Hypergraph Matchings Avoiding Forbidden Submatchings

Michelle Delcourt

Toronto Metropolitan University

Oxford Discrete Mathematics and Probability Seminar

joint work with Luke Postle

November 22, 2022

Part I

Avoiding Submatchings

Question

When can we find a large matching in a hypergraph avoiding certain forbidden submatchings?

Question

When can we find a large matching in a hypergraph avoiding certain forbidden submatchings?

Definition

Let G be a (multi)-hypergraph;

Question

When can we find a large matching in a hypergraph avoiding certain forbidden submatchings?

Definition

Let G be a (multi)-hypergraph; H is a **configuration** hypergraph for G

Question

When can we find a large matching in a hypergraph avoiding certain forbidden submatchings?

Definition

Let G be a (multi)-hypergraph; H is a **configuration** hypergraph for G if V(H) = E(G) and E(H) consists of a set of matchings of G of size at least two.

Question

When can we find a large matching in a hypergraph avoiding certain forbidden submatchings?

Definition

Let G be a (multi)-hypergraph; H is a **configuration** hypergraph for G if V(H) = E(G) and E(H) consists of a set of matchings of G of size at least two.

A matching of G is H-avoiding if it spans no edge of H.

Question

When can we find a large matching in a hypergraph avoiding certain forbidden submatchings?

Question

When can we find a large matching in a hypergraph avoiding certain forbidden submatchings?

Definition

The **line graph** L(G) of a hypergraph G is the graph where V(L(G)) = E(G) and $E(L(G)) = \{uv : u, v \in E(G), u \cap v \neq \emptyset\}$.

Question

When can we find a large matching in a hypergraph avoiding certain forbidden submatchings?

Definition

The **line graph** L(G) of a hypergraph G is the graph where V(L(G)) = E(G) and $E(L(G)) = \{uv : u, v \in E(G), u \cap v \neq \emptyset\}$.

Equivalently, we want a good lower bound on $\alpha(L(G) \cup H)$.

Question

When can we find a large matching in a hypergraph avoiding certain forbidden submatchings?

Definition

The **line graph** L(G) of a hypergraph G is the graph where V(L(G)) = E(G) and $E(L(G)) = \{uv : u, v \in E(G), u \cap v \neq \emptyset\}$.

Equivalently, we want a good lower bound on $\alpha(L(G) \cup H)$.

Question

Under what conditions does $L(G) \cup H$ have independence number almost the minimum of the independence numbers of H and L(G)?

Question

More generally, when can we almost decompose the edges of G into large H-avoiding matchings?

Question

More generally, when can we almost decompose the edges of G into large H-avoiding matchings?

This is related to upper bounding $\chi(L(G) \cup H)$.

Question

More generally, when can we almost decompose the edges of G into large H-avoiding matchings?

This is related to upper bounding $\chi(L(G) \cup H)$.

Question

Under what conditions does $L(G) \cup H$ have chromatic number almost the maximum of the chromatic numbers of H and L(G)?

Definitions

Before our main result, first recall:

Definitions

Before our main result, first recall:

Definition

The **codegree** of vertices $u, v \in V(G)$ is the number of edges containing both.

Definition

The **girth** of a hypergraph H is the smallest integer $g \ge 2$ for which H has a g-Berge cycle.

Definition

The *i*-degree $d_i(v)$ of a vertex $v \in V(H)$ is the number of edges of H of size *i* containing *v*.

Theorem (D. and Postle 2022+)

Let G be an r-uniform hypergraph on n vertices with

Theorem (D. and Postle 2022+)

Let G be an r-uniform hypergraph on n vertices with

• maximum degree D

Theorem (D. and Postle 2022+)

Let G be an r-uniform hypergraph on n vertices with

- maximum degree D and
- codegrees at most $D^{1-\beta}$.

Theorem (D. and Postle 2022+)

Let G be an r-uniform hypergraph on n vertices with

- maximum degree D and
- codegrees at most $D^{1-\beta}$.

Let H be a configuration hypergraph of G with

Theorem (D. and Postle 2022+)

Let G be an r-uniform hypergraph on n vertices with

- maximum degree D and
- codegrees at most $D^{1-\beta}$.

Let H be a configuration hypergraph of G with

• girth at least 5

Theorem (D. and Postle 2022+)

Let G be an r-uniform hypergraph on n vertices with

- maximum degree D and
- codegrees at most $D^{1-\beta}$.

Let H be a configuration hypergraph of G with

• girth at least 5 or small codegrees,

Theorem (D. and Postle 2022+)

Let G be an r-uniform hypergraph on n vertices with

- maximum degree D and
- codegrees at most $D^{1-\beta}$.

Let H be a configuration hypergraph of G with

- girth at least 5 or small codegrees,
- each edge containing at most g vertices, and

Theorem (D. and Postle 2022+)

Let G be an r-uniform hypergraph on n vertices with

- maximum degree D and
- codegrees at most $D^{1-\beta}$.

Let H be a configuration hypergraph of G with

- girth at least 5 or small codegrees,
- each edge containing at most g vertices, and
- maximum i-degree $\leq O(D^{i-1} \log D)$.

Theorem (D. and Postle 2022+)

Let G be an r-uniform hypergraph on n vertices with

- maximum degree D and
- codegrees at most $D^{1-\beta}$.

Let H be a configuration hypergraph of G with

- girth at least 5 or small codegrees,
- each edge containing at most g vertices, and
- maximum i-degree $\leq O(D^{i-1} \log D)$.

Then $\chi(L(G) \cup H) \leq \chi_{\ell}(L(G) \cup H) \leq \left(1 + D^{-\frac{\beta}{16r}}\right) D.$

Theorem (D. and Postle 2022+)

Let G be an r-uniform hypergraph on n vertices with

- maximum degree D and
- codegrees at most $D^{1-\beta}$.

Let H be a configuration hypergraph of G with

- girth at least 5 or small codegrees,
- each edge containing at most g vertices, and
- maximum i-degree $\leq O(D^{i-1} \log D)$.

Then
$$\chi(L(G)\cup H)\leq \chi_\ell(L(G)\cup H)\leq \left(1+D^{-rac{eta}{16r}}
ight) D.$$

Recall that χ_{ℓ} denotes the list chromatic number (generalizing chromatic number).

Michelle Delcourt

Part II

Combining Two Streams

Our main theorem implies

(but with more restrictive codegree assumptions):

Our main theorem implies (but with more restrictive codegree assumptions):

Theorem (Pippenger-Spencer 1989)

 $\forall r > 0, \exists \gamma > 0 \text{ s.t.}$ if G is an r-uniform hypergraph with maximum degree D and codegrees at most γD , then

 $\chi(L(G))=(1+o(1))D.$

Our main theorem implies (but with more restrictive codegree assumptions):

Theorem (Pippenger-Spencer 1989)

 $\forall r > 0, \exists \gamma > 0 \text{ s.t.}$ if G is an r-uniform hypergraph with maximum degree D and codegrees at most γD , then

 $\chi(L(G))=(1+o(1))D.$

This generalizes Rödl's "nibble method" from designs.

Our main theorem implies (but with more restrictive codegree assumptions):

Theorem (Pippenger-Spencer 1989)

 $\forall r > 0, \exists \gamma > 0 \text{ s.t.}$ if G is an r-uniform hypergraph with maximum degree D and codegrees at most γD , then

 $\chi(L(G)) = (1 + o(1))D.$

This generalizes Rödl's "nibble method" from designs.

Theorem (Kahn 1996)

 $\forall r > 0, \exists \gamma > 0$ s.t. if G is an r-uniform hypergraph with maximum degree D and codegrees at most γD , then

 $\chi_{\ell}(L(G)) = (1 + o(1))D.$

Our main theorem implies (but with more restrictive codegree assumptions):

Theorem (Pippenger-Spencer 1989)

 $\forall r > 0, \exists \gamma > 0 \text{ s.t.}$ if G is an r-uniform hypergraph with maximum degree D and codegrees at most γD , then

 $\chi(L(G)) = (1 + o(1))D.$

This generalizes Rödl's "nibble method" from designs.

Theorem (Kahn 1996)

 $\forall r > 0, \exists \gamma > 0$ s.t. if G is an r-uniform hypergraph with maximum degree D and codegrees at most γD , then

 $\chi_{\ell}(L(G)) = (1 + o(1))D.$

This asymptotically proved the List Coloring Conjecture.

Equivalently then *G* is a matching.

Equivalently then *G* is a matching.

Theorem (Ajtai, Komlós, Pintz, Spencer, Szemerédi 1982)

If H is an r-uniform hypergraph on n vertices of girth at least five and maximum degree Δ , then

$$\alpha(H) \ge \Omega\left(n \cdot \frac{\log \Delta}{\Delta^{1/(r-1)}}\right).$$

Equivalently then *G* is a matching.

Theorem (Ajtai, Komlós, Pintz, Spencer, Szemerédi 1982)

If H is an r-uniform hypergraph on n vertices of girth at least five and maximum degree Δ , then

$$\alpha(H) \ge \Omega\left(n \cdot \frac{\log \Delta}{\Delta^{1/(r-1)}}\right).$$

Improvements:

• with girth at least three, Duke-Lefmann-Rödl 1995

Equivalently then *G* is a matching.

Theorem (Ajtai, Komlós, Pintz, Spencer, Szemerédi 1982)

If H is an r-uniform hypergraph on n vertices of girth at least five and maximum degree Δ , then

$$\alpha(H) \ge \Omega\left(n \cdot \frac{\log \Delta}{\Delta^{1/(r-1)}}\right).$$

Improvements:

- with girth at least three, Duke-Lefmann-Rödl 1995
- plus coloring, Frieze-Mubayi 2013

Equivalently then *G* is a matching.

Theorem (Ajtai, Komlós, Pintz, Spencer, Szemerédi 1982)

If H is an r-uniform hypergraph on n vertices of girth at least five and maximum degree Δ , then

$$\alpha(H) \ge \Omega\left(n \cdot \frac{\log \Delta}{\Delta^{1/(r-1)}}\right).$$

Improvements:

- with girth at least three, Duke-Lefmann-Rödl 1995
- plus coloring, Frieze-Mubayi 2013
- plus bounded codegree, Cooper-Mubayi 2016

Equivalently then *G* is a matching.

Theorem (Ajtai, Komlós, Pintz, Spencer, Szemerédi 1982)

If H is an r-uniform hypergraph on n vertices of girth at least five and maximum degree Δ , then

$$\alpha(H) \ge \Omega\left(n \cdot \frac{\log \Delta}{\Delta^{1/(r-1)}}\right).$$

Improvements:

- with girth at least three, Duke-Lefmann-Rödl 1995
- plus coloring, Frieze-Mubayi 2013
- plus bounded codegree, Cooper-Mubayi 2016
- plus mixed uniformity, Li-Postle 2022+

'These two threads of research, of edge-colouring and of vertex-colouring with the "nibble" method, have developed somewhat in parallel, sometimes intertwining.' -Kang, Kelly, Kühn, Methuku, Osthus 2021+

'These two threads of research, of edge-colouring and of vertex-colouring with the "nibble" method, have developed somewhat in parallel, sometimes intertwining.' -Kang, Kelly, Kühn, Methuku, Osthus 2021+

Key Ideas:

for H track a "weighted degree"

'These two threads of research, of edge-colouring and of vertex-colouring with the "nibble" method, have developed somewhat in parallel, sometimes intertwining.' -Kang, Kelly, Kühn, Methuku, Osthus 2021+

Key Ideas:

 for H track a "weighted degree" because H has a mix of uniformities

'These two threads of research, of edge-colouring and of vertex-colouring with the "nibble" method, have developed somewhat in parallel, sometimes intertwining.' -Kang, Kelly, Kühn, Methuku, Osthus 2021+

Key Ideas:

- for H track a "weighted degree" because H has a mix of uniformities
- nibble calculations for *G* and nibble calculations for *H* interweave perfectly

'These two threads of research, of edge-colouring and of vertex-colouring with the "nibble" method, have developed somewhat in parallel, sometimes intertwining.' -Kang, Kelly, Kühn, Methuku, Osthus 2021+

Key Ideas:

- for H track a "weighted degree" because H has a mix of uniformities
- nibble calculations for *G* and nibble calculations for *H* interweave perfectly
- introduce a new linear Talagrand's Inequality to concentrate

'These two threads of research, of edge-colouring and of vertex-colouring with the "nibble" method, have developed somewhat in parallel, sometimes intertwining.' -Kang, Kelly, Kühn, Methuku, Osthus 2021+

Key Ideas:

- for H track a "weighted degree" because H has a mix of uniformities
- nibble calculations for *G* and nibble calculations for *H* interweave perfectly
- introduce a new linear Talagrand's Inequality to concentrate and use Lovász Local Lemma to finish

Part III

Application: Steiner Systems

Definition

For $n \ge q > r \ge 2$, a **partial** (n, q, r)-Steiner system is a set S of q-subsets of an n-set V s.t. every r-subset of V is contained in at most one q-set in S.

Definition

For $n \ge q > r \ge 2$, a **partial** (n, q, r)-Steiner system is a set S of q-subsets of an n-set V s.t. every r-subset of V is contained in at most one q-set in S.

Definition

An (n, q, r)-Steiner system is a partial (n, q, r)-Steiner system S with $|S| = \binom{n}{r} / \binom{q}{r}$.

Definition

For $n \ge q > r \ge 2$, a **partial** (n, q, r)-Steiner system is a set S of q-subsets of an n-set V s.t. every r-subset of V is contained in at most one q-set in S.

Definition

An (n, q, r)-Steiner system is a partial (n, q, r)-Steiner system S with $|S| = \binom{n}{r} / \binom{q}{r}$.

I.e., every *r*-subset is in exactly one *q*-set

Definition

For $n \ge q > r \ge 2$, a **partial** (n, q, r)-Steiner system is a set S of q-subsets of an n-set V s.t. every r-subset of V is contained in at most one q-set in S.

Definition

An (n, q, r)-Steiner system is a partial (n, q, r)-Steiner system S with $|S| = \binom{n}{r} / \binom{q}{r}$.

I.e., every *r*-subset is in exactly one *q*-set

Example: Fano Plane, (7, 3, 2)-Steiner system

Definition

For $n \ge q > r \ge 2$, a **partial** (n, q, r)-Steiner system is a set S of q-subsets of an n-set V s.t. every r-subset of V is contained in at most one q-set in S.

Definition

An (n, q, r)-Steiner system is a partial (n, q, r)-Steiner system S with $|S| = \binom{n}{r} / \binom{q}{r}$.

I.e., every *r*-subset is in exactly one *q*-set

Example: Fano Plane, (7, 3, 2)-Steiner system $\binom{7}{2} / \binom{3}{2} = 7$

Definition

n is admissible if $\binom{q-i}{r-i} \mid \binom{n-i}{r-i}$ for all $0 \le i \le r-1$

Definition

n is admissible if
$$\binom{q-i}{r-i} \mid \binom{n-i}{r-i}$$
 for all $0 \le i \le r-1$

Notorious conjecture from the mid-1800's:

Existence Conjecture

For sufficiently large n, there exists an (n, q, r)-Steiner system whenever n is admissible.

Definition

n is admissible if
$$\binom{q-i}{r-i} \mid \binom{n-i}{r-i}$$
 for all $0 \le i \le r-1$

Notorious conjecture from the mid-1800's:

Existence Conjecture

For sufficiently large n, there exists an (n, q, r)-Steiner system whenever n is admissible.

- *q* = 3 and *r* = 2, Kirkman 1847
- *r* = 2, Wilson 1975
- approximate version "nibble method", Rödl 1985
- full conjecture algebraic techniques, Keevash 2014+
- full conjecture combinatorial techniques, Kühn, Lo, Glock, and Osthus 2016+

Definition

In a partial (n, q, r)-Steiner system, a (j, i)-configuration is a set of i q-subsets spanning at most j elements.

Definition

In a partial (n, q, r)-Steiner system, a (j, i)-configuration is a set of i q-subsets spanning at most j elements.

Observation

An (n,3,2)-Steiner system S contains an (i+3,i)-configuration for every fixed *i*.

Definition

In a partial (n, q, r)-Steiner system, a (j, i)-configuration is a set of i q-subsets spanning at most j elements.

Observation

An (n,3,2)-Steiner system S contains an (i+3,i)-configuration for every fixed i.

Question

What about (i + 2, i)-configurations?

Definition

In a partial (n, q, r)-Steiner system, a (j, i)-configuration is a set of i q-subsets spanning at most j elements.

Observation

An (n,3,2)-Steiner system S contains an (i+3,i)-configuration for every fixed *i*.

Question

What about (i + 2, i)-configurations?

Conjecture (Erdős 1973)

For every integer $g \ge 2$, there exists n_g such that for all admissible $n \ge n_g$, there exists an (n, 3, 2)-Steiner system with no (i + 2, i)-configuration for all $2 \le i \le g$.

Definition

The **girth** of an (n, 3, 2)-Steiner system is the smallest integer $g \ge 2$ for which it has a (g + 2, g)-configuration.

Definition

The **girth** of an (n, 3, 2)-Steiner system is the smallest integer $g \ge 2$ for which it has a (g + 2, g)-configuration.

Conjecture (Erdős 1973)

For sufficiently large n, there exists an (n, 3, 2)-Steiner system with arbitrarily high girth whenever n is admissible.

Definition

The **girth** of an (n, 3, 2)-Steiner system is the smallest integer $g \ge 2$ for which it has a (g + 2, g)-configuration.

Conjecture (Erdős 1973)

For sufficiently large n, there exists an (n, 3, 2)-Steiner system with arbitrarily high girth whenever n is admissible.

• there is a partial Steiner triple system of girth at least gand size at least $c_g \cdot n^2$ ($c_g \rightarrow 0$ as $g \rightarrow \infty$), Lefmann, Phelps, and Rödl 1993

Definition

The **girth** of an (n, 3, 2)-Steiner system is the smallest integer $g \ge 2$ for which it has a (g + 2, g)-configuration.

Conjecture (Erdős 1973)

For sufficiently large n, there exists an (n, 3, 2)-Steiner system with arbitrarily high girth whenever n is admissible.

- there is a partial Steiner triple system of girth at least gand size at least $c_g \cdot n^2$ ($c_g \rightarrow 0$ as $g \rightarrow \infty$), Lefmann, Phelps, and Rödl 1993
- approximate version, Bohman and Warnke 2019 and Glock, Kühn, Lo, and Osthus 2020

Definition

The **girth** of an (n, 3, 2)-Steiner system is the smallest integer $g \ge 2$ for which it has a (g + 2, g)-configuration.

Conjecture (Erdős 1973)

For sufficiently large n, there exists an (n, 3, 2)-Steiner system with arbitrarily high girth whenever n is admissible.

- there is a partial Steiner triple system of girth at least gand size at least $c_g \cdot n^2$ ($c_g \rightarrow 0$ as $g \rightarrow \infty$), Lefmann, Phelps, and Rödl 1993
- approximate version, Bohman and Warnke 2019 and Glock, Kühn, Lo, and Osthus 2020
- full conjecture, Kwan, Sah, Sawhney, and Simkin 2022+

Observation (Glock, Kühn, Lo, and Osthus 2020)

Every (n, q, r)-Steiner system contains an (i(q - r) + r + 1, i)-configuration for every fixed *i*.

Observation (Glock, Kühn, Lo, and Osthus 2020)

Every (n, q, r)-Steiner system contains an (i(q - r) + r + 1, i)-configuration for every fixed *i*.

For q = 3, r = 2 this is an (i + 3, i)-configuration.

Observation (Glock, Kühn, Lo, and Osthus 2020) Every (n, q, r)-Steiner system contains an

(i(q-r)+r+1,i)-configuration for every fixed *i*.

For q = 3, r = 2 this is an (i + 3, i)-configuration.

Definition

The **girth** of an (n, q, r)-Steiner system is the smallest integer $g \ge 2$ for which it has a (g(q-r)+r, g)-configuration.

Conjecture (Glock, Kühn, Lo, and Osthus 2020, Keevash and Long 2020)

For sufficiently large n, there exists an (n, q, r)-Steiner system with arbitrarily high girth whenever n is admissible.

Conjecture (Glock, Kühn, Lo, and Osthus 2020, Keevash and Long 2020)

For sufficiently large n, there exists an (n, q, r)-Steiner system with arbitrarily high girth whenever n is admissible.

We show the approximate version:

Conjecture (Glock, Kühn, Lo, and Osthus 2020, Keevash and Long 2020)

For sufficiently large n, there exists an (n, q, r)-Steiner system with arbitrarily high girth whenever n is admissible.

We show the approximate version:

Theorem (D. and Postle 2022+)

 \forall int. $q > r \ge 2$ and int. $g \ge 2$, $\exists n_0$ and $\beta \in (0, 1)$ s.t. $\forall n \ge n_0, \exists a \text{ partial } (n, q, r)$ -Steiner system S with

$$|S| \ge (1 - n^{-\beta}) \frac{\binom{n}{r}}{\binom{q}{r}}$$

and no (i(q - r) + r, i)-configurations $\forall 2 \le i \le g$.

Conjecture (Glock, Kühn, Lo, and Osthus 2020, Keevash and Long 2020)

For sufficiently large n, there exists an (n, q, r)-Steiner system with arbitrarily high girth whenever n is admissible.

We show the approximate version:

Theorem (D. and Postle 2022+, Glock, Joos, Kim, Kühn, and Lichev 2022+) \forall int. $q > r \ge 2$ and int. $g \ge 2$, $\exists n_0$ and $\beta \in (0, 1)$ s.t. $\forall n \ge n_0, \exists a partial (n, q, r)$ -Steiner system S with

$$|S| \ge (1 - n^{-\beta}) \frac{\binom{n}{r}}{\binom{q}{r}}$$

and no (i(q - r) + r, i)-configurations $\forall 2 \le i \le g$.

The auxiliary hypergraph G:

The auxiliary hypergraph *G*: *V* is all *r*-sets of [*n*]

The auxiliary hypergraph G:

V is all r-sets of [n]

E the is collections of $\binom{q}{r}$ *r*-sets that lie in a *q*-set.

The auxiliary hypergraph *G*: *V* is all *r*-sets of [n]*E* the is collections of $\binom{q}{r}$ *r*-sets that lie in a *q*-set.

Here an (almost) perfect matching corresponds to a (partial) Steiner System.

The auxiliary hypergraph *G*: *V* is all *r*-sets of [n]*E* the is collections of $\binom{q}{r}$ *r*-sets that lie in a *q*-set.

Here an (almost) perfect matching corresponds to a (partial) Steiner System.

G is a $\binom{q}{r}$ -uniform

The auxiliary hypergraph *G*: *V* is all *r*-sets of [n]*E* the is collections of $\binom{q}{r}$ *r*-sets that lie in a *q*-set.

Here an (almost) perfect matching corresponds to a (partial) Steiner System.

G is a $\binom{q}{r}$ -uniform and $D = \binom{n-r}{q-r}$ -regular.

The auxiliary hypergraph *G*: *V* is all *r*-sets of [n]*E* the is collections of $\binom{q}{r}$ *r*-sets that lie in a *q*-set.

Here an (almost) perfect matching corresponds to a (partial) Steiner System.

G is a $\binom{q}{r}$ -uniform and $D = \binom{n-r}{q-r}$ -regular.

Two distinct vertices lie in at most $\binom{n-r-1}{q-r-1} = o\left(\binom{n-r}{q-r}\right) = o(D)$ common edges.

Question

What do the forbidden configurations become?

A vertex v in H is an edge in G

A vertex v in H is an edge in G and a q-set of [n].

A vertex v in H is an edge in G and a q-set of [n].

How many edges of H of size i is it in?

A vertex v in H is an edge in G and a q-set of [n].

How many edges of H of size i is it in?

Recall we forbid (i(q - r) + r, i)-configurations so there are i(q - r) + r - q = (i - 1)(q - r) other vertices to choose from.

A vertex v in H is an edge in G and a q-set of [n].

How many edges of H of size i is it in?

Recall we forbid (i(q - r) + r, i)-configurations so there are i(q - r) + r - q = (i - 1)(q - r) other vertices to choose from.

Thus v is in $O(n^{(i-1)(q-r)}) = O\left(\binom{n-r}{q-r}^{i-1}\right) = O\left(D^{i-1}\right)$ edges of size *i*.

A vertex v in H is an edge in G and a q-set of [n].

How many edges of H of size i is it in?

Recall we forbid (i(q - r) + r, i)-configurations so there are i(q - r) + r - q = (i - 1)(q - r) other vertices to choose from.

Thus v is in
$$O(n^{(i-1)(q-r)}) = O\left(\binom{n-r}{q-r}^{i-1}\right) = O\left(D^{i-1}\right)$$
 edges of size *i*.

One can check H has small codegree and small codegree with G.

A vertex v in H is an edge in G and a q-set of [n].

How many edges of H of size i is it in?

Recall we forbid (i(q - r) + r, i)-configurations so there are i(q - r) + r - q = (i - 1)(q - r) other vertices to choose from.

Thus v is in
$$O(n^{(i-1)(q-r)}) = O\left(\binom{n-r}{q-r}^{i-1}\right) = O\left(D^{i-1}\right)$$
 edges of size *i*.

One can check H has small codegree and small codegree with G.

Our Theorem implies that $\chi(L(G) \cup H) = (1 + o(1))D$.

A vertex v in H is an edge in G and a q-set of [n].

How many edges of H of size i is it in?

Recall we forbid (i(q - r) + r, i)-configurations so there are i(q - r) + r - q = (i - 1)(q - r) other vertices to choose from.

Thus v is in
$$O(n^{(i-1)(q-r)}) = O\left(\binom{n-r}{q-r}^{i-1}\right) = O\left(D^{i-1}\right)$$
 edges of size *i*.

One can check H has small codegree and small codegree with G.

Our Theorem implies that $\chi(L(G) \cup H) = (1 + o(1))D$.

This not only implies the theorem but an almost decomposition into approximate high girth Steiner systems!

Michelle Delcourt

Part IV

Matchings in Bipartite Hypergraphs

Definition

A hypergraph G = (A, B) is **bipartite with parts** A **and** B if $V(G) = A \cup B$ and every edge of G contains exactly one vertex from A.

Definition

A hypergraph G = (A, B) is **bipartite with parts** A **and** B if $V(G) = A \cup B$ and every edge of G contains exactly one vertex from A.

A matching containing every vertex of A is an **A-perfect** *matching*.

Definition

A hypergraph G = (A, B) is **bipartite with parts** A **and** B if $V(G) = A \cup B$ and every edge of G contains exactly one vertex from A.

A matching containing every vertex of A is an **A-perfect** *matching*.

Theorem (D. and Postle 2022+)

 \forall int. $r \ge 2$, real $\beta > 0$, \exists int. $D_{r,\beta} \ge 0$, real $\alpha > 0$ s.t. $\forall D \ge D_{r,\beta}$: Let G = (A, B) be a bipartite, r-bounded (multi)-hypergraph with codegrees at most $D^{1-\beta}$ satisfying

1. every vertex in A has degree at least $(1 + D^{-\alpha})D$, and

2. every vertex in B has degree at most D,

then there exists an A-perfect matching of G.

Indeed we prove this with configuration hypergraph H subject to the conditions of our main result to find an A-perfect H-avoiding matching of G.

Indeed we prove this with configuration hypergraph H subject to the conditions of our main result to find an A-perfect H-avoiding matching of G.

This implies our previous main theorem as follows:

Indeed we prove this with configuration hypergraph H subject to the conditions of our main result to find an A-perfect H-avoiding matching of G.

This implies our previous main theorem as follows: Let *G* be a hypergraph with a list assignment *L* of E(G).

Indeed we prove this with configuration hypergraph H subject to the conditions of our main result to find an A-perfect H-avoiding matching of G.

This implies our previous main theorem as follows: Let *G* be a hypergraph with a list assignment *L* of E(G).

Consider the auxiliary hypergraph $G_L = (A_L, B_L)$

Indeed we prove this with configuration hypergraph H subject to the conditions of our main result to find an A-perfect H-avoiding matching of G.

This implies our previous main theorem as follows: Let *G* be a hypergraph with a list assignment *L* of E(G).

Consider the auxiliary hypergraph $G_L = (A_L, B_L)$ $A_L = E(G)$,

Indeed we prove this with configuration hypergraph H subject to the conditions of our main result to find an A-perfect H-avoiding matching of G.

This implies our previous main theorem as follows: Let *G* be a hypergraph with a list assignment *L* of E(G).

Consider the auxiliary hypergraph $G_L = (A_L, B_L)$ $A_L = E(G), B_L = \bigcup \left\{ (v, c) : v \in V(G), c \in \bigcup_{e \in E(G)} L(e) \right\}$

Indeed we prove this with configuration hypergraph H subject to the conditions of our main result to find an A-perfect H-avoiding matching of G.

This implies our previous main theorem as follows: Let *G* be a hypergraph with a list assignment *L* of E(G).

Consider the auxiliary hypergraph $G_L = (A_L, B_L)$ $A_L = E(G), B_L = \bigcup \left\{ (v, c) : v \in V(G), c \in \bigcup_{e \in E(G)} L(e) \right\}$ $E(G_L) = \{e_c : e \in E(G), c \in L(e)\}$ where $e_c = \{(v, c) : v \in e\} \cup \{e\}.$

Indeed we prove this with configuration hypergraph H subject to the conditions of our main result to find an A-perfect H-avoiding matching of G.

This implies our previous main theorem as follows: Let *G* be a hypergraph with a list assignment *L* of E(G).

Consider the auxiliary hypergraph $G_L = (A_L, B_L)$ $A_L = E(G), B_L = \bigcup \left\{ (v, c) : v \in V(G), c \in \bigcup_{e \in E(G)} L(e) \right\}$ $E(G_L) = \{e_c : e \in E(G), c \in L(e)\}$

where $e_{c} = \{(v, c) : v \in e\} \cup \{e\}.$

An A_L -perfect matching of G_L is equivalent to an L-coloring of E(G).

Part V

Application: Latin Squares

Definition

A **Latin square** is an $n \times n$ array filled with n different symbols, each occurring exactly once in each row and exactly once in each column.

Question

For all n does there exist an $n \times n$ Latin square with no intercalate (a 2 × 2 sub-Latin square)?

Question

For all n does there exist an $n \times n$ Latin square with no intercalate (a 2 × 2 sub-Latin square)?

For an $n \times n$ Latin square *L*, consider a 3-uniform hypergraph *H* on 3*n* vertices:

Latin Squares

For an $n \times n$ Latin square *L*, consider a 3-uniform hypergraph *H* on 3*n* vertices:

 $\textit{V} = \textit{Rows} \cup \textit{Columns} \cup \textit{Symbols}$

Latin Squares

For an $n \times n$ Latin square *L*, consider a 3-uniform hypergraph *H* on 3*n* vertices:

 $V = \text{Rows} \cup \text{Columns} \cup \text{Symbols}$ $E = \{\{i, j, s\} : \text{ entry } \{i, j\} \text{ contains symbol } s\}$

Latin Squares

For an $n \times n$ Latin square *L*, consider a 3-uniform hypergraph *H* on 3*n* vertices:

 $V = \text{Rows} \cup \text{Columns} \cup \text{Symbols}$ $E = \{\{i, j, s\} : \text{ entry } \{i, j\} \text{ contains symbol } s\}$

Theorem (D. and Postle 2022+)

Approximate high girth Latin squares exist.

Theorem (D. and Postle 2022+)

Approximate high girth permutations exist.

Part VI

Application: Rainbow Matchings

Definition

A matching M of a (not necessarily properly) edge colored hypergraph G is **rainbow** if every edge of M is colored differently.

Definition

A rainbow matching is **full** if every color of the coloring appears on some edge of *M*.

A typical example of a rainbow matching conjecture:

Conjecture (Aharoni and Berger 2009)

If G is a bipartite multigraph properly edge colored with q colors where every color appears at least q + 1 times, then there exists a full rainbow matching.

A typical example of a rainbow matching conjecture:

Conjecture (Aharoni and Berger 2009)

If G is a bipartite multigraph properly edge colored with q colors where every color appears at least q + 1 times, then there exists a full rainbow matching.

A version for non-bipartite graphs:

Conjecture

If G is a multigraph properly edge colored with q colors where every color appears at least q + 2 times, then there exists a full rainbow matching.

There are three natural ways to weaken these conjectures.

There are three natural ways to weaken these conjectures.

1. find a slightly smaller rainbow matching

There are three natural ways to weaken these conjectures.

1. find a slightly smaller rainbow matching

(i.e. (1 - o(1))q in the conjectures above),

There are three natural ways to weaken these conjectures.

1. find a slightly smaller rainbow matching

(i.e. (1 - o(1))q in the conjectures above), what Munhá Correia, Pokrovskiy, and Sudakov called the *'weak asymptotic'*

There are three natural ways to weaken these conjectures.

1. find a slightly smaller rainbow matching

(i.e. (1 - o(1))q in the conjectures above), what Munhá Correia, Pokrovskiy, and Sudakov called the *'weak asymptotic'*

2. assume that each color appears slightly more times,

There are three natural ways to weaken these conjectures.

1. find a slightly smaller rainbow matching

(i.e. (1 - o(1))q in the conjectures above), what Munhá Correia, Pokrovskiy, and Sudakov called the 'weak asymptotic'

2. assume that each color appears slightly more times, (i.e. (1 + o(1))q times above),

There are three natural ways to weaken these conjectures.

1. find a slightly smaller rainbow matching

(i.e. (1 - o(1))q in the conjectures above), what Munhá Correia, Pokrovskiy, and Sudakov called the 'weak asymptotic'

2. assume that each color appears slightly more times, (i.e. (1 + o(1))q times above), what Munhá Correia, Pokrovskiy, and Sudakov called the *'strong asymptotic'*

There are three natural ways to weaken these conjectures.

1. find a slightly smaller rainbow matching

(i.e. (1 - o(1))q in the conjectures above), what Munhá Correia, Pokrovskiy, and Sudakov called the 'weak asymptotic'

- 2. assume that each color appears slightly more times, (i.e. (1 + o(1))q times above), what Munhá Correia, Pokrovskiy, and Sudakov called the *'strong asymptotic'*
- 3. assume the number of colors is slightly more,

There are three natural ways to weaken these conjectures.

1. find a slightly smaller rainbow matching

(i.e. (1 - o(1))q in the conjectures above), what Munhá Correia, Pokrovskiy, and Sudakov called the 'weak asymptotic'

- 2. assume that each color appears slightly more times, (i.e. (1 + o(1))q times above), what Munhá Correia, Pokrovskiy, and Sudakov called the 'strong asymptotic'
- 3. assume the number of colors is slightly more, (i.e. (1 + o(1))q colors above).

There are three natural ways to weaken these conjectures.

1. find a slightly smaller rainbow matching

(i.e. (1 - o(1))q in the conjectures above), what Munhá Correia, Pokrovskiy, and Sudakov called the 'weak asymptotic'

- 2. assume that each color appears slightly more times, (i.e. (1 + o(1))q times above), what Munhá Correia, Pokrovskiy, and Sudakov called the 'strong asymptotic'
- 3. assume the number of colors is slightly more, (i.e. (1 + o(1))q colors above).

Note: 2. and 3. imply 1.

For rainbow conjectures and their weakenings:

• 'dense setting':

For rainbow conjectures and their weakenings:

• 'dense setting': number of colors/desired size of a rainbow matching are on the order of number of times a color appears

- 'dense setting': number of colors/desired size of a rainbow matching are on the order of number of times a color appears
- 'sparse setting':

- 'dense setting': number of colors/desired size of a rainbow matching are on the order of number of times a color appears
- **'sparse setting':** number of colors can be much larger than number of times a color appears;

- 'dense setting': number of colors/desired size of a rainbow matching are on the order of number of times a color appears
- **'sparse setting':** number of colors can be much larger than number of times a color appears; number of times a color appears is related to degree of the graph

Sparse Versions of the Aharoni-Berger Conjecture

Sparse setting versions of the previous conjectures:

Conjecture

If G is a bipartite multigraph properly edge colored where every color appears at least $\Delta(G) + 1$ times, then there exists a full rainbow matching.

Conjecture

If G is a multigraph properly edge colored where every color appears at least $\Delta(G) + 2$ times, then there exists a full rainbow matching.

A-perfect matchings in bipartite hypergraphs are equivalent to full rainbow matchings in hypergraphs.

A-perfect matchings in bipartite hypergraphs are equivalent to full rainbow matchings in hypergraphs.

Let *G* be a hypergraph whose edges are colored by a (not necessarily proper) coloring ϕ .

A-perfect matchings in bipartite hypergraphs are equivalent to full rainbow matchings in hypergraphs.

Let *G* be a hypergraph whose edges are colored by a (not necessarily proper) coloring ϕ .

Consider the auxiliary hypergraph $Rainbow(G, \phi) := (A, B)$

A-perfect matchings in bipartite hypergraphs are equivalent to full rainbow matchings in hypergraphs.

Let *G* be a hypergraph whose edges are colored by a (not necessarily proper) coloring ϕ .

Consider the auxiliary hypergraph Rainbow(G, ϕ) := (A, B) $A = \bigcup_{e \in E(G)} \phi(e)$ is the set of colors

A-perfect matchings in bipartite hypergraphs are equivalent to full rainbow matchings in hypergraphs.

Let *G* be a hypergraph whose edges are colored by a (not necessarily proper) coloring ϕ .

Consider the auxiliary hypergraph Rainbow(G, ϕ) := (A, B) $A = \bigcup_{e \in E(G)} \phi(e)$ is the set of colors B = V(G) is the set of vertices of G

A-perfect matchings in bipartite hypergraphs are equivalent to full rainbow matchings in hypergraphs.

Let *G* be a hypergraph whose edges are colored by a (not necessarily proper) coloring ϕ .

Consider the auxiliary hypergraph Rainbow(G, ϕ) := (A, B) $A = \bigcup_{e \in E(G)} \phi(e)$ is the set of colors B = V(G) is the set of vertices of G

extend every edge e of G to include its color $\phi(e)$,

A-perfect matchings in bipartite hypergraphs are equivalent to full rainbow matchings in hypergraphs.

Let *G* be a hypergraph whose edges are colored by a (not necessarily proper) coloring ϕ .

Consider the auxiliary hypergraph Rainbow(G, ϕ) := (A, B) $A = \bigcup_{e \in E(G)} \phi(e)$ is the set of colors B = V(G) is the set of vertices of G

extend every edge e of G to include its color $\phi(e)$, $E(\text{Rainbow}(G, \phi)) = \{e \cup \phi(e) : e \in E(G)\}.$

Our bipartite theorem is equivalent to:

Our bipartite theorem is equivalent to:

Theorem (D. and Postle 2022+)

 \forall int. $r \geq 2$, real $\beta > 0$, \exists int. $D_{\beta} \geq 0$, real $\alpha > 0$ s.t. $\forall D \geq D_{\beta}$: Let G be a r-bounded (multi)-hypergraph with $\Delta(G) \leq D$ and codegrees at most $D^{1-\beta}$ that is (not necessarily properly) edge colored satisfying

1. every color appears at least $(1 + D^{-\alpha})D$ times, and

2. every color appears at most $D^{1-\beta}$ times around a vertex, then there exists a full rainbow matching of *G*.

Our bipartite theorem is equivalent to:

Theorem (D. and Postle 2022+)

 \forall int. $r \geq 2$, real $\beta > 0$, \exists int. $D_{\beta} \geq 0$, real $\alpha > 0$ s.t. $\forall D \geq D_{\beta}$: Let G be a r-bounded (multi)-hypergraph with $\Delta(G) \leq D$ and codegrees at most $D^{1-\beta}$ that is (not necessarily properly) edge colored satisfying

1. every color appears at least $(1 + D^{-\alpha})D$ times, and

2. every color appears at most $D^{1-\beta}$ times around a vertex, then there exists a full rainbow matching of G.

Indeed there is even a set of D disjoint full rainbow matchings of G.

Alspach's Conjecture

Conjecture (Alspach 1988)

If G is a 2d-regular graph that is edge colored such that each color class is a spanning subgraph of G in which all vertices have degree two, then G has a full rainbow matching.

- strong asymptotic version, Munhá Correia, Pokrovskiy, and Sudakov 2021
- strong asymptotic version in the sparse setting, D. and Postle 2022+

Grinblat's Conjecture

Originally motivated by equivalence classes in algebras:

Conjecture (Grinblat 2002)

If G is a multigraph that is (not necessarily properly) edge colored with n colors where each color class is the disjoint union of non-trivial complete subgraphs and spans at least 3n - 2 vertices, then G has a rainbow matching of size n.

- strong asymptotic version, Clemens, Ehrenmüller, and Pokrovskiy 2017
- full proof, Munhá Correia and Sudakov 2021
- bounded multiplicity graphs 2n + o(n) vertices, Munhá Correia and Yepremyan
- bounded multiplicity strong asymptotic version for hypergraphs in the sparse setting, D. and Postle 2022+

Grinblat's Conjecture

Theorem (D. and Postle 2022+)

 \forall int. $r \ge 2$ and real $\beta > 0$, \exists int. D_{β} and real $\alpha > 0$ s.t. $\forall D \ge D_{\beta}$: If G is an r-uniform (multi)-hypergraph with codegrees at most $D^{1-\beta}$ that is (not necessarily properly) edge colored satisfying

- 1. every color class is the disjoint union of non-trivial complete subgraphs and spans at least $rD(1 + D^{-\alpha})$ vertices, and
- 2. each vertex is incident with at most D colors,

then G has a full rainbow matching.

Grinblat's Conjecture

Theorem (D. and Postle 2022+)

 \forall int. $r \ge 2$ and real $\beta > 0$, \exists int. D_{β} and real $\alpha > 0$ s.t. $\forall D \ge D_{\beta}$: If G is an r-uniform (multi)-hypergraph with codegrees at most $D^{1-\beta}$ that is (not necessarily properly) edge colored satisfying

- 1. every color class is the disjoint union of non-trivial complete subgraphs and spans at least $rD(1 + D^{-\alpha})$ vertices, and
- 2. each vertex is incident with at most D colors,

then G has a full rainbow matching.

Indeed there is even a set of *D* disjoint full rainbow matchings.

Conclusion

Conclusion

Our main result shows a common generalization of two classical results from the 1980's:

• **Pippenger's Theorem** (for finding an almost perfect matching) and

• Ajtai-Komlós-Pintz-Spencer-Szemerédi's Theorem (for finding an independent set in girth five hypergraphs)

We derive high girth versions of settings where Rödl's nibble yields approximate decompositions.

Conclusion

Our main result shows a common generalization of two classical results from the 1980's:

• **Pippenger's Theorem** (for finding an almost perfect matching) and

• Ajtai-Komlós-Pintz-Spencer-Szemerédi's Theorem (for finding an independent set in girth five hypergraphs)

We derive high girth versions of settings where Rödl's nibble yields approximate decompositions.

Some notable applications include:

- high girth Steiner systems,
- edge coloring and hypergraph coloring,
- rainbow matchings, and
- Latin squares and high dimensional permutations

Thank you for listening!