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Kreweras excursion

2D Brownian excursion

convergence
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Triangulations (of the disk)

Def. A triangulation is rooted by marking an edge on the boundary.

Def. A triangulation of the disk is a decomposition into triangles
(considered up to deformation).
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We can alternatively consider infinite triangulations.

Percolation on triangulations

Same questions:

• Crossing probabilities?
• Law of interfaces?
• Mixing properties?

We can consider percolation on random triangulations of the disk.
(k exterior vertices, n interior vertices; uniform probability)

Uniform Infinite Planar Triangulation
[Angel,Schramm 04]

Goal 1: Answer these questions. (as n→∞, k ∼
√
n)
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Regular lattices Vs random lattices

Yes! The “critical exponents” on regular Vs random lattices
are related by the KPZ formula [Knizhnik, Polyakov, Zamolodchikov].

Yes! Critically weighted random lattices  random surfaces.

Is it interesting to study statistical mechanics on random lattices?

Vs

regular lattice random lattice

Yes! New tools: random matrices, generating functions, bijections.



Uniformly random triangulation with n triangles of side length n−1/4.

Triangulations as a random surface
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Uniformly random triangulation with n triangles of side length n−1/4.

Triangulations as a random surface

random triangulation Brownian map

(image by N. Curien)

Theorem [LeGall 2013, Miermont 2013]∗,∗∗

Convergence in law as a metric space (Gromov-Hausdorff topology).

Limit is a random compact metric space homeomorphic to 2D sphere, of
Hausdorff dimension 4.

(∗ for a different family of planar maps) (∗∗ based on prior bijective results)



Triangulations as a random surface

Goal 2: Say something new about this random surface.



Conformal Loop Ensemble (CLE)
on

Liouville Quantum Gravity (LQG)
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What is . . . Liouville Quantum Gravity?

LQG is a random area measure µ on a C-domain
which is related to the Gaussian free field.

(image by J. Miller)
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Brownian motion

0 1

1D LQG

0 1
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What is . . . Liouville Quantum Gravity?

Random function
chosen with probability
proportional to

e

−
n∑
i=1

(h(i)− h(i− 1))2

2

Brownian motion 1D LQG

1D LQG

hn : [n]→ R
µ = eγhdx

0 1

h = limhn

0 10 n



What is . . . Liouville Quantum Gravity?

hn : [n]2 → R µ = eγhdxdyh = limhn

Random function
chosen with probability
proportional to

e

−
∑
u∼v

(h(u)− h(v))2

2

Gaussian Free Field LQG
(a distribution) (area measure)



What is . . . Liouville Quantum Gravity?

hn : [n]2 → R µ = eγhdxdyh = limhn

γ ∈ [0, 2] controls how wild LQG measure is.

Today: γ =
√

8/3. “pure gravity”
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What is... a SLE (Schramm–Loewner evolution)?

SLEκ were introduced to describe the scaling limit of curves from
statistical mechanics.

SLEκ is a random (non-crossing, parametrized) curve in a C-domain.

The parameter κ determines how much the curve “wiggles”.
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What is... a SLE (Schramm–Loewner evolution)?

SLE are characterized by:
• Conformal invariance property
• Markov domain property

0 1 1

ei
√
κW (t)γ(t)

Brownian

φ̃ conformal
0
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What is... a SLE (Schramm–Loewner evolution)?

CLE6

Conformal Loop Ensemble

Today: κ = 6 (percolation)

Theorem [Smirnov 01]: Convergence.

Theorem [Camia, Newman 09]: Convergence.
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Conjectural relation (1990s)

LQG was introduced in physics as a model of random surface
describing space-time evolution of strings.

random Riemann surface

Riemann mapping

LQG



Conjectural relation (1990s)

Riemann mapping
Random triangulations gives another
natural model of random surfaces.



Conjectural relation (1990s)

Riemann mapping

Related?

Nice embedding

It was conjectured that the two models were in fact exactly related.



Conjectural relation (1990s)

Riemann mapping Nice embedding

Thm [Miller, Sheffield 2016]: Equality as metric spaces.
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Riemann mapping

Related?

Nice embedding

Goal 2’: Establish a relation between LQG and “embedded”
random triangulations.



Conjectural relation (1990s)

Riemann mapping

Related?

Nice embedding

Goal 3: Establish a relation between percolation interfaces on
random triangulations and CLE6.
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Percolation on random triangulations

CLE on Liouville Quantum Gravity

under nice embedding

some
convergence
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Thm [Bernardi, Holden, Sun 18]:
Let (Mn, σn) uniformly random percolated triangulation of size n
(n interior vertices,

√
n exterior vertices).

There exist embeddings φn :Mn → D (and coupling)
such that the following converge jointly in probability:

• Area measure: vertex counting measure −→
√
8/3-LQG µ.

• Exploration tree: τn → Branching SLE6 τ .

• Percolation cycles: embedded percolation cycles γn1 , γ
n
2 , . . .

−→ CLE6 loops γ1,γ2, . . .

• Crossing events: For random vertex vn, Eb(vn) −→ Eb(v).

• Pivotal measures: ∀ε, i, j, νεi,n −→ νεi , and , νεi,j,n−→ νεi,j .
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Strategy of proof:

Convergence of walk
++++

bijection

Embedding φn
defined using
“space filling exploration”

[Bernardi 2007]

measure preserving correspondence

[Bernardi, Holden, Sun 2018]

(Mn, σn)

LQG√
8/3

+ CLE6

[Duplantier, Miller, Sheffield 2014]
“mating of trees”



The bijection



Kreweras walks

Def. A Kreweras walk is a lattice walk on Z2 using the steps
a = (1, 0), b = (0, 1) and c = (−1,−1).

b

a
c



Thm [Bernardi 07/ Bernardi, Holden, Sun 18]:

There is a bijection between:

• K = set of Kreweras walks starting and ending at (0, 0)
and staying in N2.

• T = set of percolated triangulations of the disk
with 2 exterior vertices: one white and one black.

Φ

n interior vertices

K T

3n steps



Example: w = baabbcacc

b

a

c

Φ



Example: w = baabbcacc

a a b b c a c cb



Example: w = baabbcacc

b a aa b bb

Definition:

ba



Example: w = baabbcacc

Definition:

c

c a c c



Thm: This is a bijection.

n interior vertices3n steps



Variants of the bijection

Spherical case

Disk case

UIPT case
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Dictionary: percolation-interface to v ←→ walk of excursions



Dictionary: percolation-interface to v ←→ walk of excursions

Flatten each sub-excursion
into a single step

empty the bubbles

Shuffle of two looptrees Flattened walk



discrete dictionary

continuum dictionary

[Duplantier, Miller, Sheffield]

[Bernardi, Holden, Sun]



discrete dictionary

continuum dictionary

[Duplantier, Miller, Sheffield]

[Bernardi, Holden, Sun]

Perfect correspondence!



Strengthening the convergence results

under nice embedding

+ Miller, Sheffield

Holden, Sun + Albenque, Garban, Gwynne, Lawler, Li, Sepulveda

convergence
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Cardy embedding of triangulations

Thm [Holden, Sun]: Convergence holds for the Cardy embedding.
(because φn ≈ Cardy embedding)

Cardy embedding

where p• = Pperco

( )
(p•, p•, p•)



Key ingredient used: “convergence componentwise”

Same triangulation
k independent percolations

k Kreweras walks

k Brownian motions

Same LQG
k independent CLE



To upgrade the “crossing event result” from an annealed result to
a quenched result.
This implies (...) that φn ≈ Cardy embedding.

Why useful?



To upgrade the “crossing event result” from an annealed result to
a quenched result.
This implies (...) that φn ≈ Cardy embedding.

Why useful?

How is it proved?

• LQG stay the same: prove the previous convergence is joint
with convergence in Gromov-Hausdorff-Prokhorov topology.

• CLE are independent: prove CLE mixes fast (using pivotal
point result).



Thanks.


