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Abstract. This note shows that a certain toric quotient of the quintic Calabi—
Yau threefold if?* provides a counterexample to a recent conjecture of Cox
and Katz concerning nef cones of toric hypersurfaces.
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Introduction

Anticanonical hypersurfaces in toric Fano varieties provide a large supply
of Calabi—Yau varieties. Many explicit computations and constructions on
these varieties rely on the strength of toric geometry. In particular, ever since
the paper of Batyrev [2], toric constructions have played an important role
in the study of mirror symmetry.

According to string theory, one of the basic moduli spaces involved
in mirror symmetry is the so-calleddler moduli space of a Calabi—Yau
variety Z. This in turn is intimately related to the nef coNg Z) of Z, i.e.
the closed cone of divisors in the Picard group @&epanned by nef classes.
The nef cone of a variety also appears in birational geometry; faces of this
cone give information about possible birational contractions and fibre space
structures on the variety. The explicit computation of this cone is therefore
often of interest.

For toric hypersurfaces, one could hope that this cone, or at least its
intersection with the subspace of toric divisorsoKdivisors that lie in the
image of the restriction map from the Picard group of the ambient space),
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can be computed explicitly in terms of the toric data. In a recent work [3],
Cox and Katz give an combinatorial description of a certain cen
the real vector spacl’ of toric divisors onZ. This cone is constructed
from the ambient toric variety and some related varieties birational to it; for
details turn to [3, Sect. 6.2] or Sect. 3 of this note. Cox and Katz conjecture
[3, Conjecture 6.2.8] that the toric nef cone of the Calabi—Yau vatieity
exactly V.

In this note, | consider a certain toric quotient of a quintic hypersurface
in P* and its toric Calabi—Yau resolutigfi. The varietyZ is a hypersurface
in a toric Fano variety and so the conjecture of Cox and Katz applies to it.
However, | obtain

Theorem 0.1 The hypersurface’ in its ambient toric variety provides a
counterexample to [3, Conjecture 6.2.8] of Cox and Katz: its (toric) nef
cone is strictly larger than the con¥), predicted by the conjecture.

My attempts at formulating an alternative conjecture or computing the
nef cone ofZ have not been successful.

AcknowledgementsThe particular toric quotient considered in this note appears in a con-
struction of Aspinwall and Morrison [1]. | wish to thank Pelham Wilson for encouragement,
comments and corrections and Victor Batyrev for a discussion about nef cones.

Notation and conventions All varieties are defined ovef. If X is a pro-
jective variety, itsef conés the closed cond/(X) in Pic g(X) generated

by nef divisor classes, i.e. classBse Pic (X) satisfyingD - C' > 0 for

all effective curve€” C X. | use the language abric geometryin partic-

ular the ideas olinear Gale transformandGelfand—Kapranov—Zelevinsky
cones the main references are Fulton [4], Oda—Park [5] and Cox—Katz [3,
Chapters 3 and 6].

1 Some toric varieties

Fix £, a primitive fifth root of unity. Consider the imagde of the group

in PGL(5,C) and its subgroug! = (g1, g2) generated by

2 4
91 ¢ (20,21, 22, 23, 24) = (20, €21, 6722, 823, € 24)

and
g2 : (20, 21, 22, 23, 24) > (20, €21, €329, €23, 24).
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| will be interested in the quotient variefy/H and its (partial) res-

olutions. To describe these torically, [t = 7Z* M = Hom(N,Z) and
consider the polyhedron

4
Z:{Zmigl,miz—l} C]/\ZR
i=0
together with its dual polyhedron

A* = span{(1,0,0,0), (0,1,0,0), (0,0,1,0),
(0,0,0,1),(=1,—1,—1,—1)} C Ng.
The data(M, A~) definedy; ; = P* in the contravariant description of toric
varieties. The obvious map of lattices and polyhedva A*) — (M, A)
corresponds to the quotient map
Proposition 1.1 In the contravariant descriptiori?/H = Pj; A, where
M = 7Z* and A is the polyhedron

A= Span{(lu 07 07 0)7 (_37 2, _47 _2)7
(Oa 07 17 0)7 (01 Oa 07 1)7 (27 _57 3> 1)} C MR'

The dual polyhedrom\* C Ny of A is

A* = span{(—1,-2,~1,-1), (4,1, -1, 1),
(_17 _17 _17 _1)7 (_17 2747 _1)7 (_1707 _174)}7

whereN = Hom(M,Z). Moreover,

i. there are no lattice points in the interior ai* except for the origin;

ii. there are no lattice points in the interiors of three- or one-dimensional
faces;

iii. thereare preciselytwolattice poinf3, Q;,i = 1,...,10intheinteriors
of each of the ten two-dimensional faces; the combinatorics of the faces
is shown on top of the next page.

Proof. The inclusionN < M corresponds to the inclusion W of the
lattice of invariant monomials under th@ action. The sublatticé/ of

M is the lattice of invariant monomials under the actionFhf The points
(4,-1,-1,-1),(1,-1,2,0), (—-1,-1,4,-1), (-1,-1,—-1,4) ofﬁgive

a choice of basis fol/. An easy computation gives, its dual polyhedron

A* and the lattice points contained in it. For further reference, the lattice
points of A* are listed in the Appendix. a
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D, D,

DenoteP)y; 4 simply byPA. Let X' be the fan consisting of cones over
faces ofA* in Ng. This fan defines the toric variely x» = Pa.

Proposition 1.2 P4 is aQ-factorial Gorenstein variety, with ten curves of
canonical singularities. Every permutatignof the lattice pointg 7;, @; }
gives rise to a partial resolution

Xgn — ]PA.

The varietiesXy; have isolated singularities only.

Proof. All this is basic toric geometry. The curves of singularities cor-
respond to the ten two-dimensional faces®f. The singularities can be
partially resolved by subdividing the fati using the lattice point§P;, Q; }.
Any permutatior of these points gives a fah), in the spaceVg and a
corresponding toric partial resolutiofiz, with isolated singularities. O

2 Some hypersurfaces

Let Q be a smooth anticanonical hypersurfacePihinvariant under the
action of H; for example the Fermat quintic will do. Lef = Q/H be
the corresponding non-degenerate anticanonical hypersurfatg. df is
singular at the ten intersection points with the curves of singulariti@s,of
which are%(l, 1,3) quotient singularities. Every magy, — Pa gives
rise to a morphisn¥,, — Z. The hypersurfacg, C Xy, is a nonsingular
Calabi-Yau variety because eveXy, is nonsingular in codimension three.

Proposition 2.1 The resolutionsZ,, are all canonically isomorphic to a
Calabi—Yau resolutior¥ of 7.

Proof. Letny, ny be two permutations of the interior lattice points. There is
a corresponding birational map

sz -2 inz :
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Itis easy to check that the exceptional sets of this birational map are disjoint
from the hypersurfaceg; ,,. The statement follows. O

The next statement shows that in the case at hand the space of toric
divisors is in fact the whole Picard group.

Proposition 2.2 The restriction homomorphisms
PiCR(XZ‘,]) — PlC]R(Z)

are all isomorphisms.

Proof. This follows from [6, Sect. 6, Theorem 2]. The point is that every
curve of singularities o, meets the general hypersurface in one point,
so the exceptional divisors iy, restrict to irreducible divisors on the
hypersurfaceZ. O

3 Some cones

Let W denote the vector spad&icg(Z). By Proposition 2.2J} can be
canonically identified with thénear Gale transforn{5] of the set of points
{D;, P;,Q.,} in N. The fansX, for different permutations) give con-
vex polyhedral cones, the so-call&elfand—Kapranov—Zelevinsky cones
cpl (Xy) in the vector spacéV/, such that there are canonical maps and
identifications

PiCR(XZ'n) ; PiCR(Z) = w
U U
N(in) = cpl (277)

Lemma 3.1 Under these identifications, the congsl (X)) are all con-
tained in the nef cond/(Z) Cc W.

Proof. The anticanonical hypersurfaceXty, is Z. Nef divisor classes on
the ambient space clearly restrict to nef classes on the hypersurface.

Thus
Jepl(Z,) c N (2).
n

This is however not the full story. It is certainly possible that there are other
subdivisionsY, of X satisfying the property used above; namely, that the
anticanonical hypersurface X, is isomorphic taZ. To treat these fans, |
recall some definitions following [3, 6.2].

SupposeY is a fan inNg, X1 the set of its one-dimensional cones. A
linear circuit is a linearly dependent sét ¢ X, no subset of which is
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linearly dependent. There is a decompositios S, US_ (depending on a
choice) wheres ., respectivelyS_ are the vectors appearing with positive,
respectively negative coefficients in a linear relation. Correspondingly, there
is a fanX'; (S) given by cones spanned I\ n; for n; € S, and their
subcones, and a similar faf_(.5).

A linear circuit S is said to besupported by, if the following two
conditions are satisfied:

— X, (S) is asubfan of.

— Leto be a top-dimensional cone &f, (S). If there exists a subsét C
> () such thatr U S’ generates a top-dimensional coneXafthen for
all other top-dimensional cones of X', (S), ¢/ U S’ also generates a
top-dimensional cone of.

Suppose thab is a linear circuit supported by’ and bothS_ and S,
are non-empty. Then there exists a new Faip¢ (') from X' obtained by
replacing the simplices of spanned by U S’, whereo is a cone of2_ (S)
andS’ ¢ X1, by the simplices spanned by U S’ whereo’ is a cone of
X+ (95). Then the farFlipg () is simplicial, the toric variety defined by it
is projective, and the conesl (X) andcpl (Flipg(X')) in the linear Gale
transformi¥ touch along a common face.

Corresponding to the two fans i¥ig, there is a birational map

¢ : Xy --» Xpjip ()

It is easy to check that in case_ contains only one element, this map
is in fact a morphism contracting a divisor. If however béth and S,
contain more than one element, the birational mapgereeralized flopa
small contraction followed by a small resolution. Ifthe flopas exceptional
locus disjoint from the anticanonical hypersurfac&ef; itis called atrivial
flop and in this case the flip attached $ois referred to by [3] as &ivial
flip.

Return to the latticéV containing the polyhedrod*. Define a fan¥
in N to begood if it satisfies the following

Condition. There is a permutation such that the fatt’y can be obtained
from the fanX’,, by a sequence of trivial flips.

The Condition implies that the set of one-dimensional coneEpfs
precisely{ D;, P;, Q;}. So the conespl (X)) defined by the good fans,
embed canonically intd/. As the flips involved are trivial, the proper trans-
form of Z in Xy, is isomorphic taZ. Setting

No = U cpl (Xo),

Yo good
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there is an inclusion
No C N(2).

[3, Conjecture 6.2.8] expects this inclusion to be an equality. However, the
situation is more complicated. The following is Theorem 0.1 stated in the
Introduction:

Theorem 3.2 In the case discussed, the inclusion above is strict. The anti-
canonical hypersurfacg in the toric varietyX s, provides a counterexam-
ple to [3, Conjecture 6.2.8] of Cox and Katz.

Proof. Let Xy be a good fan satisfying the condition that the cones over the
tetrahedra

Do P1oQ10Fs, D2D4Q10FPs, D4 P1oQ10Fs,
Dy P1oQ10P7, DoDyQ10P7, Dy P1oQ10P7

are top-dimensional cones iy (see the figure; remember it is a three-
dimensional image of a four-dimensional setup).

P

Under this assumption, there are two interesting circuits supported on
Y. The first one is
S = {Da, Dy, P10, Q10} -

The linear relation is
—3q10+d2+ds+p1o=0

in obvious notation. Setting; = { D2, D4, Pio}, itis easy to check that the

assumptions imply thaff is supported oty. The corresponding birational

mapp; is a contraction of the divisadt; given by the one-dimensional cone
spanned by 1. It is easy to check thal; = P! x P? contracting taP!.
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The mapy; restricts to the threefold as the contraction of an irreducible
exceptional divisoi; =2 P2 to a singular point.
Now consider the circuif = { Ps, Pr, Q10}. The relation is

—qi0 +ps +p7r=0.

With S, = {Ps, Pr}, the circuit is supported o&y. The corresponding
contractionypy on Xy, is again divisorial, having exceptional divisor de-
fined by the one-dimensional cone spannedihy. So v, has the same
exceptional divisot, = E; = P! x P? asy;. The image of the excep-
tional divisor is in this case two-dimensional: the contractienestricts to
E, as the projection t&?.

The restriction ofp, to Z contracts the seExc (2) N Z to P2. How-
ever, in the first part of the discussion | have shown that (p2) N Z =
Exc (1) N Z = P2, Undery,, this maps isomorphically tB2. Hence the
contractionps restricts toZ as the identity.

The contractionys is divisorial, in particular not a flop; hence the corre-
sponding face ofpl (X)) is a face of the con&/,. However, divisors in this
face (and beyond) are still ample @h This implies that the corresponding
face is not in the boundary ¢ (7). Thus the congV/(2) is strictly larger
than\y as claimed. O

Remark 3.3lt is easy to see that possible counterexamples to [3, Conjec-
ture 6.2.8] can only arise where the relevant facA/pfgives a contraction

with fibre dimension one. In all other cases, the hypersurfacentains at

least one contracted curve, and so the face is indeed a face of the nef cone
of Z.

From this point of view, it is instructive to consider the following, much
simpler example. Lé? = P! x P3 and letZ be an anticanonical Calabi—Yau
threefold.lP has a nef cone with two faces, the faces corresponding to the
contractions to the two factors. In particular, the nef con® o also the
effective cone, the cone of effective classes.

One of the contractions restricts # as a K3 fibration. However, the
(Stein factorization of) the morphism R is not a fibration, and not even a
divisorial contraction: itis the contraction of a finite set of rational curves. In
particular, it is a flopping face, there is another marked birational model for
Z (which as an unmarked model is incidentally isomorphigyowhat hap-
pens here is that the nef cones are the same, but the effective cone changes:
the effective cone of7 is strictly larger than its nef cone. Note that the
trouble came again from a contraction of the toric ambient space of fibre
dimension one.
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Appendix: Description of the polyhedron A*

The vertices ofA* in N:

Dy=(-1,-2,-1,-1), D; = (4,1,—-1,-1), Dy = (—1,—-1,—-1,-1),
Ds = (-1,2,4,-1), Dy = (—1,0,—-1,4)

The lattice points on the two-dimensional faces:

Pl = (2707 _17 _1) Ql = (Oa _17 _17 _1) on D0D1D2

P2 = (0, 1,2, —1) Q2 = (1,0,0, —1) on DOD1D3
P3 = (07 _L 170) Q3 - (1>O7 _17 1) on D0D1D4
Py=(-1,-1,0,—1) Q4= (—1,0,1,—-1) on DyDyDs3
Py = (—1, -1, —1,0) Q5 = (—1, —-1,—-1, 1) on DyDoDy
Py = (—1,0,0, 2) QG = (—1,0, 1,0) on DygD3Dy
P, = (0, 0,0, —1) Q7 = (1, 1,1, —1) on D{DyDs
Py =(0,0,—-1,2) Qs = (1,0,-1,0) on Di1DyDy
Py = (2, 1,0,0) Qg = (07 1,1, 1) on D1D3Dy
Py = (—1, 1,2,0) QlO = (—1,0,0, 1) on DyD3Dy
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