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Ramsey numbers

Complete disorder is impossible.
Every sufficiently large system contains a structured subsystem.

Definition

The Ramsey number R(k , `) is the smallest positive integer N such that in
any red-blue coloring of the edges of the complete graph on N vertices
there exists either a complete subgraph on k vertices with all edges colored
red (a red Kk) or a complete subgraph on ` vertices with all edges colored
blue (a blue K`).

R(k , `) = R(`, k), R(1, `) = 1

R(2, `) = ` for ` ≥ 2, R(3, 3) = 6.

Theorem (Ramsey, 1929)

R(k, `) exists for all positive integers k and `.
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Ramsey numbers

The Ramsey number R(k , `) is the smallest positive integer N such that in
any red-blue coloring of the edges of the complete graph on N vertices
there exists a red Kk or a a blue K`.

Theorem (Erdős-Szekeres, 1935)

For all integers k , ` ≥ 2

R(k , `) ≤
(
k + `− 2

k − 1

)
.

In particular
R(k , k) < 4k

Theorem (Erdős, 1947)

For all integers k ≥ 2

R(k, k) ≥
√

2
k
.
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Upper bounds on the diagonal Ramsey numbers

Upper bounds on R(k + 1, k + 1).

Erdős-Szekeres 1935
(2k
k

)
Rödl 1980s log−c k

(2k
k

)
for some c > 0

Thomason 1988 k−c
(2k
k

)
Conlon 2009 exp

(
−c log2 k

log log k

) (2k
k

)
Sah 2023 exp

(
−c log2 k

) (2k
k

)

Theorem (Campos, Griffiths, Morris, and Sahasrabudhe, 2023+)

There exists δ > 0 such that

R(k , k) ≤ (4− δ)k .

(One can take δ = 0.007 for sufficiently large k .)
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Rödl 1980s log−c k

(2k
k

)
for some c > 0

Thomason 1988 k−c
(2k
k

)
Conlon 2009 exp

(
−c log2 k

log log k

) (2k
k

)
Sah 2023 exp

(
−c log2 k

) (2k
k

)
Theorem (Campos, Griffiths, Morris, and Sahasrabudhe, 2023+)

There exists δ > 0 such that

R(k , k) ≤ (4− δ)k .

(One can take δ = 0.007 for sufficiently large k .)

Sergey Norin (McGill) Ramsey November 25, 2024 4 / 31



Our main result

Theorem (Gupta, Ndiaye, N., Wei 2024+)

For all positive integers ` ≤ k

R(k , `) ≤ eG(`/k)k+o(k)

(
k + `

`

)
,

where
G (λ) =

(
−0.25λ+ 0.03λ2 + 0.08λ3

)
e−λ.

In particular,
R(k , k) < (3.8)k

for sufficiently large k.
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Erdős-Szekeres proof

Theorem

For all x ∈ (0, 1) and integers k , ` ≥ 1

R(k , `) ≤ x−k(1− x)−`.

Proof

By induction on k + `.
Let N = R(k, `)− 1. Let v be an arbitrary vertex of KN colored with no
red Kk or blue K`.

v
NB(v) NR(v)
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Erdős-Szekeres proof

Theorem

For all x ∈ (0, 1) and integers k , ` ≥ 1

R(k , `) ≤ x−k(1− x)−`.

Proof

|NB(v)| ≤ R(k, `− 1)− 1 ≤ x−k(1− x)−`+1 − 1.

v
NB(v) NR(v)

l-1

L
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Erdős-Szekeres proof

Theorem

For all x ∈ (0, 1) and integers k , ` ≥ 1

R(k , `) ≤ x−k(1− x)−`.

Proof

|NB(v)| ≤ x−k(1− x)−`+1 − 1, |NR(v)| ≤ x−k+1(1− x)−` − 1.

R(k , `)− 1 ≤ (x−k(1− x)−`+1 − 1) + (x−k+1(1− x)−` − 1) + 1

= (x + (1− x))x−k(1− x)−` − 1 = x−k(1− x)−` − 1

v
NB(v) NR(v)

Sergey Norin (McGill) Ramsey November 25, 2024 8 / 31



The protagonist

A pair of disjoint sets of vertices (X ,Y ) is a candidate. A candidate
(X ,Y ) is (k, `, t)-good if X ∪ Y contains a red Kk or X contains a blue
Kt or Y contains a blue K`.

Y

X

k

l

t
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The protagonist

A pair of disjoint sets of vertices (X ,Y ) is a candidate.
eR(X ,Y ) is the number of red edges between X and Y .
Let fp(X ,Y ) = eR(X ,Y )− p|X ||Y | be the excess amount of red edges
between X and Y when compared to density p.

Y

X

eR(X,Y)
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Convexity

Let fp(X ,Y ) = eR(X ,Y )− p|X ||Y |.

Lemma

1

|X |
∑
v∈X

fp(X ,NR(v) ∩ Y ) ≥ p · fp(X ,Y ).

X

v
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Analogue of Erdős-Szekeres induction

Lemma

Let 0 < x < p < 1, let k , ` and t be positive integers and let (X ,Y ) be a
candidate such that

fp(X ,Y ) ≥ (k + t)x−k(1− x)−`(p − x)−t

then (X ,Y ) is (k, `, t)-good.

Let v ∈ X be such that
fp(X ,NR(v) ∩ Y ) ≥ p · fp(X ,Y ).

v

YR

XRXB
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Analogue of Erdős-Szekeres induction

Lemma

If fp(X ,Y ) ≥ (k + t)x−k(1− x)−`(p − x)−t then (X ,Y ) is (k , `, t)-good.

We may assume (XR ,YR) is not
(k − 1, `, t)-good. Then
fp(XR ,YR) <
(k + t − 1)x−k+1(1− x)−`(p − x)−t

and so
fp(XR ,YR) < k+t−1

k+t xfp(X ,Y ).
v

YR

XRXB
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Analogue of Erdős-Szekeres induction

Lemma

If fp(X ,Y ) ≥ (k + t)x−k(1− x)−`(p − x)−t then (X ,Y ) is (k , `, t)-good.

Similarly (XB ,YR) is not
(k , `, t − 1)-good and and so
fp(XB ,YR) < k+t−1

k+t (p − x)fp(X ,Y ).

v

YR

XRXB
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Analogue of Erdős-Szekeres induction

Lemma

If fp(X ,Y ) ≥ (k + t)x−k(1− x)−`(p − x)−t then (X ,Y ) is (k , `, t)-good.

fp(XR ,YR) <
k + t − 1

k + t
x fp(X ,Y ),

fp(XB ,YR) <
k + t − 1

k + t
(p − x)fp(X ,Y ),

pfp(X ,Y ) ≤ fp(X ,YR) = fp(XR ,YR) + fp(XB ,YR) + fp({v},YR)

<
k + t − 1

k + t
pfp(X ,Y ) + |Y |,

So |Y | ≥ px−k(1− x)−`(p − x)−t ≥ x−k(1− x)−` ≥ R(k , `).
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The off-diagonal result

Lemma

If fp(X ,Y ) ≥ (k + t)x−k((1− x)(p − x))−` then (X ,Y ) is (k, `, `)-good.

Theorem

For all
√
5−1√
5+1

< p < 1 and all positive integers k and `

R(k, `) ≤ 4(k + `)

(
1 +
√

5

2
p +

1−
√

5

2

)−k/2
(1− p)−`.

By induction on `. Let (1− x)(p − x) = (1− p)2, i.e. x = 1+
√
5

2 p + 1−
√
5

2 .
If |NB(v)| & (1− p)n for some v we apply the induction hypothesis to
NB(v), otherwise randomly dividing the vertices we obtain a candidate
which is (k , `, `)-good by the lemma.
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The off-diagonal result

Theorem

For all
√
5−1√
5+1

< p < 1 and all positive integers k and `

R(k, `) ≤ 4(k + `)

(
1 +
√

5

2
p +

1−
√

5

2

)−k/2
(1− p)−`.

Substituting p = (
√
5+1)k+(2

√
5−2)`

(
√
5+1)(k+2`)

we get

Theorem

For all positive integers k ≥ `

R(k, `) ≤ 4(k + `)

((√
5 + 1

)
(k + 2`)

4`

)`(
k + 2`

k

)k/2
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Comparison

Let

ES(k , `) =

(
k + `− 2

k − 1

)
= eO(log k)

(
k + `

k

)k (k + `

`

)`
,

denote the Erdős-Szekeres upper bound on the Ramsey numbers. Our
result implies

R(k, `)

ES(k, `)
≤ eO(log k)

(
(
√

5 + 1)(k + 2`)

4(k + `)

)`(
(k + 2`)k

(k + `)2

)k/2

This yields an exponential improvement of the Erdős-Szekeres bound
whenever ` < 0.6989k .
For ` = o(k) the improvement is of the order

eO(log k)

(√
5 + 1

4

)`
< e−0.21`+O(log k).
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Improvements

Let R be the closure of the set of all pairs (x , y) ∈ (0, 1)2 such that

R(k , `) ≤ x−ky−` for all k, ` ∈ N such that k + ` ≥ N(x , y).

We have (x , 1− x) ∈ R by the Erdős-Szekeres argument and we proved(1 +
√

5

2
p +

1−
√

5

2

)1/2

, 1− p

 ∈ R for

√
5− 1√
5 + 1

< p < 1.
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The region R
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Improvements

Let R∗ be the interior of R.

Lemma

If fp(X ,Y ) ≥ (k + t)x−k(1− x)−`(p − x)−t then (X ,Y ) is (k , `, t)-good.

⇓

Lemma

If (x , y) ∈ R∗ and fp(X ,Y ) ≥ x−ky−`(p − x)−t then (X ,Y ) is
(k, `, t)-good for sufficiently large k, ` and t.
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Final version of the inductive lemma

Theorem

For all 0 < µ, x , y , p < 1 such that x < p
1

1−µ (1− µ) and (x , y) ∈ R∗ there
exists L0 such that for all positive integers k , ` with ` ≥ L0 the following
holds. Every red-blue coloring of edges the complete graph on
N ≥ x−k/2(µy)−`/2 with the density of red edges at least p contains a red
Kk or a blue K`.

The proof:

instead of eR(X ,Y )− p|X ||Y | we lower bound “higher moments” of
density

(eR(X ,Y )− p|X ||Y |)r |X |1−r |Y |1−r

in the regime r →∞,
we use further combinatorial ideas from the
Campos-Griffiths-Morris-Sahasrabudhe proof, which, in particular,
requires us to occasionally apply the induction hypothesis to a
common blue neighborhood of a large set of vertices.
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Descending to a candidate

Theorem

For all 0 < µ, x , y , p < 1 such that x < p
1

1−µ (1− µ) and (x , y) ∈ R∗ there
exists L0 such that for all positive integers k , ` with ` ≥ L0 the following
holds. Every red-blue coloring of edges the complete graph on
N ≥ x−k/2(µy)−`/2 with the density of red edges at least p contains a red
Kk or a blue K`.

Theorem

Let F : (0, 1]→ R+ be smooth and let M,X ,Y : (0, 1]→ (0, 1) be such

that F ′(λ) < 0,X (λ) = (1− e−F
′(λ))

1
1−M(λ) (1−M(λ)), (X (λ),Y (λ)) ∈ R,

and

F (λ) > −1

2
(logX (λ) + λ logM(λ) + λ logY (λ))

for all 0 < λ ≤ 1. Then R(k , `) ≤ eF (`/k)k+o(k) for all k ≥ `.
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Plot of the bound

Plot of H(λ) = G (λ)/λ. Our improvement for R(k , `) over the classical
bound is of the order exp(H(`/k)`).
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Multicolor Ramsey numbers

The multicolor Ramsey number R(k1, . . . , kc) is the minimum integer N
such that every coloring of edges of the complete graph on N vertices in c
colors contains a complete subgraph on ki vertices with all edges colored
with color i .

Theorem

For all x1 . . . , xc ∈ (0, 1) such that x1 + . . .+ xc = 1 and integers
k1, . . . , kc ≥ 1 we have

R(k1, . . . , kc) ≤ x−k11 x−k22 . . . x−kcc .

The upper bound is minimized for xi = ki
k1+...+kc

.
In particular, it gives

Rc(k) := R(k, . . . , k︸ ︷︷ ︸
c times

) ≤ cck .
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Multicolor Ramsey numbers

Theorem (Gupta, Ndiaye, N., Wei 2024+)

For all integers k , `1, . . . , `c ≥ 1 with ` = `1 + . . .+ `c we have

R(k , `1 . . . , `c)

≤ 2(k + `)

(
k + 2`

k

)k/2
((√

5 + 1
)

(k + 2`)

4`

)`
·

c∏
i=1

(
`i
`

)−`i
.

Improves on the classical bound for ` ≤ 0.69k .
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Multicolor Ramsey numbers

Theorem (Ballister, Bollobás, Campos, Hurley, Griffiths, Morris, and
Sahasrabudhe 2024+)

For each c ≥ 2 there exists δ > 0 such that

Rc(k) ≤ e−δkcck .
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Conclusion

√
2
k ≤ R(k , k) ≤ (3.8)k−o(k)
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Conclusion

(1− o(1))

√
2k

e

√
2
k ≤ R(k, k) ≤ (3.8)k−o(k)

Lower bound due to Spencer, 1975.

Problem (Conlon, Fox, Sudakov)

Can the lower bound be improved by a constant factor?
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Multicolor Ramsey numbers

Ack ≤ Rc(k) ≤ e−δckcck

for an absolute constant A.

The value of A has been recently (2021) improved by Conlon and Ferber,
and subsequently by Wigderson and by Sawin.
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Thank you!
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