}$ that is (not necessarily properly) edge colored satisfying

1. every color appears at least $\left(1+D^{-\alpha}\right) D$ times, and
2. every color appears at most $D^{1-\beta}$ times around a vertex, then there exists a full rainbow matching of G.

Indeed there is even a set of D disjoint full rainbow matchings of G.

Alspach's Conjecture

Conjecture (Alspach 1988)

If G is a $2 d$-regular graph that is edge colored such that each color class is a spanning subgraph of G in which all vertices have degree two, then G has a full rainbow matching.

- strong asymptotic version, Munhá Correia, Pokrovskiy, and Sudakov 2021
- strong asymptotic version in the sparse setting, D. and Postle 2022+

Grinblat's Conjecture

Originally motivated by equivalence classes in algebras:

Conjecture (Grinblat 2002)

If G is a multigraph that is (not necessarily properly) edge colored with n colors where each color class is the disjoint union of non-trivial complete subgraphs and spans at least $3 n-2$ vertices, then G has a rainbow matching of size n.

- strong asymptotic version, Clemens, Ehrenmüller, and Pokrovskiy 2017
- full proof, Munhá Correia and Sudakov 2021
- bounded multiplicity graphs $2 n+o(n)$ vertices, Munhá Correia and Yepremyan
- bounded multiplicity strong asymptotic version for hypergraphs in the sparse setting, D. and Postle 2022+

Grinblat's Conjecture

Theorem (D. and Postle 2022+)

\forall int. $r \geq 2$ and real $\beta>0, \exists$ int. D_{β} and real $\alpha>0$ s.t. $\forall D \geq D_{\beta}$: If G is an r-uniform (multi)-hypergraph with codegrees at most $D^{1-\beta}$ that is (not necessarily properly) edge colored satisfying

1. every color class is the disjoint union of non-trivial complete subgraphs and spans at least $r D\left(1+D^{-\alpha}\right)$ vertices, and
2. each vertex is incident with at most D colors, then G has a full rainbow matching.

Grinblat's Conjecture

Theorem (D. and Postle 2022+)
 \forall int. $r \geq 2$ and real $\beta>0, \exists$ int. D_{β} and real $\alpha>0$ s.t. $\forall D \geq D_{\beta}$: If G is an r-uniform (multi)-hypergraph with codegrees at most $D^{1-\beta}$ that is (not necessarily properly) edge colored satisfying
 1. every color class is the disjoint union of non-trivial complete subgraphs and spans at least rD(1+ $\left.D^{-\alpha}\right)$ vertices, and
 2. each vertex is incident with at most D colors, then G has a full rainbow matching.

Indeed there is even a set of D disjoint full rainbow matchings.

Conclusion

Conclusion

Our main result shows a common generalization of two classical results from the 1980's:

- Pippenger's Theorem
(for finding an almost perfect matching) and
- Ajtai-Komlós-Pintz-Spencer-Szemerédi's Theorem (for finding an independent set in girth five hypergraphs)

We derive high girth versions of settings where Rödl's nibble yields approximate decompositions.

Conclusion

Our main result shows a common generalization of two classical results from the 1980's:

- Pippenger's Theorem
(for finding an almost perfect matching) and
- Ajtai-Komlós-Pintz-Spencer-Szemerédi's Theorem (for finding an independent set in girth five hypergraphs)

We derive high girth versions of settings where Rödl's nibble yields approximate decompositions.

Some notable applications include:

- high girth Steiner systems,
- edge coloring and hypergraph coloring,
- rainbow matchings, and
- Latin squares and high dimensional permutations

Conclusion

Thank you for listening!

[^0]: Conjecture If G is a multigraph properly edge colored where every color appears at least $\Delta(G)+2$ times, then there exists a full rainbow matching.

