Computational Algebraic Topology Topic B: Lecture II: The Topology of Paradox

Samson Abramsky

Department of Computer Science
The University of Oxford

What Do 'Observables' Observe?

What Do 'Observables' Observe?

Surely objective properties of a physical system, which are independent of our choice of which measurements to perform - of our measurement context.

What Do 'Observables' Observe?

Surely objective properties of a physical system, which are independent of our choice of which measurements to perform - of our measurement context.

More precisely, this would say that for each possible state of the system, there is a function λ which for each measurement m specifies an outcome $\lambda(m)$, independently of which other measurements may be performed.

What Do 'Observables' Observe?

Surely objective properties of a physical system, which are independent of our choice of which measurements to perform - of our measurement context.

More precisely, this would say that for each possible state of the system, there is a function λ which for each measurement m specifies an outcome $\lambda(m)$, independently of which other measurements may be performed.

This point of view is called non-contextuality. It is equivalent to the assumption of a classical source.

What Do 'Observables' Observe?

Surely objective properties of a physical system, which are independent of our choice of which measurements to perform - of our measurement context.

More precisely, this would say that for each possible state of the system, there is a function λ which for each measurement m specifies an outcome $\lambda(m)$, independently of which other measurements may be performed.

This point of view is called non-contextuality. It is equivalent to the assumption of a classical source.

However, this view is impossible to sustain in the light of our actual observations of (micro)-physical reality.

Hidden Variables: The Mermin instruction set picture

The 'Hardy Paradox': Bell's theorem without inequalities

The 'Hardy Paradox': Bell's theorem without inequalities

 Hardy models: those whose support satisfies| | $(0,0)$ | $(0,1)$ | $(1,0)$ | $(1,1)$ |
| :---: | :---: | :---: | :---: | :---: |
| $\left(a_{1}, b_{1}\right)$ | 1 | | | |
| $\left(a_{1}, b_{2}\right)$ | 0 | | | |
| $\left(a_{2}, b_{1}\right)$ | 0 | | | |
| $\left(a_{2}, b_{2}\right)$ | | | | 0 |

Which 'instruction set' λ could the outcomes $(0,0)$ for measurements $\left(a_{1}, b_{1}\right)$ could come? Clearly, we must have

$$
\lambda: a_{1} \mapsto 0, \quad b_{1} \mapsto 0 .
$$

The 'Hardy Paradox': Bell's theorem without inequalities

 Hardy models: those whose support satisfies| | $(0,0)$ | $(0,1)$ | $(1,0)$ | $(1,1)$ |
| :---: | :---: | :---: | :---: | :---: |
| $\left(a_{1}, b_{1}\right)$ | 1 | | | |
| $\left(a_{1}, b_{2}\right)$ | 0 | $?$ | | |
| $\left(a_{2}, b_{1}\right)$ | 0 | | | |
| $\left(a_{2}, b_{2}\right)$ | | | | 0 |

Which 'instruction set' λ could the outcomes $(0,0)$ for measurements $\left(a_{1}, b_{1}\right)$ could come? Clearly, we must have

$$
\lambda: a_{1} \mapsto 0, \quad b_{1} \mapsto 0 .
$$

The 'Hardy Paradox': Bell's theorem without inequalities

 Hardy models: those whose support satisfies| | $(0,0)$ | $(0,1)$ | $(1,0)$ | $(1,1)$ |
| :---: | :---: | :---: | :---: | :---: |
| $\left(a_{1}, b_{1}\right)$ | 1 | | | |
| $\left(a_{1}, b_{2}\right)$ | 0 | 1 | | |
| $\left(a_{2}, b_{1}\right)$ | 0 | | | |
| $\left(a_{2}, b_{2}\right)$ | | | | 0 |

Which 'instruction set' λ could the outcomes $(0,0)$ for measurements $\left(a_{1}, b_{1}\right)$ could come? Clearly, we must have

$$
\lambda: a_{1} \mapsto 0, \quad b_{1} \mapsto 0
$$

The 'Hardy Paradox': Bell's theorem without inequalities

 Hardy models: those whose support satisfies| | $(0,0)$ | $(0,1)$ | $(1,0)$ | $(1,1)$ |
| :---: | :---: | :---: | :---: | :---: |
| $\left(a_{1}, b_{1}\right)$ | 1 | | | |
| $\left(a_{1}, b_{2}\right)$ | 0 | 1 | | |
| $\left(a_{2}, b_{1}\right)$ | 0 | | | |
| $\left(a_{2}, b_{2}\right)$ | | $?$ | 0 | |

Which 'instruction set' λ could the outcomes $(0,0)$ for measurements $\left(a_{1}, b_{1}\right)$ could come? Clearly, we must have

$$
\lambda: a_{1} \mapsto 0, \quad b_{1} \mapsto 0 .
$$

The 'Hardy Paradox': Bell's theorem without inequalities

 Hardy models: those whose support satisfies| | $(0,0)$ | $(0,1)$ | $(1,0)$ | $(1,1)$ |
| :---: | :---: | :---: | :---: | :---: |
| $\left(a_{1}, b_{1}\right)$ | 1 | | | |
| $\left(a_{1}, b_{2}\right)$ | 0 | 1 | | |
| $\left(a_{2}, b_{1}\right)$ | 0 | | | |
| $\left(a_{2}, b_{2}\right)$ | | 1 | | 0 |

Which 'instruction set' λ could the outcomes $(0,0)$ for measurements $\left(a_{1}, b_{1}\right)$ could come? Clearly, we must have

$$
\lambda: a_{1} \mapsto 0, \quad b_{1} \mapsto 0
$$

The 'Hardy Paradox': Bell's theorem without inequalities

 Hardy models: those whose support satisfies| | $(0,0)$ | $(0,1)$ | $(1,0)$ | $(1,1)$ |
| :---: | :---: | :---: | :---: | :---: |
| $\left(a_{1}, b_{1}\right)$ | 1 | | | |
| $\left(a_{1}, b_{2}\right)$ | 0 | 1 | | |
| $\left(a_{2}, b_{1}\right)$ | 0 | | | |
| $\left(a_{2}, b_{2}\right)$ | | 1 | | 0 |

So there is a unique 'instruction set' λ that outcomes $(0,0)$ for measurements (a_{1}, b_{1}) could come from:

$$
\lambda: a_{1} \mapsto 0, \quad a_{2} \mapsto 0, \quad b_{1} \mapsto 0, \quad b_{2} \mapsto 1 .
$$

The 'Hardy Paradox': Bell's theorem without inequalities

 Hardy models: those whose support satisfies| | $(0,0)$ | $(0,1)$ | $(1,0)$ | $(1,1)$ |
| :---: | :---: | :---: | :---: | :---: |
| $\left(a_{1}, b_{1}\right)$ | 1 | | | |
| $\left(a_{1}, b_{2}\right)$ | 0 | 1 | | |
| $\left(a_{2}, b_{1}\right)$ | 0 | | | |
| $\left(a_{2}, b_{2}\right)$ | | 1 | 0 | |

So there is a unique 'instruction set' λ that outcomes $(0,0)$ for measurements (a_{1}, b_{1}) could come from:

$$
\lambda: a_{1} \mapsto 0, \quad a_{2} \mapsto 0, \quad b_{1} \mapsto 0, \quad b_{2} \mapsto 1 .
$$

However, this would require the outcome $(0,0)$ for measurements $\left(a_{2}, b_{1}\right)$ to be possible, and this is precluded.

The 'Hardy Paradox': Bell's theorem without inequalities

 Hardy models: those whose support satisfies| | $(0,0)$ | $(0,1)$ | $(1,0)$ | $(1,1)$ |
| :---: | :---: | :---: | :---: | :---: |
| $\left(a_{1}, b_{1}\right)$ | 1 | | | |
| $\left(a_{1}, b_{2}\right)$ | 0 | 1 | | |
| $\left(a_{2}, b_{1}\right)$ | 0 | | | |
| $\left(a_{2}, b_{2}\right)$ | | 1 | 0 | |

So there is a unique 'instruction set' λ that outcomes $(0,0)$ for measurements (a_{1}, b_{1}) could come from:

$$
\lambda: a_{1} \mapsto 0, \quad a_{2} \mapsto 0, \quad b_{1} \mapsto 0, \quad b_{2} \mapsto 1 .
$$

However, this would require the outcome $(0,0)$ for measurements $\left(a_{2}, b_{1}\right)$ to be possible, and this is precluded.

Thus Hardy models are contextual. They cannot be explained by a classical source.

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

$b^{\prime} \bullet$

- a^{\prime}
- b

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Bundle Pictures

Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

	00	01	10	11
$a b$	\checkmark	\checkmark	\checkmark	\checkmark
$a b^{\prime}$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b$	\times	\checkmark	\checkmark	\checkmark
$a^{\prime} b^{\prime}$	\checkmark	\checkmark	\checkmark	\times

Strong Contextuality

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a_{1}	b_{1}	1	0	0	1
a_{1}	b_{2}	1	0	0	1
a_{2}	b_{1}	1	0	0	1
a_{2}	b_{2}	0	1	1	0
The PR Box					

Strong Contextuality

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a_{1}	b_{1}	1	0	0	1
a_{1}	b_{2}	1	0	0	1
a_{2}	b_{1}	1	0	0	1
a_{2}	b_{2}	0	1	1	0
The PR Box					

Note this achieves the algebraic maximum of 4 for our logical Bell inequality.

Strong Contextuality

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a_{1}	b_{1}	1	0	0	1
a_{1}	b_{2}	1	0	0	1
a_{2}	b_{1}	1	0	0	1
a_{2}	b_{2}	0	1	1	0
The PR Box					

Note this achieves the algebraic maximum of 4 for our logical Bell inequality. In terms of the XOR game, it is a winning strategy.

Bundle Pictures

Strong Contextuality

- E.g. the PR box:

	00	01	10	11
$a b$	\checkmark	\times	\times	\checkmark
$a b^{\prime}$	\checkmark	\times	\times	\checkmark
$a^{\prime} b$	\checkmark	\times	\times	\checkmark
$a^{\prime} b^{\prime}$	\times	\checkmark	\checkmark	\times

Visualizing Contextuality

The Hardy table and the PR box as bundles

Visualizing Contextuality

The Hardy table and the PR box as bundles

A hierarchy of degrees of contextuality:

$$
\text { Bell }<\text { Hardy }<\text { GHZ }
$$

Contextuality, Logic and Paradoxes

Contextuality, Logic and Paradoxes

Liar cycles. A Liar cycle of length N is a sequence of statements
$S_{1}: S_{2}$ is true,
$S_{2}: S_{3}$ is true,
$S_{N-1}: S_{N}$ is true,
$S_{N}: S_{1}$ is false.
For $N=1$, this is the classic Liar sentence

$$
S: S \text { is false. }
$$

Contextuality, Logic and Paradoxes

Liar cycles. A Liar cycle of length N is a sequence of statements
$S_{1}: S_{2}$ is true,
$S_{2}: S_{3}$ is true,
$S_{N-1}: S_{N}$ is true,
$S_{N}: S_{1}$ is false.
For $N=1$, this is the classic Liar sentence

$$
S: S \text { is false. }
$$

Following Cook, Walicki et al. we can model the situation by boolean equations:

$$
x_{1}=x_{2}, \quad \ldots, \quad x_{n-1}=x_{n}, \quad x_{n}=\neg x_{1}
$$

Contextuality, Logic and Paradoxes

Liar cycles. A Liar cycle of length N is a sequence of statements
$S_{1}: S_{2}$ is true,
$S_{2}: S_{3}$ is true,

$$
\begin{array}{r}
S_{N-1}: S_{N} \text { is true, } \\
S_{N}: S_{1} \text { is false. }
\end{array}
$$

For $N=1$, this is the classic Liar sentence

$$
S: S \text { is false. }
$$

Following Cook, Walicki et al. we can model the situation by boolean equations:

$$
x_{1}=x_{2}, \ldots, \quad x_{n-1}=x_{n}, \quad x_{n}=\neg x_{1}
$$

The "paradoxical" nature of the original statements is now captured by the inconsistency of these equations.

Contextuality in the Liar; Liar cycles in the PR Box

Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which occur in it:

$$
\begin{aligned}
\left\{x_{1}, x_{2}\right\}: & x_{1}=x_{2} \\
\left\{x_{2}, x_{3}\right\}: & x_{2}=x_{3} \\
\vdots & \\
\left\{x_{n-1}, x_{n}\right\}: & x_{n-1}=x_{n} \\
\left\{x_{n}, x_{1}\right\}: & x_{n}=\neg x_{1}
\end{aligned}
$$

Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which occur in it:

$$
\begin{aligned}
\left\{x_{1}, x_{2}\right\}: & x_{1}=x_{2} \\
\left\{x_{2}, x_{3}\right\}: & x_{2}=x_{3} \\
\vdots & \\
\left\{x_{n-1}, x_{n}\right\}: & x_{n-1}=x_{n} \\
\left\{x_{n}, x_{1}\right\}: & x_{n}=\neg x_{1}
\end{aligned}
$$

Any subset of up to $n-1$ of these equations is consistent; while the whole set is inconsistent.

Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which occur in it:

$$
\begin{aligned}
\left\{x_{1}, x_{2}\right\}: & x_{1}=x_{2} \\
\left\{x_{2}, x_{3}\right\}: & x_{2}=x_{3} \\
\vdots & \\
\left\{x_{n-1}, x_{n}\right\}: & x_{n-1}=x_{n} \\
\left\{x_{n}, x_{1}\right\}: & x_{n}=\neg x_{1}
\end{aligned}
$$

Any subset of up to $n-1$ of these equations is consistent; while the whole set is inconsistent.

Up to rearrangement, the Liar cycle of length 4 corresponds exactly to the PR box.

Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which occur in it:

$$
\begin{aligned}
\left\{x_{1}, x_{2}\right\}: & x_{1}=x_{2} \\
\left\{x_{2}, x_{3}\right\}: & x_{2}=x_{3} \\
\vdots & \\
\left\{x_{n-1}, x_{n}\right\}: & x_{n-1}=x_{n} \\
\left\{x_{n}, x_{1}\right\}: & x_{n}=\neg x_{1}
\end{aligned}
$$

Any subset of up to $n-1$ of these equations is consistent; while the whole set is inconsistent.

Up to rearrangement, the Liar cycle of length 4 corresponds exactly to the PR box.

The usual reasoning to derive a contradiction from the Liar cycle corresponds precisely to the attempt to find a univocal path in the bundle diagram.

Paths to contradiction

Paths to contradiction

Suppose that we try to set a_{2} to 1 . Following the path on the right leads to the following local propagation of values:

$$
\begin{aligned}
& a_{2}=1 \leadsto b_{1}=1 \leadsto a_{1}=1 \leadsto b_{2}=1 \leadsto a_{2}=0 \\
& a_{2}=0 \leadsto b_{1}=0 \leadsto a_{1}=0 \leadsto b_{2}=0 \leadsto a_{2}=1
\end{aligned}
$$

Paths to contradiction

Suppose that we try to set a_{2} to 1 . Following the path on the right leads to the following local propagation of values:

$$
\begin{aligned}
& a_{2}=1 \leadsto b_{1}=1 \leadsto a_{1}=1 \leadsto b_{2}=1 \leadsto a_{2}=0 \\
& a_{2}=0 \leadsto b_{1}=0 \leadsto a_{1}=0 \leadsto b_{2}=0 \leadsto a_{2}=1
\end{aligned}
$$

We have discussed a specific case here, but the analysis can be generalised to a large class of examples.

Formalizing Contextuality: Measurement Scenarios

A measurement scenario is a triple (X, \mathcal{M}, O) where:

Formalizing Contextuality: Measurement Scenarios

A measurement scenario is a triple (X, \mathcal{M}, O) where:

- X is a set of variables which can be measured, observed or evaluated

Formalizing Contextuality: Measurement Scenarios

A measurement scenario is a triple (X, \mathcal{M}, O) where:

- X is a set of variables which can be measured, observed or evaluated
- \mathcal{M} is a family of sets of variables, those which can be measured together. These form the contexts.

Formalizing Contextuality: Measurement Scenarios

A measurement scenario is a triple (X, \mathcal{M}, O) where:

- X is a set of variables which can be measured, observed or evaluated
- \mathcal{M} is a family of sets of variables, those which can be measured together. These form the contexts.
- O is a set of possible outcomes or values for the variables.

Formalizing Contextuality: Measurement Scenarios

A measurement scenario is a triple (X, \mathcal{M}, O) where:

- X is a set of variables which can be measured, observed or evaluated
- \mathcal{M} is a family of sets of variables, those which can be measured together. These form the contexts.
- O is a set of possible outcomes or values for the variables.

Example:

Formalizing Contextuality: Measurement Scenarios

A measurement scenario is a triple (X, \mathcal{M}, O) where:

- X is a set of variables which can be measured, observed or evaluated
- \mathcal{M} is a family of sets of variables, those which can be measured together. These form the contexts.
- O is a set of possible outcomes or values for the variables.

Example:
In our tables, the set of variables is $X=\left\{a, a^{\prime}, b, b^{\prime}\right\}$.

Formalizing Contextuality: Measurement Scenarios

A measurement scenario is a triple (X, \mathcal{M}, O) where:

- X is a set of variables which can be measured, observed or evaluated
- \mathcal{M} is a family of sets of variables, those which can be measured together. These form the contexts.
- O is a set of possible outcomes or values for the variables.

Example:

In our tables, the set of variables is $X=\left\{a, a^{\prime}, b, b^{\prime}\right\}$.
The measurement contexts are:

$$
\left\{\left\{a_{1}, b_{1}\right\}, \quad\left\{a_{2}, b_{1}\right\}, \quad\left\{a_{1}, b_{2}\right\}, \quad\left\{a_{2}, b_{2}\right\}\right\}
$$

Formalizing Contextuality: Measurement Scenarios

A measurement scenario is a triple (X, \mathcal{M}, O) where:

- X is a set of variables which can be measured, observed or evaluated
- \mathcal{M} is a family of sets of variables, those which can be measured together. These form the contexts.
- O is a set of possible outcomes or values for the variables.

Example:

In our tables, the set of variables is $X=\left\{a, a^{\prime}, b, b^{\prime}\right\}$.
The measurement contexts are:

$$
\left\{\left\{a_{1}, b_{1}\right\}, \quad\left\{a_{2}, b_{1}\right\}, \quad\left\{a_{1}, b_{2}\right\}, \quad\left\{a_{2}, b_{2}\right\}\right\}
$$

The outcomes are

$$
O=\{0,1\}
$$

Formalizing Contextuality: Measurement Scenarios

A measurement scenario is a triple (X, \mathcal{M}, O) where:

- X is a set of variables which can be measured, observed or evaluated
- \mathcal{M} is a family of sets of variables, those which can be measured together. These form the contexts.
- O is a set of possible outcomes or values for the variables.

Example:

In our tables, the set of variables is $X=\left\{a, a^{\prime}, b, b^{\prime}\right\}$.
The measurement contexts are:

$$
\left\{\left\{a_{1}, b_{1}\right\}, \quad\left\{a_{2}, b_{1}\right\}, \quad\left\{a_{1}, b_{2}\right\}, \quad\left\{a_{2}, b_{2}\right\}\right\}
$$

The outcomes are

$$
O=\{0,1\}
$$

A joint outcome or event in a context C is $s \in O^{C}$, e.g. $s=\{a \mapsto 0, b \mapsto 1\}$.

A Kochen-Specker construction

A Kochen-Specker construction

This uses

A Kochen-Specker construction

This uses

- A set X of 18 variables, $\{A, \ldots, O\}$

A Kochen-Specker construction

This uses

- A set X of 18 variables, $\{A, \ldots, O\}$
- A measurement cover $\mathcal{U}=\left\{U_{1}, \ldots, U_{9}\right\}$, where the columns U_{i} are the sets in the cover:

A Kochen-Specker construction

This uses

- A set X of 18 variables, $\{A, \ldots, O\}$
- A measurement cover $U=\left\{U_{1}, \ldots, U_{9}\right\}$, where the columns U_{i} are the sets in the cover:

U_{1}	U_{2}	U_{3}	U_{4}	U_{5}	U_{6}	U_{7}	U_{8}	U_{9}
A	A	H	H	B	I	P	P	Q
B	E	I	K	E	K	Q	R	R
C	F	C	G	M	N	D	F	M
D	G	J	L	N	O	J	L	O

A Kochen-Specker construction

This uses

- A set X of 18 variables, $\{A, \ldots, O\}$
- A measurement cover $\mathcal{U}=\left\{U_{1}, \ldots, U_{9}\right\}$, where the columns U_{i} are the sets in the cover:

U_{1}	U_{2}	U_{3}	U_{4}	U_{5}	U_{6}	U_{7}	U_{8}	U_{9}
A	A	H	H	B	I	P	P	Q
B	E	I	K	E	K	Q	R	R
C	F	C	G	M	N	D	F	M
D	G	J	L	N	O	J	L	O

The original K-S construction used 117 variables!

Empirical Models

Empirical Models

Let (X, \mathcal{M}, O) be a measurement scenario. An empirical model for this scenario is a family

$$
\left\{d_{C}\right\}_{C \in \mathcal{M}}
$$

where $d_{C} \in \operatorname{Prob}\left(O^{C}\right)$ for $C \in \mathcal{M}$.

Empirical Models

Let (X, \mathcal{M}, O) be a measurement scenario. An empirical model for this scenario is a family

$$
\left\{d_{C}\right\}_{C \in \mathcal{M}}
$$

where $d_{C} \in \operatorname{Prob}\left(O^{C}\right)$ for $C \in \mathcal{M}$.
In other words, the empirical model specifies a probability distribution over the events in each context.

Empirical Models

Let (X, \mathcal{M}, O) be a measurement scenario. An empirical model for this scenario is a family

$$
\left\{d_{C}\right\}_{C \in \mathcal{M}}
$$

where $d_{C} \in \operatorname{Prob}\left(O^{C}\right)$ for $C \in \mathcal{M}$.
In other words, the empirical model specifies a probability distribution over the events in each context.

These distributions are the rows of our probability tables.

Mathematical Structure of Probability Tables

Mathematical Structure of Probability Tables

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a	b	0	$1 / 2$	$1 / 2$	0
a^{\prime}	b	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a	b^{\prime}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a^{\prime}	b^{\prime}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$

Mathematical Structure of Probability Tables

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a	b	0	$1 / 2$	$1 / 2$	0
a^{\prime}	b	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a	b^{\prime}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a^{\prime}	b^{\prime}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$

The measurement contexts are

$$
\{a, b\}, \quad\left\{a^{\prime}, b\right\}, \quad\left\{a, b^{\prime}\right\}, \quad\left\{a^{\prime}, b^{\prime}\right\} .
$$

Mathematical Structure of Probability Tables

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a	b	0	$1 / 2$	$1 / 2$	0
a^{\prime}	b	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a	b^{\prime}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a^{\prime}	b^{\prime}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$

The measurement contexts are

$$
\{a, b\}, \quad\left\{a^{\prime}, b\right\}, \quad\left\{a, b^{\prime}\right\}, \quad\left\{a^{\prime}, b^{\prime}\right\} .
$$

Each measurement has possible outcomes 0 or 1 . The matrix entry at row $\left(a^{\prime}, b\right)$ and column $(0,1)$ indicates the event

$$
\left\{a^{\prime} \mapsto 0, b \mapsto 1\right\}
$$

Mathematical Structure of Probability Tables

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a	b	0	$1 / 2$	$1 / 2$	0
a^{\prime}	b	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a	b^{\prime}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a^{\prime}	b^{\prime}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$

The measurement contexts are

$$
\{a, b\}, \quad\left\{a^{\prime}, b\right\}, \quad\left\{a, b^{\prime}\right\}, \quad\left\{a^{\prime}, b^{\prime}\right\} .
$$

Each measurement has possible outcomes 0 or 1 . The matrix entry at row $\left(a^{\prime}, b\right)$ and column $(0,1)$ indicates the event

$$
\left\{a^{\prime} \mapsto 0, b \mapsto 1\right\}
$$

Each row of the table specifies a probability distribution on events O^{C} for a given choice of measurements C.

Gluing functional sections

Gluing functional sections

If $s_{U}\left|u \cap v=s_{v}\right| u \cap V$, they can be glued to form

$$
s: U \cup V \longrightarrow O
$$

such that $\left.s\right|_{U}=s_{U}$ and $\left.s\right|_{V}=s_{V}$.

The need for restriction

The need for restriction

We would like to express the condition that an empirical model is compatible, i.e. "locally consistent".

The need for restriction

We would like to express the condition that an empirical model is compatible, i.e. "locally consistent".

We want to do this by saying that the distributions "agree on overlaps". For all $C, C^{\prime} \in \mathcal{M}$:

$$
\left.d_{C}\right|_{C \cap C^{\prime}}=\left.d_{C^{\prime}}\right|_{C \cap C^{\prime}} .
$$

The need for restriction

We would like to express the condition that an empirical model is compatible, i.e. "locally consistent".

We want to do this by saying that the distributions "agree on overlaps". For all $C, C^{\prime} \in \mathcal{M}$:

$$
\left.d_{C}\right|_{C \cap C^{\prime}}=\left.d_{C^{\prime}}\right|_{C \cap C^{\prime}} .
$$

Cf. the usual notion of compatibility of a family of functions defined on subsets.

The need for restriction

We would like to express the condition that an empirical model is compatible, i.e. "locally consistent".

We want to do this by saying that the distributions "agree on overlaps". For all $C, C^{\prime} \in \mathcal{M}$:

$$
\left.d_{C}\right|_{C \cap C^{\prime}}=\left.d_{C^{\prime}}\right|_{C \cap C^{\prime}} .
$$

Cf. the usual notion of compatibility of a family of functions defined on subsets.
A formula for restriction of distributions: if $C^{\prime} \subseteq C, d \in \operatorname{Prob}\left(O^{C}\right)$,

$$
\left.d\right|_{C^{\prime}}(s):=\sum_{t \in O^{c}, t \mid c=s} d(t)
$$

The need for restriction

We would like to express the condition that an empirical model is compatible, i.e. "locally consistent".

We want to do this by saying that the distributions "agree on overlaps". For all $C, C^{\prime} \in \mathcal{M}$:

$$
\left.d_{C}\right|_{C \cap C^{\prime}}=\left.d_{C^{\prime}}\right|_{C \cap C^{\prime}} .
$$

Cf. the usual notion of compatibility of a family of functions defined on subsets.
A formula for restriction of distributions: if $C^{\prime} \subseteq C, d \in \operatorname{Prob}\left(O^{C}\right)$,

$$
\left.d\right|_{c^{\prime}}(s):=\sum_{t \in O^{c},\left.t\right|_{c=s}} d(t)
$$

This is just marginalization: if $C=C^{\prime} \sqcup C^{\prime \prime}$, then $O^{C}=O^{C^{\prime}} \times O^{C^{\prime \prime}}$.

The need for restriction

We would like to express the condition that an empirical model is compatible, i.e. "locally consistent".

We want to do this by saying that the distributions "agree on overlaps". For all $C, C^{\prime} \in \mathcal{M}$:

$$
\left.d_{C}\right|_{C \cap C^{\prime}}=\left.d_{C^{\prime}}\right|_{C \cap C^{\prime}} .
$$

Cf. the usual notion of compatibility of a family of functions defined on subsets.
A formula for restriction of distributions: if $C^{\prime} \subseteq C, d \in \operatorname{Prob}\left(O^{C}\right)$,

$$
\left.d\right|_{c^{\prime}}(s):=\sum_{t \in O^{c}, t \mid c=s} d(t)
$$

This is just marginalization: if $C=C^{\prime} \sqcup C^{\prime \prime}$, then $O^{C}=O^{C^{\prime}} \times O^{C^{\prime \prime}}$.
So compatibility says that the distributions on different contexts have consistent marginals.

Compatibility and No-Signalling

There is an important physical principle of No-Signalling:

Compatibility and No-Signalling

There is an important physical principle of No-Signalling:

- Suppose that $C=\{a, b\}$, and $C^{\prime}=\left\{a, b^{\prime}\right\}$, where a is a variable measured by an agent Alice, while b and b^{\prime} are variables measured by Bob, who may be spacelike separated from Alice.

Compatibility and No-Signalling

There is an important physical principle of No-Signalling:

- Suppose that $C=\{a, b\}$, and $C^{\prime}=\left\{a, b^{\prime}\right\}$, where a is a variable measured by an agent Alice, while b and b^{\prime} are variables measured by Bob, who may be spacelike separated from Alice.
- Then under relativistic constraints, Bob's choice of measurement -b or b^{\prime} - should not be able to affect the distribution Alice observes on the outcomes from her measurement of a.

Compatibility and No-Signalling

There is an important physical principle of No-Signalling:

- Suppose that $C=\{a, b\}$, and $C^{\prime}=\left\{a, b^{\prime}\right\}$, where a is a variable measured by an agent Alice, while b and b^{\prime} are variables measured by Bob, who may be spacelike separated from Alice.
- Then under relativistic constraints, Bob's choice of measurement -b or b^{\prime} - should not be able to affect the distribution Alice observes on the outcomes from her measurement of a.
- This is captured by saying that the distribution on $\{a\}=\{a, b\} \cap\left\{a, b^{\prime}\right\}$ is the same whether we marginalize from the distribution e_{C}, or the distribution $e_{C^{\prime}}$.

Compatibility and No-Signalling

There is an important physical principle of No-Signalling:

- Suppose that $C=\{a, b\}$, and $C^{\prime}=\left\{a, b^{\prime}\right\}$, where a is a variable measured by an agent Alice, while b and b^{\prime} are variables measured by Bob, who may be spacelike separated from Alice.
- Then under relativistic constraints, Bob's choice of measurement -b or b^{\prime} - should not be able to affect the distribution Alice observes on the outcomes from her measurement of a.
- This is captured by saying that the distribution on $\{a\}=\{a, b\} \cap\left\{a, b^{\prime}\right\}$ is the same whether we marginalize from the distribution e_{C}, or the distribution $e_{C^{\prime}}$.
- This condition is generalized by compatibility - and this general form is satisfied by quantum systems.

No-Signalling for Alice-Bob Tables

No-Signalling for Alice-Bob Tables

Consider the following schematic representation of an Alice-Bob table:

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a	b	c	d	e	f
a^{\prime}	b	g	h	i	j
a	b^{\prime}	k	l	m	n
a^{\prime}	b^{\prime}	o	p	q	r

where we have labelled the entries with the letters c, \ldots, r.

No-Signalling for Alice-Bob Tables

Consider the following schematic representation of an Alice-Bob table:

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a	b	c	d	e	f
a^{\prime}	b	g	h	i	j
a	b^{\prime}	k	l	m	n
a^{\prime}	b^{\prime}	o	p	q	r

where we have labelled the entries with the letters c, \ldots, r.
The no-signalling conditions for the non-empty intersections of contexts are given by the following equations:
$c+e=k+m$,
$d+f=l+n$,
$g+i=o+q$,
$h+j=p+r$
$c+d=g+h$,
$e+f=i+j$,
$k+I=o+p$,
$m+n=q+r$

No-Signalling for Alice-Bob Tables

Consider the following schematic representation of an Alice-Bob table:

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a	b	c	d	e	f
a^{\prime}	b	g	h	i	j
a	b^{\prime}	k	l	m	n
a^{\prime}	b^{\prime}	o	p	q	r

where we have labelled the entries with the letters c, \ldots, r.
The no-signalling conditions for the non-empty intersections of contexts are given by the following equations:
$c+e=k+m$,
$d+f=l+n$,
$g+i=o+q$,
$h+j=p+r$
$c+d=g+h$,
$e+f=i+j$,
$k+l=o+p$,
$m+n=q+r$

You can check that these conditions are satisfied by the Bell table.

No-Signalling for Alice-Bob Tables

Consider the following schematic representation of an Alice-Bob table:

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a	b	c	d	e	f
a^{\prime}	b	g	h	i	j
a	b^{\prime}	k	l	m	n
a^{\prime}	b^{\prime}	o	p	q	r

where we have labelled the entries with the letters c, \ldots, r.
The no-signalling conditions for the non-empty intersections of contexts are given by the following equations:

$$
\begin{array}{llll}
c+e=k+m, & d+f=l+n, & g+i=o+q, & h+j=p+r \\
c+d=g+h, & e+f=i+j, & k+l=o+p, & m+n=q+r
\end{array}
$$

You can check that these conditions are satisfied by the Bell table.
Moreover, the PR box has a unique family of distributions which satisfy these conditions.

Contextuality defined

Contextuality defined

An empirical model $\left\{d_{c}\right\}_{c \in \mathcal{M}}$ on a measurement scenario (X, \mathcal{M}, O) is non-contextual if there is a distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ such that, for all $C \in \mathcal{M}$:

$$
\left.d\right|_{C}=d_{c} .
$$

Contextuality defined

An empirical model $\left\{d_{c}\right\}_{c \in \mathcal{M}}$ on a measurement scenario (X, \mathcal{M}, O) is non-contextual if there is a distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ such that, for all $C \in \mathcal{M}$:

$$
\left.d\right|_{c}=d_{c} .
$$

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.

Contextuality defined

An empirical model $\left\{d_{C}\right\}_{c \in \mathcal{M}}$ on a measurement scenario (X, \mathcal{M}, O) is non-contextual if there is a distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ such that, for all $C \in \mathcal{M}$:

$$
\left.d\right|_{c}=d_{c} .
$$

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.

We call such a d a global section.

Contextuality defined

An empirical model $\left\{d_{c}\right\}_{C \in \mathcal{M}}$ on a measurement scenario (X, \mathcal{M}, O) is non-contextual if there is a distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ such that, for all $C \in \mathcal{M}$:

$$
\left.d\right|_{c}=d_{c} .
$$

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.

We call such a d a global section.
If no such global section exists, the empirical model is contextual.

Contextuality defined

An empirical model $\left\{d_{C}\right\}_{C \in \mathcal{M}}$ on a measurement scenario (X, \mathcal{M}, O) is non-contextual if there is a distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ such that, for all $C \in \mathcal{M}$:

$$
\left.d\right|_{C}=d_{c} .
$$

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.

We call such a d a global section.
If no such global section exists, the empirical model is contextual.
The import of Bell's theorem and similar results is that there are empirical models arising from quantum mechanics which are contextual.

Classes of Empirical Models

Classes of Empirical Models

There is a class of empirical models, for each measurement scenario (X, \mathcal{M}, O), which are quantum realizable.

Classes of Empirical Models

There is a class of empirical models, for each measurement scenario (X, \mathcal{M}, O), which are quantum realizable.

That is, we can find quantum states and local observables which generate the family of distributions $\left\{d_{C}\right\}_{C \in \mathcal{M}}$.

Classes of Empirical Models

There is a class of empirical models, for each measurement scenario (X, \mathcal{M}, O), which are quantum realizable.

That is, we can find quantum states and local observables which generate the family of distributions $\left\{d_{C}\right\}_{C \in \mathcal{M}}$.

It turns out that all quantum realizable models are compatible.

Classes of Empirical Models

There is a class of empirical models, for each measurement scenario (X, \mathcal{M}, O), which are quantum realizable.

That is, we can find quantum states and local observables which generate the family of distributions $\left\{d_{C}\right\}_{C \in \mathcal{M}}$.

It turns out that all quantum realizable models are compatible.
Compatibility is in fact the general form of an important physical principle known as No-Signalling, which ensures the consistency of quantum mechanics with Special Relativity.

Classes of Empirical Models

There is a class of empirical models, for each measurement scenario (X, \mathcal{M}, O), which are quantum realizable.

That is, we can find quantum states and local observables which generate the family of distributions $\left\{d_{C}\right\}_{C \in \mathcal{M}}$.

It turns out that all quantum realizable models are compatible.
Compatibility is in fact the general form of an important physical principle known as No-Signalling, which ensures the consistency of quantum mechanics with Special Relativity.

However, there are compatible (i.e. No-Signalling) empirical models which are not quantum realizable.

Classes of Empirical Models

There is a class of empirical models, for each measurement scenario (X, \mathcal{M}, O), which are quantum realizable.

That is, we can find quantum states and local observables which generate the family of distributions $\left\{d_{C}\right\}_{C \in \mathcal{M}}$.

It turns out that all quantum realizable models are compatible.
Compatibility is in fact the general form of an important physical principle known as No-Signalling, which ensures the consistency of quantum mechanics with Special Relativity.

However, there are compatible (i.e. No-Signalling) empirical models which are not quantum realizable.

We thus get a strict hierarchy of empirical models:

$$
\mathrm{NC} \subset \mathrm{QM} \subset \mathrm{NS}
$$

The PR Box

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a_{1}	b_{1}	1	0	0	1
a_{1}	b_{2}	1	0	0	1
a_{2}	b_{1}	1	0	0	1
a_{2}	b_{2}	0	1	1	0

The PR Box

The PR Box

A	B	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
a_{1}	b_{1}	1	0	0	1
a_{1}	b_{2}	1	0	0	1
a_{2}	b_{1}	1	0	0	1
a_{2}	b_{2}	0	1	1	0
The PR Box					

This satisfies No-Signalling, so is consistent with SR, but it is not quantum realisable.

Empirical Models as Vectors

Empirical Models as Vectors

We can regard an empirical model $\left\{d_{C}\right\} \subset \in \mathcal{M}$ as a vector

$$
\mathbf{v}=\left(\mathbf{v}_{C, s}\right)_{C \in \mathcal{M}, s \in O^{C}}, \quad \mathbf{v}_{C, s}:=d_{C}(s)
$$

in a high-dimensional real vector space.

Empirical Models as Vectors

We can regard an empirical model $\left\{d_{C}\right\} \subset \in \mathcal{M}$ as a vector

$$
\mathbf{v}=\left(\mathbf{v}_{C, s}\right)_{C \in \mathcal{M}, s \in O^{C}}, \quad \mathbf{v}_{C, s}:=d_{C}(s)
$$

in a high-dimensional real vector space.
Note that, in a Bell-type scenario with n parties, k measurement choices at each site, and ℓ possible outcomes for each measurement, the dimension is $k^{n} \ell^{n}$.

Empirical Models as Vectors

We can regard an empirical model $\left\{d_{C}\right\} \subset \in \mathcal{M}$ as a vector

$$
\mathbf{v}=\left(\mathbf{v}_{C, s}\right)_{C \in \mathcal{M}, s \in O^{C}}, \quad \mathbf{v}_{C, s}:=d_{C}(s)
$$

in a high-dimensional real vector space.
Note that, in a Bell-type scenario with n parties, k measurement choices at each site, and ℓ possible outcomes for each measurement, the dimension is $k^{n} \ell^{n}$.

Note that empirical models over a given measurement scenario are closed under convex combinations:

$$
\left(\mu d+(1-\mu) d^{\prime}\right)_{c}(s):=\mu d_{C}(s)+(1-\mu) d_{C}^{\prime}(s) .
$$

Empirical Models as Vectors

We can regard an empirical model $\left\{d_{C}\right\} \subset \in \mathcal{M}$ as a vector

$$
\mathbf{v}=\left(\mathbf{v}_{C, s}\right)_{C \in \mathcal{M}, s \in O^{C}}, \quad \mathbf{v}_{C, s}:=d_{C}(s)
$$

in a high-dimensional real vector space.
Note that, in a Bell-type scenario with n parties, k measurement choices at each site, and ℓ possible outcomes for each measurement, the dimension is $k^{n} \ell^{n}$.

Note that empirical models over a given measurement scenario are closed under convex combinations:

$$
\left(\mu d+(1-\mu) d^{\prime}\right)_{C}(s):=\mu d_{C}(s)+(1-\mu) d_{C}^{\prime}(s)
$$

Moreover, convex combinations of compatible models are compatible.

The Quantum Set

The Quantum Set

A subtle convex set sandwiched between two polytopes.

The Quantum Set

A subtle convex set sandwiched between two polytopes.

The Quantum Set

A subtle convex set sandwiched between two polytopes.

Key question: find compelling principles to explain why Nature picks out the quantum set.

The Support of a Model

The Support of a Model

The support of an empirical model $\left\{d_{C}\right\}_{C \in \mathcal{M}}$ is defined as follows. For each $C \in \mathcal{M}$, we define $\mathcal{S}(C) \subseteq O^{C}$:

$$
\mathcal{S}(C):=\left\{s \in O^{C} \mid d_{C}(s) \neq 0\right\}
$$

The Support of a Model

The support of an empirical model $\left\{d_{C}\right\}_{C \in \mathcal{M}}$ is defined as follows. For each $C \in \mathcal{M}$, we define $\mathcal{S}(C) \subseteq O^{C}$:

$$
\mathcal{S}(C):=\left\{s \in O^{C} \mid d_{C}(s) \neq 0\right\}
$$

If the empirical model is compatible, so is the support in the following sense: for all $C, C^{\prime} \in \mathcal{M}$

$$
\left\{\left.s\right|_{C \cap C^{\prime}}: s \in \mathcal{S}(C)\right\}=\left\{s^{\prime} \mid c \cap C^{\prime}: s^{\prime} \in \mathcal{S}\left(C^{\prime}\right)\right\}
$$

The Support of a Model

The support of an empirical model $\left\{d_{C}\right\}_{C \in \mathcal{M}}$ is defined as follows. For each $C \in \mathcal{M}$, we define $\mathcal{S}(C) \subseteq O^{C}$:

$$
\mathcal{S}(C):=\left\{s \in O^{C} \mid d_{C}(s) \neq 0\right\}
$$

If the empirical model is compatible, so is the support in the following sense: for all $C, C^{\prime} \in \mathcal{M}$

$$
\left\{\left.s\right|_{C \cap C^{\prime}}: s \in \mathcal{S}(C)\right\}=\left\{s^{\prime} \mid c \cap C^{\prime}: s^{\prime} \in \mathcal{S}\left(C^{\prime}\right)\right\}
$$

Thus the support satisfies No-Signalling at the level of possibilities.

The Support of a Model

The support of an empirical model $\left\{d_{C}\right\}_{C \in \mathcal{M}}$ is defined as follows. For each $C \in \mathcal{M}$, we define $\mathcal{S}(C) \subseteq O^{C}$:

$$
\mathcal{S}(C):=\left\{s \in O^{C} \mid d_{C}(s) \neq 0\right\}
$$

If the empirical model is compatible, so is the support in the following sense: for all $C, C^{\prime} \in \mathcal{M}$

$$
\left\{\left.s\right|_{C \cap C^{\prime}}: s \in \mathcal{S}(C)\right\}=\left\{\left.s^{\prime}\right|_{C \cap C^{\prime}}: s^{\prime} \in \mathcal{S}\left(C^{\prime}\right)\right\}
$$

Thus the support satisfies No-Signalling at the level of possibilities.
This is equivalent to saying that, for all $C \subseteq C^{\prime}$, the restriction map

$$
\rho_{C}^{C^{\prime}}: \mathcal{S}\left(C^{\prime}\right) \longrightarrow \mathcal{S}(C) \quad::\left.s \mapsto s\right|_{C}
$$

is surjective.

Degrees of contextuality

Degrees of contextuality

Firstly, we say that a global assignment $t \in O^{X}$ is consistent with the support of a model if for all $C^{\prime} \in \mathcal{M},\left.t\right|_{C^{\prime}}$ is in the support at C^{\prime}.

Degrees of contextuality

Firstly, we say that a global assignment $t \in O^{X}$ is consistent with the support of a model if for all $C^{\prime} \in \mathcal{M},\left.t\right|_{C^{\prime}}$ is in the support at C^{\prime}.

An empirical model is

Degrees of contextuality

Firstly, we say that a global assignment $t \in O^{X}$ is consistent with the support of a model if for all $C^{\prime} \in \mathcal{M},\left.t\right|_{C^{\prime}}$ is in the support at C^{\prime}.

An empirical model is

- logically contextual if some possible joint outcome $s \in O^{C}$ in the support is not accounted for by any global assignment $t \in O^{X}$ which is consistent with the support of the model. That is, for no such t do we have $t \mid C=s$.

Degrees of contextuality

Firstly, we say that a global assignment $t \in O^{X}$ is consistent with the support of a model if for all $C^{\prime} \in \mathcal{M},\left.t\right|_{C^{\prime}}$ is in the support at C^{\prime}.

An empirical model is

- logically contextual if some possible joint outcome $s \in O^{C}$ in the support is not accounted for by any global assignment $t \in O^{X}$ which is consistent with the support of the model. That is, for no such t do we have $t \mid C=s$.

Geometrically, this is saying that some local section cannot be extended to a global one. Equivalently, that the support of the model cannot be covered by the consistent global assignments.

Degrees of contextuality

Firstly, we say that a global assignment $t \in O^{X}$ is consistent with the support of a model if for all $C^{\prime} \in \mathcal{M},\left.t\right|_{C^{\prime}}$ is in the support at C^{\prime}.

An empirical model is

- logically contextual if some possible joint outcome $s \in O^{C}$ in the support is not accounted for by any global assignment $t \in O^{X}$ which is consistent with the support of the model. That is, for no such t do we have $t \mid C=s$.

Geometrically, this is saying that some local section cannot be extended to a global one. Equivalently, that the support of the model cannot be covered by the consistent global assignments.

- It is strongly contextual if its support has no global section; that is, there is no consistent global assignment.

Degrees of contextuality

Firstly, we say that a global assignment $t \in O^{X}$ is consistent with the support of a model if for all $C^{\prime} \in \mathcal{M},\left.t\right|_{C^{\prime}}$ is in the support at C^{\prime}.

An empirical model is

- logically contextual if some possible joint outcome $s \in O^{C}$ in the support is not accounted for by any global assignment $t \in O^{X}$ which is consistent with the support of the model. That is, for no such t do we have $t \mid C=s$.

Geometrically, this is saying that some local section cannot be extended to a global one. Equivalently, that the support of the model cannot be covered by the consistent global assignments.

- It is strongly contextual if its support has no global section; that is, there is no consistent global assignment.

This says that no possible joint outcome is accounted for by any global section!

Degrees of contextuality

Firstly, we say that a global assignment $t \in O^{X}$ is consistent with the support of a model if for all $C^{\prime} \in \mathcal{M},\left.t\right|_{C^{\prime}}$ is in the support at C^{\prime}.

An empirical model is

- logically contextual if some possible joint outcome $s \in O^{C}$ in the support is not accounted for by any global assignment $t \in O^{X}$ which is consistent with the support of the model. That is, for no such t do we have $t \mid C=s$.

Geometrically, this is saying that some local section cannot be extended to a global one. Equivalently, that the support of the model cannot be covered by the consistent global assignments.

- It is strongly contextual if its support has no global section; that is, there is no consistent global assignment.

This says that no possible joint outcome is accounted for by any global section!

Obviously, strong contextuality implies logical contextuality.

A Hierarchy

A Hierarchy

We can distinguish three degrees of contextuality among models:

A Hierarchy

We can distinguish three degrees of contextuality among models:

- Strong contextuality implies logical contextuality, which implies (probabilistic) contextuality.

A Hierarchy

We can distinguish three degrees of contextuality among models:

- Strong contextuality implies logical contextuality, which implies (probabilistic) contextuality.
- The Bell model is contextual, but not logically contextual.

A Hierarchy

We can distinguish three degrees of contextuality among models:

- Strong contextuality implies logical contextuality, which implies (probabilistic) contextuality.
- The Bell model is contextual, but not logically contextual.
- The Hardy model is logically contextual, but not strongly contextual.

A Hierarchy

We can distinguish three degrees of contextuality among models:

- Strong contextuality implies logical contextuality, which implies (probabilistic) contextuality.
- The Bell model is contextual, but not logically contextual.
- The Hardy model is logically contextual, but not strongly contextual.
- The PR box is strongly contextual.

A Hierarchy

We can distinguish three degrees of contextuality among models:

- Strong contextuality implies logical contextuality, which implies (probabilistic) contextuality.
- The Bell model is contextual, but not logically contextual.
- The Hardy model is logically contextual, but not strongly contextual.
- The PR box is strongly contextual.

Thus we have a strict hierarchy probabilistic contextuality < logical contextuality < strong contextuality

A Hierarchy

We can distinguish three degrees of contextuality among models:

- Strong contextuality implies logical contextuality, which implies (probabilistic) contextuality.
- The Bell model is contextual, but not logically contextual.
- The Hardy model is logically contextual, but not strongly contextual.
- The PR box is strongly contextual.

Thus we have a strict hierarchy probabilistic contextuality $<$ logical contextuality $<$ strong contextuality

The model arising from the GHZ quantum state (with 3 or more parties) with X, Y measurements at each site is strongly contextual.

A Hierarchy

We can distinguish three degrees of contextuality among models:

- Strong contextuality implies logical contextuality, which implies (probabilistic) contextuality.
- The Bell model is contextual, but not logically contextual.
- The Hardy model is logically contextual, but not strongly contextual.
- The PR box is strongly contextual.

Thus we have a strict hierarchy probabilistic contextuality < logical contextuality $<$ strong contextuality

The model arising from the GHZ quantum state (with 3 or more parties) with X, Y measurements at each site is strongly contextual.

Thus in terms of well-known quantum examples, we have

$$
\text { Bell }<\text { Hardy }<\mathrm{GHZ}
$$

