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Abstract. This note shows that a certain toric quotient of the quintic Calabi–
Yau threefold inP4 provides a counterexample to a recent conjecture of Cox
and Katz concerning nef cones of toric hypersurfaces.
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Introduction

Anticanonical hypersurfaces in toric Fano varieties provide a large supply
of Calabi–Yau varieties. Many explicit computations and constructions on
these varieties rely on the strength of toric geometry. In particular, ever since
the paper of Batyrev [2], toric constructions have played an important role
in the study of mirror symmetry.

According to string theory, one of the basic moduli spaces involved
in mirror symmetry is the so-called K̈ahler moduli space of a Calabi–Yau
varietyZ. This in turn is intimately related to the nef coneN (Z) of Z, i.e.
the closed cone of divisors in the Picard group overR spanned by nef classes.
The nef cone of a variety also appears in birational geometry; faces of this
cone give information about possible birational contractions and fibre space
structures on the variety. The explicit computation of this cone is therefore
often of interest.

For toric hypersurfaces, one could hope that this cone, or at least its
intersection with the subspace of toric divisors onZ (divisors that lie in the
image of the restriction map from the Picard group of the ambient space),
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can be computed explicitly in terms of the toric data. In a recent work [3],
Cox and Katz give an combinatorial description of a certain coneN0 in
the real vector spaceW of toric divisors onZ. This cone is constructed
from the ambient toric variety and some related varieties birational to it; for
details turn to [3, Sect. 6.2] or Sect. 3 of this note. Cox and Katz conjecture
[3, Conjecture 6.2.8] that the toric nef cone of the Calabi–Yau varietyZ is
exactlyN0.

In this note, I consider a certain toric quotient of a quintic hypersurface
in P4 and its toric Calabi–Yau resolutionZ. The varietyZ is a hypersurface
in a toric Fano variety and so the conjecture of Cox and Katz applies to it.
However, I obtain

Theorem 0.1 The hypersurfaceZ in its ambient toric variety provides a
counterexample to [3, Conjecture 6.2.8] of Cox and Katz: its (toric) nef
cone is strictly larger than the coneN0 predicted by the conjecture.

My attempts at formulating an alternative conjecture or computing the
nef cone ofZ have not been successful.

Acknowledgements.The particular toric quotient considered in this note appears in a con-
struction of Aspinwall and Morrison [1]. I wish to thank Pelham Wilson for encouragement,
comments and corrections and Victor Batyrev for a discussion about nef cones.

Notation and conventionsAll varieties are defined overC. If X is a pro-
jective variety, itsnef coneis the closed coneN (X) in Pic R(X) generated
by nef divisor classes, i.e. classesD ∈ Pic (X) satisfyingD · C ≥ 0 for
all effective curvesC ⊂ X. I use the language oftoric geometry, in partic-
ular the ideas oflinear Gale transformandGelfand–Kapranov–Zelevinsky
cones; the main references are Fulton [4], Oda–Park [5] and Cox–Katz [3,
Chapters 3 and 6].

1 Some toric varieties

Fix ξ, a primitive fifth root of unity. Consider the imageD of the group{
(zi) �→ (ξaizi) :

4∑
i=0

ai = 0 (mod 5)

}

in PGL(5, C) and its subgroupH = 〈g1, g2〉 generated by

g1 : (z0, z1, z2, z3, z4) �→ (z0, ξz1, ξ
2z2, ξ

3z3, ξ
4z4)

and
g2 : (z0, z1, z2, z3, z4) �→ (z0, ξz1, ξ

3z2, ξz3, z4).
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I will be interested in the quotient varietyP4/H and its (partial) res-
olutions. To describe these torically, let̃N ∼= Z4, M̃ = Hom(Ñ , Z) and
consider the polyhedron

∆̃ =

{
4∑

i=0

mi ≤ 1, mi ≥ −1

}
⊂ M̃R

together with its dual polyhedron

∆̃∗ = span{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0),

(0, 0, 0, 1), (−1,−1,−1,−1)} ⊂ ÑR.

The data(M̃, ∆̃) definesP
M̃,∆̃

∼= P4 in the contravariant description of toric

varieties. The obvious map of lattices and polyhedra(Ñ , ∆̃∗) → (M̃, ∆̃)
corresponds to the quotient map

P
M̃,∆̃

∼= P4 −→ P
Ñ,∆̃∗ ∼= P4/D.

Proposition 1.1 In the contravariant description,P4/H ∼= PM,∆, where
M ∼= Z4 and∆ is the polyhedron

∆ = span{(1, 0, 0, 0), (−3, 5, −4, −2),
(0, 0, 1, 0), (0, 0, 0, 1), (2, −5, 3, 1)} ⊂ MR.

The dual polyhedron∆∗ ⊂ NR of ∆ is

∆∗ = span{(−1,−2,−1,−1), (4, 1, −1,−1),
(−1,−1,−1,−1), (−1, 2, 4,−1), (−1, 0,−1, 4)},

whereN = Hom(M, Z). Moreover,

i. there are no lattice points in the interior of∆∗ except for the origin;
ii. there are no lattice points in the interiors of three- or one-dimensional

faces;
iii. there are precisely two lattice pointsPi, Qi, i = 1, . . . , 10 in the interiors

of each of the ten two-dimensional faces; the combinatorics of the faces
is shown on top of the next page.

Proof. The inclusionÑ ↪→ M̃ corresponds to the inclusion iñM of the
lattice of invariant monomials under theD action. The sublatticeM of
M̃ is the lattice of invariant monomials under the action ofH. The points
(4,−1, −1,−1), (1,−1, 2, 0), (−1,−1, 4,−1), (−1,−1,−1, 4) of M̃ give
a choice of basis forM . An easy computation gives∆, its dual polyhedron
∆∗ and the lattice points contained in it. For further reference, the lattice
points of∆∗ are listed in the Appendix. ��
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D D

D2

3 4

Q10

P10

DenotePM,∆ simply byP∆. Let Σ be the fan consisting of cones over
faces of∆∗ in NR. This fan defines the toric varietyXN,Σ

∼= P∆.

Proposition 1.2 P∆ is aQ-factorial Gorenstein variety, with ten curves of
canonical singularities. Every permutationη of the lattice points{Pi, Qi}
gives rise to a partial resolution

XΣη → P∆.

The varietiesXΣη have isolated singularities only.

Proof. All this is basic toric geometry. The curves of singularities cor-
respond to the ten two-dimensional faces of∆∗. The singularities can be
partially resolved by subdividing the fanΣ using the lattice points{Pi, Qi}.
Any permutationη of these points gives a fanΣη in the spaceNR and a
corresponding toric partial resolutionXΣη with isolated singularities. ��

2 Some hypersurfaces

Let Q be a smooth anticanonical hypersurface inP4 invariant under the
action ofH; for example the Fermat quintic will do. Let̄Z = Q/H be
the corresponding non-degenerate anticanonical hypersurface ofP∆. Z̄ is
singular at the ten intersection points with the curves of singularities ofP∆

which are 1
5(1, 1, 3) quotient singularities. Every mapXΣη → P∆ gives

rise to a morphismZη → Z̄. The hypersurfaceZη ⊂ XΣη is a nonsingular
Calabi–Yau variety because everyXΣη is nonsingular in codimension three.

Proposition 2.1 The resolutionsZη are all canonically isomorphic to a
Calabi–Yau resolutionZ of Z̄.

Proof. Let η1, η2 be two permutations of the interior lattice points. There is
a corresponding birational map

XΣη1
��� XΣη2

.
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It is easy to check that the exceptional sets of this birational map are disjoint
from the hypersurfacesZt,ηi . The statement follows. ��

The next statement shows that in the case at hand the space of toric
divisors is in fact the whole Picard group.

Proposition 2.2 The restriction homomorphisms

Pic R(XΣη) −→ Pic R(Z)

are all isomorphisms.

Proof. This follows from [6, Sect. 6, Theorem 2]. The point is that every
curve of singularities ofP∆ meets the general hypersurface in one point,
so the exceptional divisors inXΣη restrict to irreducible divisors on the
hypersurfaceZ. ��

3 Some cones

Let W denote the vector spacePic R(Z). By Proposition 2.2,W can be
canonically identified with thelinear Gale transform[5] of the set of points
{Di, Pj , Qr} in N . The fansΣη for different permutationsη give con-
vex polyhedral cones, the so-calledGelfand–Kapranov–Zelevinsky cones
cpl (Ση) in the vector spaceW , such that there are canonical maps and
identifications

Pic R(XΣη) ∼−→ Pic R(Z) = W
∪ ∪

N (XΣη) = cpl (Ση)

Lemma 3.1 Under these identifications, the conescpl (Ση) are all con-
tained in the nef coneN (Z) ⊂ W .

Proof. The anticanonical hypersurface inXΣη is Z. Nef divisor classes on
the ambient space clearly restrict to nef classes on the hypersurface.��

Thus ⋃
η

cpl (Ση) ⊂ N (Z).

This is however not the full story. It is certainly possible that there are other
subdivisionsΣ0 of Σ satisfying the property used above; namely, that the
anticanonical hypersurface inXΣ0 is isomorphic toZ. To treat these fans, I
recall some definitions following [3, 6.2].

SupposeΣ is a fan inNR, Σ(1) the set of its one-dimensional cones. A
linear circuit is a linearly dependent setS ⊂ Σ(1), no subset of which is
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linearly dependent. There is a decompositionS = S+ ∪S− (depending on a
choice) whereS+, respectivelyS− are the vectors appearing with positive,
respectively negative coefficients in a linear relation. Correspondingly, there
is a fanΣ+(S) given by cones spanned byS \ ni for ni ∈ S+ and their
subcones, and a similar fanΣ−(S).

A linear circuit S is said to besupported byΣ, if the following two
conditions are satisfied:

– Σ+(S) is a subfan ofΣ.
– Let σ be a top-dimensional cone ofΣ+(S). If there exists a subsetS′ ⊂

Σ(1) such thatσ ∪ S′ generates a top-dimensional cone ofΣ, then for
all other top-dimensional conesσ′ of Σ+(S), σ′ ∪ S′ also generates a
top-dimensional cone ofΣ.

Suppose thatS is a linear circuit supported byΣ and bothS− and S+
are non-empty. Then there exists a new fanFlipS(Σ) from Σ obtained by
replacing the simplices ofΣ spanned byσ∪S′, whereσ is a cone ofΣ−(S)
andS′ ⊂ Σ(1), by the simplices spanned byσ′ ∪ S′ whereσ′ is a cone of
Σ+(S). Then the fanFlipS(Σ) is simplicial, the toric variety defined by it
is projective, and the conescpl (Σ) andcpl (FlipS(Σ)) in the linear Gale
transformW touch along a common face.

Corresponding to the two fans inNR, there is a birational map

ϕ : XΣ ��� XFlipS(Σ).

It is easy to check that in caseS− contains only one element, this map
is in fact a morphism contracting a divisor. If however bothS− andS+
contain more than one element, the birational map is ageneralized flop, a
small contraction followed by a small resolution. If the flopϕhas exceptional
locus disjoint from the anticanonical hypersurface ofXΣ , it is called atrivial
flop and in this case the flip attached toS is referred to by [3] as atrivial
flip.

Return to the latticeN containing the polyhedron∆∗. Define a fanΣ0
in NR to begood, if it satisfies the following

Condition. There is a permutationη such that the fanΣ0 can be obtained
from the fanΣη by a sequence of trivial flips.

The Condition implies that the set of one-dimensional cones ofΣ0 is
precisely{Di, Pi, Qi}. So the conescpl (Σ0) defined by the good fansΣ0
embed canonically intoW . As the flips involved are trivial, the proper trans-
form of Z in XΣ0 is isomorphic toZ. Setting

N0 =
⋃

Σ0 good

cpl (Σ0),
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there is an inclusion
N0 ⊂ N (Z).

[3, Conjecture 6.2.8] expects this inclusion to be an equality. However, the
situation is more complicated. The following is Theorem 0.1 stated in the
Introduction:

Theorem 3.2 In the case discussed, the inclusion above is strict. The anti-
canonical hypersurfaceZ in the toric varietyXΣη provides a counterexam-
ple to [3, Conjecture 6.2.8] of Cox and Katz.

Proof. Let Σ0 be a good fan satisfying the condition that the cones over the
tetrahedra

D2P10Q10P6, D2D4Q10P6, D4P10Q10P6,

D2P10Q10P7, D2D4Q10P7, D4P10Q10P7

are top-dimensional cones inΣ0 (see the figure; remember it is a three-
dimensional image of a four-dimensional setup).

D D

D

P

Q10

10

2

3 4

P6

P7

Under this assumption, there are two interesting circuits supported on
Σ0. The first one is

S = {D2, D4, P10, Q10} .

The linear relation is

−3q10 + d2 + d4 + p10 = 0

in obvious notation. SettingS+ = {D2, D4, P10}, it is easy to check that the
assumptions imply thatS is supported onΣ0. The corresponding birational
mapϕ1 is a contraction of the divisorE1 given by the one-dimensional cone
spanned byQ10. It is easy to check thatE1 ∼= P1 × P2 contracting toP1.
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The mapϕ1 restricts to the threefoldZ as the contraction of an irreducible
exceptional divisorF1 ∼= P2 to a singular point.

Now consider the circuitS = {P6, P7, Q10}. The relation is

−q10 + p6 + p7 = 0.

With S+ = {P6, P7}, the circuit is supported onΣ0. The corresponding
contractionϕ2 on XΣη is again divisorial, having exceptional divisor de-
fined by the one-dimensional cone spanned byD10. Soϕ2 has the same
exceptional divisorE2 = E1 ∼= P1 × P2 asϕ1. The image of the excep-
tional divisor is in this case two-dimensional: the contractionϕ2 restricts to
E2 as the projection toP2.

The restriction ofϕ2 to Z contracts the setExc (ϕ2) ∩ Z to P2. How-
ever, in the first part of the discussion I have shown thatExc (ϕ2) ∩ Z =
Exc (ϕ1) ∩ Z = P2. Underϕ2, this maps isomorphically toP2. Hence the
contractionϕ2 restricts toZ as the identity.

The contractionϕ2 is divisorial, in particular not a flop; hence the corre-
sponding face ofcpl (Σ0) is a face of the coneN0. However, divisors in this
face (and beyond) are still ample onZ. This implies that the corresponding
face is not in the boundary ofN (Z). Thus the coneN (Z) is strictly larger
thanN0 as claimed. ��

Remark 3.3It is easy to see that possible counterexamples to [3, Conjec-
ture 6.2.8] can only arise where the relevant face ofN0 gives a contraction
with fibre dimension one. In all other cases, the hypersurfaceZ contains at
least one contracted curve, and so the face is indeed a face of the nef cone
of Z.

From this point of view, it is instructive to consider the following, much
simpler example. LetP = P1×P3 and letZ be an anticanonical Calabi–Yau
threefold.P has a nef cone with two faces, the faces corresponding to the
contractions to the two factors. In particular, the nef cone ofP is also the
effective cone, the cone of effective classes.

One of the contractions restricts toZ as a K3 fibration. However, the
(Stein factorization of) the morphism toP3 is not a fibration, and not even a
divisorial contraction: it is the contraction of a finite set of rational curves. In
particular, it is a flopping face, there is another marked birational model for
Z (which as an unmarked model is incidentally isomorphic toZ). What hap-
pens here is that the nef cones are the same, but the effective cone changes:
the effective cone ofZ is strictly larger than its nef cone. Note that the
trouble came again from a contraction of the toric ambient space of fibre
dimension one.
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Appendix: Description of the polyhedron∆∗

The vertices of∆∗ in N :

D0 = (−1,−2,−1,−1), D1 = (4, 1,−1,−1), D2 = (−1,−1,−1,−1),
D3 = (−1, 2, 4,−1), D4 = (−1, 0,−1, 4)

The lattice points on the two-dimensional faces:

P1 = (2, 0,−1,−1) Q1 = (0,−1, −1, −1) on D0D1D2
P2 = (0, 1, 2,−1) Q2 = (1, 0, 0,−1) on D0D1D3
P3 = (0,−1,−1, 0) Q3 = (1, 0,−1, 1) on D0D1D4
P4 = (−1,−1, 0,−1) Q4 = (−1, 0, 1, −1) on D0D2D3
P5 = (−1,−1,−1, 0) Q5 = (−1,−1, −1, 1) on D0D2D4
P6 = (−1, 0, 0, 2) Q6 = (−1, 0, 1, 0) on D0D3D4
P7 = (0, 0, 0,−1) Q7 = (1, 1, 1,−1) on D1D2D3
P8 = (0, 0,−1, 2) Q8 = (1, 0,−1, 0) on D1D2D4
P9 = (2, 1, 0, 0) Q9 = (0, 1, 1, 1) on D1D3D4
P10 = (−1, 1, 2, 0) Q10 = (−1, 0, 0, 1) on D2D3D4
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