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Beginnings . . .

The first axiom I learnt in Computer Science:

Computers might as well be made of green cheese

It is no longer safe to assume this!
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Quantum Contextuality

Bell’s theorem, spooky action at a distance, and all that . . .

Quantum Mechanics is weird!

This has implications for

Our very conception of reality

The possibilities for information processing, in ways which could transform
our information society

What is contextuality, as a problematic, non-classical phenomenon?

In a nutshell: where we have a family of data which is locally consistent, but
globally inconsistent.
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Contextuality Analogy: Local Consistency
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b′
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Contextuality Analogy: Global Inconsistency

Samson Abramsky (Department of Computer Science, University of Oxford)Quantum computation: harnessing the atom at the borders of paradox 5 / 32



The Borders of Paradox

If this phenomenon arises with observable data, reflecting physical reality, it
takes us to the borders of paradox.

What saves us from a direct conflict between logic and experience is that the data
cannot be directly observed globally.
We cannot observe all the variables at the same time.
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Quantum Paradoxes and Quantum Technologies

We are witnessing the beginnings of quantum technologies for information
processing:

randomness certification and amplification

quantum key distribution and other security protocols (and post-quantum
crypto)

simulation of quantum chemistry, machine learning, optimization may soon
be in reach

These remarkable developments are directly connected with ideas from quantum
foundations, closely associated with paradoxes or quasi-paradoxes: Bell’s theorem,
Kochen-Specker paradox, Hardy’s paradox, teleportation, pseudo-telepathy,
non-locality, contextuality, . . .

The borders of paradox are a fruitful place to be!
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Alice-Bob games

Verifier

Alice Bob
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The XOR Game

Alice and Bob play a cooperative game against Verifier (or Nature!):

Verifier chooses an input x ∈ {0, 1} for Alice, and similarly an input y for
Bob. We assume the uniform distribution for Nature’s choices.

Alice and Bob each have to choose an output, a ∈ {0, 1} for Alice, b ∈ {0, 1}
for Bob, depending on their input. They are not allowed to communicate
during the game.

The winning condition: a⊕ b = x ∧ y .

A table of conditional probabilities p(a, b|x , y) defines a probabilistic strategy
for this game. The success probability for this strategy is:

1/4[p(a = b|x = 0, y = 0) + p(a = b|x = 0, y = 1) + p(a = b|x = 1, y = 0)

+p(a 6= b|x = 1, y = 1)]
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A Strategy for the Alice-Bob game
Example: The Bell Model

A B (0, 0) (1, 0) (0, 1) (1, 1)

0 0 1/2 0 0 1/2

0 1 3/8 1/8 1/8 3/8

1 0 3/8 1/8 1/8 3/8

1 1 1/8 3/8 3/8 1/8

A B (0, 0) (1, 0) (0, 1) (1, 1)

0 0 1/2 0 0 1/2

0 1 3/8 1/8 1/8 3/8

1 0 3/8 1/8 1/8 3/8

1 1 1/8 3/8 3/8 1/8

The entry in row 2 column 3 says:

If the Verifier sends Alice a1 and Bob b2, then with probability 1/8,
Alice outputs a 0 and Bob outputs a 1.

This gives a winning probability of 3.25
4 ≈ 0.81.

The optimal classical probability is 0.75!

The proof of this uses (and is essentially the same as) the use of Bell inequalities.

The Bell table exceeds this bound. Since it is quantum realizable using an
entangled pair of qubits, it shows that quantum resources yield a quantum
advantage in an information-processing task.

N.B. The optimum quantum probability is ≈ 0.83. There is no quantum perfect
strategy.
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A Simple Observation

Suppose we have propositional formulas φ1, . . . , φN

Suppose further we can assign a probability pi = Prob(φi ) to each φi .

(Story: perform experiment to test the variables in φi ; pi is the relative frequency
of the trials satisfying φi .)

Suppose that these formulas are not simultaneously satisfiable. Then (e.g.)

N−1∧
i=1

φi ⇒ ¬φN , or equivalently φN ⇒
N−1∨
i=1

¬φi .

Using elementary probability theory, we can calculate:

pN ≤ Prob(
N−1∨
i=1

¬φi ) ≤
N−1∑
i=1

Prob(¬φi ) =
N−1∑
i=1

(1− pi ) = (N − 1)−
N−1∑
i=1

pi .

Hence we obtain the inequality

N∑
i=1

pi ≤ N − 1.
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Logical analysis of the Bell table

(0, 0) (1, 0) (0, 1) (1, 1)

(a1, b1) 1/2 0 0 1/2

(a1, b2) 3/8 1/8 1/8 3/8

(a2, b1) 3/8 1/8 1/8 3/8

(a2, b2) 1/8 3/8 3/8 1/8

If we read 0 as true and 1 as false, the highlighted entries in each row of the table
are represented by the following propositions:

ϕ1 = (a1 ∧ b1) ∨ (¬a1 ∧ ¬b1) = a1 ↔ b1

ϕ2 = (a1 ∧ b2) ∨ (¬a1 ∧ ¬b2) = a1 ↔ b2

ϕ3 = (a2 ∧ b1) ∨ (¬a2 ∧ ¬b1) = a2 ↔ b1

ϕ4 = (¬a2 ∧ b2) ∨ (a2 ∧ ¬b2) = a2 ⊕ b2.

These propositions are easily seen to be contradictory.
The violation of the logical Bell inequality is 1/4.
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Science Fiction? – The News from Delft

First Loophole-free Bell test, 2015
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Timeline

1932 von Neumann’s Mathematical Foundations of Quantum Mechanics

1935 EPR Paradox, the Einstein-Bohr debate

1964 Bell’s Theorem

1982 First experimental test of EPR and Bell inequalities

(Aspect, Grangier, Roger, Dalibard)

1984 Bennett-Brassard quantum key distribution protocol

1985 Deutch Quantum Computing paper

1993 Quantum teleportation

(Bennett, Brassard, Crépeau, Jozsa, Peres, Wooters)

1994 Shor’s algorithm

2015 First loophole-free Bell tests (Delft, NIST, Vienna)
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Qubits: Spin Measurements
States of the system can be described by complex unit vectors in C2. These can
be visualized as points on the unit 2-sphere:

|+〉

|−〉

|+〉

|−〉

|Ψ〉

Spin can be measured in any direction; so there are a continuum of possible
measurements. There are two possible outcomes for each such measurement;
spin in the specified direction, or in the opposite direction. These two directions
are represented by a pair of orthogonal vectors. They are represented on the
sphere as a pair of antipodal points.

Note the appearance of quantization here: there are not a continuum of possible
outcomes for each measurement, but only two!
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The Stern-Gerlach Experiment
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Quantum Entanglement

Bell state:

|↑↑〉+ |↓↓〉

Compound systems are represented by tensor product: H1 ⊗H2. Typical
element: ∑

i

λi · φi ⊗ ψi

Superposition encodes correlation.

Einstein’s ‘spooky action at a distance’. Even if the particles are spatially
separated, measuring one has an effect on the state of the other.

Entangled pairs of qubits provide quantum resources which can be used to gain
quantum advantage in information processing tasks.
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The Mermin Magic Square

A B C

D E F

G H I

The values we can observe for these variables are 0 or 1.

We require that each row and the first two columns have even parity, and the final
column has odd parity.

This translates into 6 linear equations over Z2:

A⊕ B ⊕ C = 0 A⊕ D ⊕ G = 0

D ⊕ E ⊕ F = 0 B ⊕ E ⊕ H = 0

G ⊕ H ⊕ I = 0 C ⊕ F ⊕ I = 1

Of course, the equations are not satisfiable in Z2!
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Alice-Bob games for binary constraint systems

Alice and Bob can share prior information, but cannot communicate once the
game starts.

Verifier sends an equation to Alice, and a variable to Bob.

They win if Alice returns a satisfying assignment for the equation, and Bob
returns a value for the variable consistent with Alice’s assignment.

A perfect strategy is one which wins with probability 1.

Classically, A-B have a perfect strategy if and only if there is a satisfying
assignment for the equations.

Mermin’s construction shows that there is a quantum perfect strategy for the
magic square.
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Recent results
These games for general binary constraint systems studied by Cleve, Mittal, Liu
and Slofstra.

They show that have a quantum perfect strategy is equivalent to a purely
group-theoretic condition on a solution group which can be associated to each
system of binary equations.

Major recent result by Slofstra:

Theorem
Every finitely presented group can be embedded in a solution group.

Corollaries:

There are finite systems of boolean equations which have quantum perfect
strategies in infinite-dimensional Hilbert space, but not in any finite
dimension.

The question:

Given a binary constraint system, does a quantum perfect strategy exist?

is undecidable.
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Alice-Bob games for Graph Homomorphisms1

Given graphs G and H, does there exist a homomorphism G → H?

Verifier sends a vertex of G to Alice, and a vertex to Bob. They output vertices of
H.

They win if . . . ?

So we get a notion of “quantum graph homomorphism”. What does it mean?

What is the general underlying notion? How far can we generalize? Does it lead
to a notion of “quantum mathematics”?

There is an underlying “graded monad” (graded by dimension) . . .

Are there connections to description in various kinds of logic? E.g. a kind of
“quantum finite model theory”?

1Studied by Mancinska and Robertson, following Cameron, Montanaro, Newman, Severini and
Winter on the quantum chromatic number.
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Strong Contextuality2

A B (0, 0) (1, 0) (0, 1) (1, 1)

a1 b1 1 0 0 1

a1 b2 1 0 0 1

a2 b1 1 0 0 1

a2 b2 0 1 1 0

The PR Box: winning conditions for the XOR game!

2SA and A. Brandenburger, The Sheaf-theoretic structure of non-locality and contextuality
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Bundle Pictures3

Strong Contextuality

E.g. the PR box:

00 01 10 11

ab X × × X

ab′ X × × X

a′b X × × X

a′b′ × X X × •a
• b

• a′
•b′

•0

•1
•

•
1

• 0

• 1

•0

•

3SA, R. Barbosa, K. Kishida, R. Lal, S. Mansfield, Contextuality, Cohomology and Paradox.
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Contextuality, Logic and Paradoxes

Liar cycles. A Liar cycle of length N is a sequence of statements

S1 : S2 is true,

S2 : S3 is true,
...

SN−1 : SN is true,

SN : S1 is false.

For N = 1, this is the classic Liar sentence

S : S is false.

We can model the situation by boolean equations:

x1 = x2, . . . , xn−1 = xn, xn = ¬x1

The “paradoxical” nature of the original statements is captured by the
inconsistency of these equations.
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Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which
occur in it:

{x1, x2} : x1 = x2

{x2, x3} : x2 = x3

...

{xn−1, xn} : xn−1 = xn

{xn, x1} : xn = ¬x1

Any subset of up to n − 1 of these equations is consistent; while the whole set is
inconsistent.

Up to rearrangement, the Liar cycle of length 4 corresponds exactly to the
PR box.

The usual reasoning to derive a contradiction from the Liar cycle corresponds
precisely to the attempt to find a univocal path in the bundle diagram.
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Paths to contradiction

•a1

•
b1

• a2

•
b2

•0

•1
•

•
1

• 0

• 1

•0

•

Suppose that we try to set a2 to 1. Following the path on the right leads to the
following local propagation of values:

a2 = 1 ; b1 = 1 ; a1 = 1 ; b2 = 1 ; a2 = 0

a2 = 0 ; b1 = 0 ; a1 = 0 ; b2 = 0 ; a2 = 1

We have discussed a specific case here, but the analysis can be generalised to a
large class of examples.
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From paradox to technology

“Strange loops” (Hofstadter)

“It’s not a bug, it’s a feature”.

Resolution of the paradox — add new values.
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Envoi

Contextuality in physics raises deep questions about the nature of reality. But it is
also a new kind of resource, which yields new possibilities in information
processing tasks.
The challenge is to find methods to harness this resource, and understand its
structure.

By using these notions, we may come to understand them better. This may be
the only way!

Under the rubric of ”local consistency, global inconsistency” contextuality is a
pervasive notion, arising e.g. in constraint satisfaction, databases, distributed
computation and elsewhere in classical computation.
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The Penrose Tribar
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