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Presheaves

A presheaf of sets on a topological space (X , TX ) is a functor

P : T op
X

- Set.

Spelling this out, for each open set U ⊆ X , we have a set P(U), and whenever
U ⊆ V , there is a function, the restriction map

ρVU : P(V ) - P(U)

subject to the functoriality requirements: if U ⊆ V ⊆W , then

ρVU ◦ ρWV = ρWU , ρUU = idP(U).

Example: the presheaf of functions
For each open set U, F(U) is the set of continuous functions f : U - R.

Restriction is function restriction!
If U ⊆ V and f : V - R, ρVU (f ) := f |U .

Functoriality is easily verified: in this notation

(f |V )U = f |U .
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Some notes on presheaves

Presheaves can be defined on any poset, and in fact on any (small) category.
They are just contravariant functors to Set.

We can also define presheaves in categories other than Set. For example, a
presheaf of abelian groups on a space X is a functor

P : T op
X

- AbGrp

If P : T op
X

- Set is a presheaf, and F : Set - Set is a functor, then
F ◦ P : T op

X
- Set is a presheaf.

Morphisms of presheaves are just natural transformations.

The category of all presheaves on a space X has a very rich structure — it is
a topos. We shall not go into this aspect.

However, there is an important conceptual aspect which should be
understood. Presheaves allow us to formalise the concept of variable set.
The variation is essentially over contexts. So presheaves provide the natural
setting for talking about contextuality!
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Covers, gluing and the sheaf condition

Sheaf theory is about the passage from local to global; about piecing together
consistent local information into global information.

Let U = {Ui}i∈I be a family of open sets, covering U =
⋃

i∈I Ui .

A family on U for the presheaf P is a family {xi}i∈I with xi ∈ P(Ui ), i ∈ I .

The family is compatible if for all i , j ∈ I ,

xi |Ui∩Uj = xj |Ui∩Uj

The presheaf satisfies the gluing condition for the cover U if for every compatible
family {xi}i∈I on U, there exists x ∈ P(U) such that, for all i ∈ I ,

x |Ui = xi

It satisfies the unique gluing condition for U, or satisfies the sheaf condition
with respect to U, if the element satisfying the gluing condition for a given
compatible family is unique.

The presheaf P is a sheaf if for every open cover U, it satisfies the sheaf
condition for U.
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Gluing functional sections

sU

sV

U

V

U ∩ V O

If sU |U∩V = sV |U∩V , they can be glued to form

s : U ∪ V −→ O

such that s|U = sU and s|V = sV .
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Obstructions

A major theme of modern mathematics is to identify and characterise situations
where we cannot extend local information to global information.

Mathematically, we seek to define invariants of the structure which provide
obstructions to such extensions.

In the case where it is possible to extend from local to global, these obstructions
vanish.

Where they do not vanish, they provide witnesses to this failure to extend from
local to global — a constructive evidence for an impossibility.

In particular, this is one of the main intuitions behind sheaf cohomology.
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Mathematical Structure of Probability Tables

A B (0, 0) (1, 0) (0, 1) (1, 1)

a b 0 1/2 1/2 0

a′ b 3/8 1/8 1/8 3/8

a b′ 3/8 1/8 1/8 3/8

a′ b′ 3/8 1/8 1/8 3/8

The measurement contexts are

{a, b}, {a′, b}, {a, b′}, {a′, b′}.

Each measurement has possible outcomes 0 or 1. The matrix entry at row (a′, b)
and column (0, 1) indicates the event

{a′ 7→ 0, b 7→ 1}.

Each row of the table specifies a probability distribution on events OC for a
given choice of measurements C .
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Presheaves, Sheaves and Gluing

Mathematically, this defines a presheaf. We have:

A set of measurements X (the ‘space’). In our example, X = {a1, a2, b1, b2}.

A family of subsets of X , the measurement contexts (a ‘cover’); in our
example, these are {{a1, b1}, {a2, b1}, {a1, b2}, {a2, b2}}.

To each such set C a probability distribution on local sections s : C → O,
where O is the set of outcomes. In our case, O = {0, 1}.

These local sections correspond to the directly observable joint outcomes of
compatible measurements, which can actually be performed jointly on the
system.

The different sets of compatible measurements correspond to the different
contexts of measurement and observation of the physical system.

The fact that the behaviour of these observable outcomes cannot be accounted
for by some context-independent global description of reality corresponds to the
geometric fact that these local sections cannot be glued together into a global
section.
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Obstructions to gluing distributions

In geometric language, Bell’s theorem and related results corresponds to the fact
that there is a local section which cannot be extended to a global section which
is compatible with the family of distributions.

In other words, the space of local probabilities/possibilities is sufficiently
logically ‘twisted’ to obstruct such an extension.

The quantum phenomena of non-locality and contextuality correspond exactly
to the existence of obstructions to global sections in this sense.
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Semirings

A semiring is a structure (R,+, 0,×, 1) such that

(R,+, 0) is an abelian monoid

(R,×, 1) is a monoid

multiplication distributes over addition:

a · (b + c) = a · b + a · c .

The semiring is commutative if × is.

Examples

Rings

N
R≥0
({0, 1},∨, 0,∧, 1), more generally any distributive lattice

Widely used in Computer Science, e.g. for path algorithms, weighted automata
etc.

Features in tropical geometry (the max-plus semiring).
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The Distribution Functor

Fix a commutative semiring R. An R-distribution on X is a function φ : X → R
which has finite support, and such that∑

x∈X

φ(x) = 1.

We write DR(X ) for the set of R-distributions on X .
Examples: R≥0 (probability distributions), B (non-empty subsets), R (signed
measures).

Functorial action: Given a function f : X → Y , we define

DR(f ) : DR(X )→ DR(Y ) :: d 7→ [y 7→
∑

f (x)=y

d(x)].

This yields a functor DR : Set −→ Set.

We can compose this functor with U 7→ OU , to form a presheaf
F : P(X )op −→ Set.

Contextual Probability Theory!
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Basic Mathematical Setting

A measurement scenario is a structure 〈X ,M,O〉 where:

X is a set of “measurement labels” or “variables”

M is a family of subsets of X with
⋃
M = X ; the “measurement contexts”

O is a set of “outcomes” or “values”

In addition, we have some commutative semiring R of “weights”.

Then we can define the presheaf

F : P(X )op −→ Set :: U 7→ DR(OU)

A setting for contextual probability.
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A setting for contextual probability.
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Empirical Models: Reconstructing Probability Tables

We are given a measurement scenario µ = 〈X ,M,O〉:

An empirical model for µ is a family {eC}C∈M, eC ∈ DRE(C ), which is
compatible: for all C ,C ′ ∈M,

eC |C ∩ C ′ = eC ′ |C ∩ C ′.

Compatibility ⇐⇒ No-Signalling

E.g. in the bipartite case, consider C = {ma,mb}, C ′ = {ma,m
′
b}.

Fix s0 ∈ E({ma}). Compatibility implies∑
s∈E(C),s|ma=s0

eC (s) =
∑

s′∈E(C ′),s′|ma=s0

eC ′(s ′).

This says that the probability for Alice to get the outcome s0(ma) is the same,
whether we marginalize over the possible outcomes for Bob with measurement
mb, or with m′b.

In other words, Bob’s choice of measurement cannot influence Alice’s outcome.

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 413 / 26



Empirical Models: Reconstructing Probability Tables
We are given a measurement scenario µ = 〈X ,M,O〉:

An empirical model for µ is a family {eC}C∈M, eC ∈ DRE(C ), which is
compatible: for all C ,C ′ ∈M,

eC |C ∩ C ′ = eC ′ |C ∩ C ′.

Compatibility ⇐⇒ No-Signalling

E.g. in the bipartite case, consider C = {ma,mb}, C ′ = {ma,m
′
b}.

Fix s0 ∈ E({ma}). Compatibility implies∑
s∈E(C),s|ma=s0

eC (s) =
∑

s′∈E(C ′),s′|ma=s0

eC ′(s ′).

This says that the probability for Alice to get the outcome s0(ma) is the same,
whether we marginalize over the possible outcomes for Bob with measurement
mb, or with m′b.

In other words, Bob’s choice of measurement cannot influence Alice’s outcome.

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 413 / 26



Empirical Models: Reconstructing Probability Tables
We are given a measurement scenario µ = 〈X ,M,O〉:

An empirical model for µ is a family {eC}C∈M, eC ∈ DRE(C ), which is
compatible: for all C ,C ′ ∈M,

eC |C ∩ C ′ = eC ′ |C ∩ C ′.

Compatibility ⇐⇒ No-Signalling

E.g. in the bipartite case, consider C = {ma,mb}, C ′ = {ma,m
′
b}.

Fix s0 ∈ E({ma}). Compatibility implies∑
s∈E(C),s|ma=s0

eC (s) =
∑

s′∈E(C ′),s′|ma=s0

eC ′(s ′).

This says that the probability for Alice to get the outcome s0(ma) is the same,
whether we marginalize over the possible outcomes for Bob with measurement
mb, or with m′b.

In other words, Bob’s choice of measurement cannot influence Alice’s outcome.

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 413 / 26



Empirical Models: Reconstructing Probability Tables
We are given a measurement scenario µ = 〈X ,M,O〉:

An empirical model for µ is a family {eC}C∈M, eC ∈ DRE(C ), which is
compatible: for all C ,C ′ ∈M,

eC |C ∩ C ′ = eC ′ |C ∩ C ′.

Compatibility ⇐⇒ No-Signalling

E.g. in the bipartite case, consider C = {ma,mb}, C ′ = {ma,m
′
b}.

Fix s0 ∈ E({ma}). Compatibility implies∑
s∈E(C),s|ma=s0

eC (s) =
∑

s′∈E(C ′),s′|ma=s0

eC ′(s ′).

This says that the probability for Alice to get the outcome s0(ma) is the same,
whether we marginalize over the possible outcomes for Bob with measurement
mb, or with m′b.

In other words, Bob’s choice of measurement cannot influence Alice’s outcome.

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 413 / 26



Empirical Models: Reconstructing Probability Tables
We are given a measurement scenario µ = 〈X ,M,O〉:

An empirical model for µ is a family {eC}C∈M, eC ∈ DRE(C ), which is
compatible: for all C ,C ′ ∈M,

eC |C ∩ C ′ = eC ′ |C ∩ C ′.

Compatibility ⇐⇒ No-Signalling

E.g. in the bipartite case, consider C = {ma,mb}, C ′ = {ma,m
′
b}.

Fix s0 ∈ E({ma}). Compatibility implies∑
s∈E(C),s|ma=s0

eC (s) =
∑

s′∈E(C ′),s′|ma=s0

eC ′(s ′).

This says that the probability for Alice to get the outcome s0(ma) is the same,
whether we marginalize over the possible outcomes for Bob with measurement
mb, or with m′b.

In other words, Bob’s choice of measurement cannot influence Alice’s outcome.

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 413 / 26



Empirical Models: Reconstructing Probability Tables
We are given a measurement scenario µ = 〈X ,M,O〉:

An empirical model for µ is a family {eC}C∈M, eC ∈ DRE(C ), which is
compatible: for all C ,C ′ ∈M,

eC |C ∩ C ′ = eC ′ |C ∩ C ′.

Compatibility ⇐⇒ No-Signalling

E.g. in the bipartite case, consider C = {ma,mb}, C ′ = {ma,m
′
b}.

Fix s0 ∈ E({ma}). Compatibility implies∑
s∈E(C),s|ma=s0

eC (s) =
∑

s′∈E(C ′),s′|ma=s0

eC ′(s ′).

This says that the probability for Alice to get the outcome s0(ma) is the same,
whether we marginalize over the possible outcomes for Bob with measurement
mb, or with m′b.

In other words, Bob’s choice of measurement cannot influence Alice’s outcome.

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 413 / 26



Empirical Models: Reconstructing Probability Tables
We are given a measurement scenario µ = 〈X ,M,O〉:

An empirical model for µ is a family {eC}C∈M, eC ∈ DRE(C ), which is
compatible: for all C ,C ′ ∈M,

eC |C ∩ C ′ = eC ′ |C ∩ C ′.

Compatibility ⇐⇒ No-Signalling

E.g. in the bipartite case, consider C = {ma,mb}, C ′ = {ma,m
′
b}.

Fix s0 ∈ E({ma}). Compatibility implies∑
s∈E(C),s|ma=s0

eC (s) =
∑

s′∈E(C ′),s′|ma=s0

eC ′(s ′).

This says that the probability for Alice to get the outcome s0(ma) is the same,
whether we marginalize over the possible outcomes for Bob with measurement
mb, or with m′b.

In other words, Bob’s choice of measurement cannot influence Alice’s outcome.
Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 413 / 26



Hidden Variables: The Mermin instruction set picture

Alice Bob

a, a′, . . . b, b′, . . .

0110

...

aa′bb′

Source

0110 0110

Target

a 7→ 0 b 7→ 1
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Global Sections

We are given an empirical model {eC}C∈M.

Question: does there exist a global section for this family?

I.e. d ∈ DRE(X ) such that, for all C ∈M

d |C = eC .

A distribution, defined on all measurements, which marginalizes to yield the
empirically observed probabilities?

Note that s ∈ E(X ) = OX specifies an outcome for every measurement
simultaneously, independent of the measurement context.
For every context C , it restricts to yield s|C .

Thus it can be seen as a deterministic hidden variable — an instruction set!

If d is a global section for the model {eC}, we recover the predictions of the
model by averaging over the values of these hidden variables:

eC (s) = d |C (s) =
∑

s′∈E(X ),s′|C=s

d(s ′) =
∑

s′∈E(X )

δs′|C (s) · d(s ′).
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Global Sections Subsume Hidden-Variable Theories

Note also that this is a local model:

δs |C (s ′) =
∏
x∈C

δs|x(s ′|x).

The joint probabilities determined by s factor as a product of the probabilities
assigned to the individual measurements, independent of the context in which
they appear. This subsumes Bell locality .

So a global section is a deterministic local hidden-variable model.

The general result is as follows:

Theorem

Any factorizable (i.e. local) hidden-variable model defines a global section.
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Global Sections Subsume Hidden-Variable Theories
Note also that this is a local model:

δs |C (s ′) =
∏
x∈C

δs|x(s ′|x).

The joint probabilities determined by s factor as a product of the probabilities
assigned to the individual measurements, independent of the context in which
they appear. This subsumes Bell locality .

So a global section is a deterministic local hidden-variable model.

The general result is as follows:

Theorem

Any factorizable (i.e. local) hidden-variable model defines a global section.

So:

existence of a local hidden-variable model for a given empirical model
IFF

empirical model has a global section
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Note also that this is a local model:

δs |C (s ′) =
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x∈C

δs|x(s ′|x).

The joint probabilities determined by s factor as a product of the probabilities
assigned to the individual measurements, independent of the context in which
they appear. This subsumes Bell locality .

So a global section is a deterministic local hidden-variable model.

The general result is as follows:

Theorem

Any factorizable (i.e. local) hidden-variable model defines a global section.

Hence:

No such h.v. model exists (the empirical model is non-local/contextual)
IFF

there is an obstruction to the existence of a global section
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Methods for showing obstructions to global sections

1 S. Abramsky and L. Hardy, Logical Bell Inequalities, Phys. Rev. A 85, 062114
(2012).

Theorem
Every Bell inequality is equivalent to a logical Bell inequality.

2 Linear algebra/programming.
S. Abramsky and A. Brandenburger. The sheaf-theoretic structure of
non-locality and contextuality. New Journal of Physics, 13(2011):113036,
2011.

Theorem

Probabilistic models have local hidden-variable realizations with negative
probabilities if and only if they satisfy no-signalling.

3 Sheaf cohomology.
S. Abramsky, S. Mansfield and R. Soares Barbosa, The Cohomology of
Non-Locality and Contextuality, in Proc. QPL 2011, EPTCS v. 95:1–15,
2012.
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The Hardy Model and the PR Box

(0, 0) (0, 1) (1, 0) (1, 1)

(a1, b1) 1 1 1 1

(a1, b2) 0 1 1 1

(a2, b1) 0 1 1 1

(a2, b2) 1 1 1 0

The Hardy model

A B (0, 0) (1, 0) (0, 1) (1, 1)

a1 b1 1 0 0 1

a1 b2 1 0 0 1

a2 b1 1 0 0 1

a2 b2 0 1 1 0

The PR Box
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Bundle Pictures

Logical Contextuality

Ignore precise probabilities

Events are possible or not

E.g. the Hardy model:
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ab X X X X

ab′ × X X X

a′b × X X X

a′b′ X X X ×

•a
• b

• a′
•b′

•0

•1
•

•
1

• 0

• 1

•0

•

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 419 / 26



Bundle Pictures

Logical Contextuality

Ignore precise probabilities

Events are possible or not

E.g. the Hardy model:

00 01 10 11

ab X X X X

ab′ × X X X

a′b × X X X

a′b′ X X X ×

•a
• b

• a′
•b′

•0

•1
•

•
1

• 0

• 1

•0

•

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 419 / 26



Bundle Pictures

Logical Contextuality

Ignore precise probabilities

Events are possible or not

E.g. the Hardy model:

00 01 10 11

ab X X X X

ab′ × X X X

a′b × X X X

a′b′ X X X ×

•a
• b

• a′
•b′

•0

•1
•

•
1

• 0

• 1

•0

•

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 419 / 26



Bundle Pictures

Logical Contextuality

Ignore precise probabilities

Events are possible or not

E.g. the Hardy model:

00 01 10 11

ab X X X X

ab′ × X X X

a′b × X X X

a′b′ X X X ×

•a
• b

• a′
•b′

•0

•1
•

•
1

• 0

• 1

•0

•

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 419 / 26



Bundle Pictures

Logical Contextuality

Ignore precise probabilities

Events are possible or not

E.g. the Hardy model:

00 01 10 11

ab X X X X

ab′ × X X X

a′b × X X X

a′b′ X X X ×

•a
• b

• a′
•b′

•0

•1
•

•
1

• 0

• 1

•0

•

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 419 / 26



Bundle Pictures

Logical Contextuality

Ignore precise probabilities

Events are possible or not

E.g. the Hardy model:

00 01 10 11

ab X X X X

ab′ × X X X

a′b × X X X

a′b′ X X X ×

•a
• b

• a′
•b′

•0

•1
•

•
1

• 0

• 1

•0

•

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 419 / 26



Bundle Pictures

Logical Contextuality

Ignore precise probabilities

Events are possible or not

E.g. the Hardy model:

00 01 10 11

ab X X X X

ab′ × X X X

a′b × X X X

a′b′ X X X ×

•a
• b

• a′
•b′

•0

•1
•

•
1

• 0

• 1

•0

•

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 419 / 26



Bundle Pictures

Logical Contextuality

Ignore precise probabilities

Events are possible or not

E.g. the Hardy model:

00 01 10 11

ab X X X X

ab′ × X X X

a′b × X X X

a′b′ X X X ×

•a
• b

• a′
•b′

•0

•1
•

•
1

• 0

• 1

•0

•

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 419 / 26



Bundle Pictures

Logical Contextuality

Ignore precise probabilities

Events are possible or not

E.g. the Hardy model:

00 01 10 11

ab X X X X

ab′ × X X X

a′b × X X X

a′b′ X X X ×

•a
• b

• a′
•b′

•0

•1
•

•
1

• 0

• 1

•0

•

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 419 / 26



Bundle Pictures

Logical Contextuality

Ignore precise probabilities

Events are possible or not

E.g. the Hardy model:

00 01 10 11

ab X X X X

ab′ × X X X

a′b × X X X

a′b′ X X X ×

•a
• b

• a′
•b′

•0

•1
•

•
1

• 0

• 1

•0

•

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 419 / 26



Bundle Pictures

Logical Contextuality

Ignore precise probabilities

Events are possible or not

E.g. the Hardy model:

00 01 10 11

ab X X X X

ab′ × X X X

a′b × X X X

a′b′ X X X ×

•a
• b

• a′
•b′

•0

•1
•

•
1

• 0

• 1

•0

•

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 419 / 26



Bundle Pictures

Logical Contextuality

Ignore precise probabilities

Events are possible or not

E.g. the Hardy model:

00 01 10 11

ab X X X X

ab′ × X X X

a′b × X X X

a′b′ X X X ×

•a
• b

• a′
•b′

•0

•1
•

•
1

• 0

• 1

•0

•

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 419 / 26



Bundle Pictures

Logical Contextuality

Ignore precise probabilities

Events are possible or not

E.g. the Hardy model:

00 01 10 11

ab X X X X

ab′ × X X X

a′b × X X X

a′b′ X X X ×

•a
• b

• a′
•b′

•0

•1
•

•
1

• 0

• 1

•0

•

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 419 / 26



Bundle Pictures

Logical Contextuality

Ignore precise probabilities

Events are possible or not

E.g. the Hardy model:

00 01 10 11

ab X X X X

ab′ × X X X

a′b × X X X

a′b′ X X X ×

•a
• b

• a′
•b′

•0

•1
•

•
1

• 0

• 1

•0

•

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 419 / 26



Bundle Pictures

Logical Contextuality

Ignore precise probabilities

Events are possible or not

E.g. the Hardy model:

00 01 10 11

ab X X X X

ab′ × X X X

a′b × X X X

a′b′ X X X ×

•a
• b

• a′
•b′

•0

•1
•

•
1

• 0

• 1

•0

•

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 419 / 26



Bundle Pictures

Logical Contextuality

Ignore precise probabilities

Events are possible or not

E.g. the Hardy model:

00 01 10 11

ab X X X X

ab′ × X X X

a′b × X X X

a′b′ X X X ×

•a
• b

• a′
•b′

•0

•1
•

•
1

• 0

• 1

•0

•

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 419 / 26



Bundle Pictures

Logical Contextuality

Ignore precise probabilities

Events are possible or not

E.g. the Hardy model:

00 01 10 11

ab X X X X

ab′ × X X X

a′b × X X X

a′b′ X X X ×

•a
• b

• a′
•b′

•0

•1
•

•
1

• 0

• 1

•0

•

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 419 / 26



Bundle Pictures

Logical Contextuality

Ignore precise probabilities

Events are possible or not

E.g. the Hardy model:

00 01 10 11

ab X X X X

ab′ × X X X

a′b × X X X

a′b′ X X X ×

•a
• b

• a′
•b′

•0

•1
•

•
1

• 0

• 1

•0

•

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 419 / 26



Strong Contextuality

A B (0, 0) (1, 0) (0, 1) (1, 1)

a1 b1 1 0 0 1

a1 b2 1 0 0 1

a2 b1 1 0 0 1

a2 b2 0 1 1 0

The PR Box
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Visualizing Contextuality
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The Hardy table and the PR box as bundles

A hierarchy of degrees of contextuality:

Bell < Hardy < GHZ
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Two views of variation: indexed and fibred
Indexed family of sets {Xi}i∈I .

Formally, take

X :=
∐
i∈I

Xi := {(i , x) : i ∈ I , x ∈ Xi}

The family is φ : I - P(X ), φ(i) = {(i , x) : x ∈ Xi}.

There is also a natural projection function

p : X - I p : (i , x) 7→ i

Conversely, given p : X - I , we can form the indexed family {Xi}i∈I , where
Xi := p−1({i}).

These are equivalent ways of looking at the same idea.

With additional structure we get:
− topological bundles, fibre bundles, principal bundles, . . .
− fibrations vs. indexed categories, . . .

Sheaves on X are equivalently formulated as continuous maps p : Y - X
which are local homeomorphisms (espaces étalé).
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Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 424 / 26



Two views of variation: indexed and fibred
Indexed family of sets {Xi}i∈I .

Formally, take

X :=
∐
i∈I

Xi := {(i , x) : i ∈ I , x ∈ Xi}

The family is φ : I - P(X ), φ(i) = {(i , x) : x ∈ Xi}.

There is also a natural projection function

p : X - I p : (i , x) 7→ i

Conversely, given p : X - I , we can form the indexed family {Xi}i∈I , where
Xi := p−1({i}).

These are equivalent ways of looking at the same idea.

With additional structure we get:
− topological bundles, fibre bundles, principal bundles, . . .
− fibrations vs. indexed categories, . . .

Sheaves on X are equivalently formulated as continuous maps p : Y - X
which are local homeomorphisms (espaces étalé).
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Degrees of contextuality

Firstly, we say that a global assignment t ∈ OX is consistent with the support
of a model if for all C ′ ∈M, t|C ′ is in the support at C ′.

An empirical model is

logically contextual if some possible joint outcome s ∈ OC in the support is
not accounted for by any global assignment t ∈ OX which is consistent with
the support of the model. That is, for no such t do we have t|C = s.

Geometrically, this is saying that some local section cannot be extended to a
global one. Equivalently, that the support of the model cannot be covered by
the consistent global assignments.

It is strongly contextual if its support has no global section; that is, there
is no consistent global assignment.

This says that no possible joint outcome is accounted for by any global
section!

Obviously, strong non-locality implies logical non-locality.
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the support of the model. That is, for no such t do we have t|C = s.

Geometrically, this is saying that some local section cannot be extended to a
global one. Equivalently, that the support of the model cannot be covered by
the consistent global assignments.

It is strongly contextual if its support has no global section; that is, there
is no consistent global assignment.

This says that no possible joint outcome is accounted for by any global
section!

Obviously, strong non-locality implies logical non-locality.
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A Hierarchy

We can distinguish three degrees of contextuality among models:

Strong contextuality implies logical contextuality, which implies (probabilistic)
contextuality.

The Bell model is non-local, but not logically non-local.

The Hardy model is logically non-local, but not strongly non-local.

Thus we have a strict hierarchy

contextuality < logical contextuality < strong contextuality

The model arising from the GHZ state (with 3 or more parties) with X , Y
measurements at each site is strongly non-local.

Thus in terms of well-known examples, we have

Bell < Hardy < GHZ
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