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Part I

Avoiding Submatchings
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General Question and Key Definition

Question
When can we find a large matching in a hypergraph avoiding
certain forbidden submatchings?

Definition
Let G be a (multi)-hypergraph; H is a configuration
hypergraph for G if V (H) = E(G) and E(H) consists of a
set of matchings of G of size at least two.

A matching of G is H-avoiding if it spans no edge of H.
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General Question and Key Definition

Question
When can we find a large matching in a hypergraph avoiding
certain forbidden submatchings?

Definition
The line graph L(G) of a hypergraph G is the graph where
V (L(G)) = E(G) and E(L(G)) = {uv : u, v ∈ E(G),u ∩ v ̸= ∅}.

Equivalently, we want a good lower bound on α(L(G) ∪ H).

Question
Under what conditions does L(G) ∪ H have independence
number almost the minimum of the independence numbers
of H and L(G)?
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Edge+Vertex Phenomenon

Question
More generally, when can we almost decompose the edges
of G into large H-avoiding matchings?

This is related to upper bounding χ(L(G) ∪ H).

Question
Under what conditions does L(G) ∪ H have chromatic
number almost the maximum of the chromatic numbers
of H and L(G)?
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Definitions

Before our main result, first recall:

Definition
The codegree of vertices u, v ∈ V (G) is the number of
edges containing both.

Definition
The girth of a hypergraph H is the smallest integer g ≥ 2
for which H has a g-Berge cycle.

Definition
The i-degree di(v) of a vertex v ∈ V (H) is the number of
edges of H of size i containing v.
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Main Result

Theorem (D. and Postle 2022+)
Let G be an r-uniform hypergraph on n vertices with

maximum degree D and
codegrees at most D1−β.

Let H be a configuration hypergraph of G with
girth at least 5 or small codegrees,
each edge containing at most g vertices, and
maximum i-degree ≤ O(Di−1 logD).

Then χ(L(G) ∪ H) ≤ χℓ(L(G) ∪ H) ≤
(

1 + D− β
16r

)
D.

Recall that χℓ denotes the list chromatic number
(generalizing chromatic number).
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Part II

Combining Two Streams
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What does this imply if H has no edges?
Our main theorem implies
(but with more restrictive codegree assumptions):

Theorem (Pippenger-Spencer 1989)
∀r > 0, ∃γ > 0 s.t. if G is an r-uniform hypergraph with
maximum degree D and codegrees at most γD, then

χ(L(G)) = (1 + o(1))D.

This generalizes Rödl’s “nibble method” from designs.

Theorem (Kahn 1996)
∀r > 0, ∃γ > 0 s.t. if G is an r-uniform hypergraph with
maximum degree D and codegrees at most γD, then

χℓ(L(G)) = (1 + o(1))D.

This asymptotically proved the List Coloring Conjecture.
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What does this imply if L(G) has no edges?

Equivalently then G is a matching.

Theorem (Ajtai, Komlós, Pintz, Spencer, Szemerédi 1982)

If H is an r-uniform hypergraph on n vertices of girth at least
five and maximum degree ∆, then

α(H) ≥ Ω

(
n · log∆

∆1/(r−1)

)
.

Improvements:
with girth at least three, Duke-Lefmann-Rödl 1995
plus coloring, Frieze-Mubayi 2013
plus bounded codegree, Cooper-Mubayi 2016
plus mixed uniformity, Li-Postle 2022+
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Proof Ideas

‘These two threads of research, of edge-colouring and of
vertex-colouring with the “nibble” method, have developed
somewhat in parallel, sometimes intertwining.’
-Kang, Kelly, Kühn, Methuku, Osthus 2021+

Key Ideas:
for H track a “weighted degree” because H has a mix of
uniformities
nibble calculations for G and nibble calculations for H
interweave perfectly
introduce a new linear Talagrand’s Inequality to
concentrate and use Lovász Local Lemma to finish
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Part III

Application: Steiner Systems
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Steiner Systems

Definition
For n ≥ q > r ≥ 2, a partial (n,q, r)-Steiner system is a
set S of q-subsets of an n-set V s.t. every r -subset of V is
contained in at most one q-set in S.

Definition
An (n,q, r)-Steiner system is a partial (n,q, r)-Steiner
system S with |S| =

(n
r

)
/
(q

r

)
.

I.e., every r -subset is in exactly one q-set

Example: Fano Plane, (7,3,2)-Steiner system
(7

2

)
/
(3

2

)
= 7
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Steiner Systems

Definition

n is admissible if
(q−i

r−i

)
|
(n−i

r−i

)
for all 0 ≤ i ≤ r − 1

Notorious conjecture from the mid-1800’s:

Existence Conjecture
For sufficiently large n, there exists an (n,q, r)-Steiner
system whenever n is admissible.

q = 3 and r = 2, Kirkman 1847
r = 2, Wilson 1975
approximate version - “nibble method”, Rödl 1985
full conjecture - algebraic techniques, Keevash 2014+
full conjecture - combinatorial techniques,
Kühn, Lo, Glock, and Osthus 2016+
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High Girth Steiner Systems

Definition
In a partial (n,q, r)-Steiner system, a (j , i)-configuration is
a set of i q-subsets spanning at most j elements.

Observation
An (n,3,2)-Steiner system S contains an
(i + 3, i)-configuration for every fixed i.

Question
What about (i + 2, i)-configurations?

Conjecture (Erdős 1973)
For every integer g ≥ 2, there exists ng such that for all
admissible n ≥ ng , there exists an (n,3,2)-Steiner system
with no (i + 2, i)-configuration for all 2 ≤ i ≤ g.
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High Girth Steiner Systems

Definition
The girth of an (n,3,2)-Steiner system is the smallest
integer g ≥ 2 for which it has a (g + 2,g)-configuration.

Conjecture (Erdős 1973)
For sufficiently large n, there exists an (n,3,2)-Steiner
system with arbitrarily high girth whenever n is admissible.

there is a partial Steiner triple system of girth at least g
and size at least cg · n2 (cg → 0 as g → ∞),
Lefmann, Phelps, and Rödl 1993
approximate version, Bohman and Warnke 2019 and
Glock, Kühn, Lo, and Osthus 2020
full conjecture, Kwan, Sah, Sawhney, and Simkin 2022+
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What about (n,q, r)-Steiner systems?

Observation (Glock, Kühn, Lo, and Osthus 2020)
Every (n,q, r)-Steiner system contains an
(i(q − r) + r + 1, i)-configuration for every fixed i.

For q = 3, r = 2 this is an (i + 3, i)-configuration.

Definition
The girth of an (n,q, r)-Steiner system is the smallest
integer g ≥ 2 for which it has a (g(q− r)+ r ,g)-configuration.
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A More General Conjecture

Conjecture (Glock, Kühn, Lo, and Osthus 2020,
Keevash and Long 2020)
For sufficiently large n, there exists an (n,q, r)-Steiner
system with arbitrarily high girth whenever n is admissible.

We show the approximate version:

Theorem (D. and Postle 2022+)
∀ int. q > r ≥ 2 and int. g ≥ 2, ∃n0 and β ∈ (0,1) s.t.
∀ n ≥ n0, ∃ a partial (n,q, r)-Steiner system S with

|S| ≥ (1 − n−β)

(n
r

)(q
r

)
and no (i(q − r) + r , i)-configurations ∀ 2 ≤ i ≤ g.
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Conjecture (Glock, Kühn, Lo, and Osthus 2020,
Keevash and Long 2020)
For sufficiently large n, there exists an (n,q, r)-Steiner
system with arbitrarily high girth whenever n is admissible.

We show the approximate version:

Theorem (D. and Postle 2022+,
Glock, Joos, Kim, Kühn, and Lichev 2022+)
∀ int. q > r ≥ 2 and int. g ≥ 2, ∃n0 and β ∈ (0,1) s.t.
∀ n ≥ n0, ∃ a partial (n,q, r)-Steiner system S with
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Configurations in Steiner Systems

The auxiliary hypergraph G:

V is all r -sets of [n]
E the is collections of

(q
r

)
r -sets that lie in a q-set.

Here an (almost) perfect matching corresponds to a
(partial) Steiner System.

G is a
(q

r

)
-uniform and D =

(n−r
q−r

)
-regular.

Two distinct vertices lie in at most(n−r−1
q−r−1

)
= o

((n−r
q−r

))
= o(D) common edges.

Question
What do the forbidden configurations become?
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Configurations in Steiner Systems
A vertex v in H is an edge in G

and a q-set of [n].

How many edges of H of size i is it in?

Recall we forbid (i(q − r) + r , i)-configurations so there are
i(q − r)+ r −q = (i −1)(q − r) other vertices to choose from.

Thus v is in O(n(i−1)(q−r)) = O
((n−r

q−r

)i−1
)
= O

(
Di−1) edges

of size i .

One can check H has small codegree and small codegree
with G.

Our Theorem implies that χ(L(G) ∪ H) = (1 + o(1))D.

This not only implies the theorem but an almost
decomposition into approximate high girth Steiner systems!
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Part IV

Matchings in Bipartite
Hypergraphs
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Bipartite Hypergraphs
Definition
A hypergraph G = (A,B) is bipartite with parts A and B if
V (G) = A ∪ B and every edge of G contains exactly one
vertex from A.

A matching containing every vertex of A is an A-perfect
matching.

Theorem (D. and Postle 2022+)
∀ int. r ≥ 2, real β > 0, ∃ int. Dr ,β ≥ 0, real α > 0 s.t. ∀ D ≥ Dr ,β :
Let G = (A,B) be a bipartite, r -bounded (multi)-hypergraph
with codegrees at most D1−β satisfying

1. every vertex in A has degree at least (1 + D−α)D, and
2. every vertex in B has degree at most D,

then there exists an A-perfect matching of G.
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Bipartite Hypergraphs
Indeed we prove this with configuration hypergraph H
subject to the conditions of our main result to find an
A-perfect H-avoiding matching of G.

This implies our previous main theorem as follows:
Let G be a hypergraph with a list assignment L of E(G).

Consider the auxiliary hypergraph GL = (AL,BL)

AL = E(G),BL =
⋃{

(v , c) : v ∈ V (G), c ∈
⋃

e∈E(G) L(e)
}

E(GL) = {ec : e ∈ E(G), c ∈ L(e)}

where ec = {(v , c) : v ∈ e} ∪ {e}.

An AL-perfect matching of GL is equivalent to an L-coloring
of E(G).
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Part V

Application: Latin Squares
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Latin Squares
Definition
A Latin square is an n × n array filled with n different
symbols, each occurring exactly once in each row and
exactly once in each column.
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Latin Squares

Question
For all n does there exist an n × n Latin square with no
intercalate (a 2 × 2 sub-Latin square)?
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Latin Squares

For an n × n Latin square L,
consider a 3-uniform hypergraph H on 3n vertices:

V = Rows ∪ Columns ∪ Symbols
E = {{i , j , s} : entry {i , j} contains symbol s}

Theorem (D. and Postle 2022+)
Approximate high girth Latin squares exist.

Theorem (D. and Postle 2022+)
Approximate high girth permutations exist.
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Part VI

Application: Rainbow Matchings

Michelle Delcourt Matchings Avoiding Forbidden Submatchings 29 / 41



Rainbow Matchings

Definition
A matching M of a (not necessarily properly) edge colored
hypergraph G is rainbow if every edge of M is colored
differently.

Definition
A rainbow matching is full if every color of the coloring
appears on some edge of M.
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Aharoni-Berger Conjecture

A typical example of a rainbow matching conjecture:

Conjecture (Aharoni and Berger 2009)
If G is a bipartite multigraph properly edge colored with
q colors where every color appears at least q + 1 times,
then there exists a full rainbow matching.

A version for non-bipartite graphs:

Conjecture
If G is a multigraph properly edge colored with q colors
where every color appears at least q + 2 times,
then there exists a full rainbow matching.
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Rainbow Matchings

There are three natural ways to weaken these conjectures.

1. find a slightly smaller rainbow matching
(i.e. (1 − o(1))q in the conjectures above),
what Munhá Correia, Pokrovskiy, and Sudakov called
the ‘weak asymptotic’

2. assume that each color appears slightly more times,
(i.e. (1 + o(1))q times above), what Munhá Correia,
Pokrovskiy, and Sudakov called the ‘strong asymptotic’

3. assume the number of colors is slightly more,
(i.e. (1 + o(1))q colors above).

Note: 2. and 3. imply 1.
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The Dense Setting vs. the Sparse Setting

For rainbow conjectures and their weakenings:

‘dense setting’: number of colors/desired size of a
rainbow matching are on the order of number of times a
color appears
‘sparse setting’: number of colors can be much larger
than number of times a color appears;
number of times a color appears is related to degree of
the graph
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Sparse Versions of the Aharoni-Berger Conjecture

Sparse setting versions of the previous conjectures:

Conjecture
If G is a bipartite multigraph properly edge colored where
every color appears at least ∆(G) + 1 times,
then there exists a full rainbow matching.

Conjecture
If G is a multigraph properly edge colored where
every color appears at least ∆(G) + 2 times,
then there exists a full rainbow matching.
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An Equivalence

A-perfect matchings in bipartite hypergraphs are equivalent
to full rainbow matchings in hypergraphs.

Let G be a hypergraph whose edges are colored by a
(not necessarily proper) coloring ϕ.

Consider the auxiliary hypergraph Rainbow(G, ϕ) := (A,B)
A =

⋃
e∈E(G) ϕ(e) is the set of colors

B = V (G) is the set of vertices of G

extend every edge e of G to include its color ϕ(e),
E(Rainbow(G, ϕ)) = {e ∪ ϕ(e) : e ∈ E(G)}.
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Aharoni-Berger Conjecture

Our bipartite theorem is equivalent to:

Theorem (D. and Postle 2022+)
∀ int. r ≥ 2, real β > 0, ∃ int. Dβ ≥ 0, real α > 0 s.t. ∀ D ≥ Dβ :
Let G be a r-bounded (multi)-hypergraph with ∆(G) ≤ D and
codegrees at most D1−β that is (not necessarily properly)
edge colored satisfying

1. every color appears at least (1 + D−α)D times, and
2. every color appears at most D1−β times around a vertex,

then there exists a full rainbow matching of G.

Indeed there is even a set of D disjoint full rainbow
matchings of G.
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Alspach’s Conjecture

Conjecture (Alspach 1988)
If G is a 2d-regular graph that is edge colored such that each
color class is a spanning subgraph of G in which all vertices
have degree two, then G has a full rainbow matching.

strong asymptotic version, Munhá Correia, Pokrovskiy,
and Sudakov 2021
strong asymptotic version in the sparse setting, D. and
Postle 2022+
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Grinblat’s Conjecture

Originally motivated by equivalence classes in algebras:

Conjecture (Grinblat 2002)
If G is a multigraph that is (not necessarily properly) edge
colored with n colors where each color class is the disjoint
union of non-trivial complete subgraphs and spans at least
3n − 2 vertices, then G has a rainbow matching of size n.

strong asymptotic version, Clemens, Ehrenmüller, and
Pokrovskiy 2017
full proof, Munhá Correia and Sudakov 2021
bounded multiplicity graphs 2n + o(n) vertices, Munhá
Correia and Yepremyan
bounded multiplicity strong asymptotic version for
hypergraphs in the sparse setting, D. and Postle 2022+
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Grinblat’s Conjecture

Theorem (D. and Postle 2022+)
∀ int. r ≥ 2 and real β > 0, ∃ int. Dβ and real α > 0 s.t. ∀D ≥ Dβ :
If G is an r-uniform (multi)-hypergraph with codegrees at
most D1−β that is (not necessarily properly) edge colored
satisfying

1. every color class is the disjoint union of non-trivial
complete subgraphs and spans at least rD(1 + D−α)
vertices, and

2. each vertex is incident with at most D colors,
then G has a full rainbow matching.

Indeed there is even a set of D disjoint full rainbow
matchings.
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Conclusion

Our main result shows a common generalization of two
classical results from the 1980’s:

Pippenger’s Theorem
(for finding an almost perfect matching) and
Ajtai-Komlós-Pintz-Spencer-Szemerédi’s Theorem
(for finding an independent set in girth five hypergraphs)

We derive high girth versions of settings where Rödl’s nibble
yields approximate decompositions.

Some notable applications include:
high girth Steiner systems,
edge coloring and hypergraph coloring,
rainbow matchings, and
Latin squares and high dimensional permutations
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Conclusion

Thank you for listening!
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