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Introduction

We shall use the powerful tools of sheaf cohomology to study the structure of
non-locality and contextuality.

We use the C̆ech cohomology on an abelian presheaf derived from the support of
a probabilistic model, to define a cohomological obstruction for the family as a
certain cohomology class. This class vanishes if the family has a global section.
Thus the non-vanishing of the obstruction provides a sufficient (but not necessary)
condition for the model to be contextual.

We show that for a number of salient examples, including PR boxes, GHZ states,
and the 18-vector configuration due to Cabello et al. giving a proof of the
Kochen-Specker theorem in four dimensions, the obstruction does not vanish, thus
yielding cohomological witnesses for contextuality.

Based on:
S. Abramsky and A. Brandenburger, The Sheaf-Theoretic Structure of
Non-Locality and Contextuality. New Journal of Physics, 13(2011), 113036,
2011.
S. Abramsky, S. Mansfield and R. Soares Barbosa, The Cohomology of
Non-Locality and Contextuality, in Proceedings of QPL 2011, Electronic
Proceedings in Theoretical Computer Science, 2011.
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The Setting

We work over a finite discrete space X , which we think of as a set of
measurement labels. We fix a finite cover U, with

⋃
U = X , which represents

the set of compatible families of measurements, i.e. those which can be made
jointly. Fixing a finite set O of outcomes, we have the presheaf of sets E on X ,
where E(U) := OU , and restriction is simply function restriction: given U ⊆ U ′,

ρU
′

U : E(U ′)→ E(U) :: s 7→ s|U.

Since X is discrete, E is (trivially) a sheaf. We think of it as the sheaf of events.

An empirical model e is a compatible family {eC}C∈U, where eC is a probability
distribution on E(C ). The support of e determines a sub-presheaf Se of E :

Se(U) := {s ∈ E(U) | s ∈ supp(eU)}.

Here eU = eC |U for any C ∈ U such that U ⊆ C . The compatibility of the family
{eC} ensures that this is independent of the choice of C .
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Properties of models

We have the following notions from AB.

The model e is possibilistically extendable iff for every s ∈ Se(C ), s is a
member of a compatible family {sC ∈ Se(C )}C∈U. It is possibilistically
non-extendable if for some s, there is no such family.

The model e is strongly contextual if for every s there is no such family.

The results from AB show that if a model is local or non-contextual in the usual
sense, then it is possibilistically extendable. Thus possibilistic non-extendability is
a sufficient condition for non-locality or contextuality. Strong contextuality is a
much stronger condition. Thus these properties witness strong forms of the
non-classical behaviour exhibited by quantum mechanics.
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C̆ech Cohomology of a Presheaf

We are given the following:

A topological space X .

An open cover U of X .

A presheaf F of abelian groups on X .

For each open set U of X , F(U) is an abelian group, and when U ⊆ V , there
is a group homomorphism ρVU : F(V )→ F(U). These assignments are
functorial: ρUU = idU , and if U ⊆ U ′ ⊆ U ′′, then

ρU
′

U ◦ ρU
′′

U′ = ρU
′′

U .

The nerve N(U) of the cover U is defined to be the abstract simplicial complex
comprising those finite subsets of U with non-empty intersection. Concretely, we
take a q-simplex to be a list σ = (C0, . . . ,Cq) of elements of U, with
|σ| := ∩qj=0Cj 6= ∅. Thus a 0-simplex (C ) is a single element of the cover U. We
write N(U)q for the set of q-simplices.
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Cochains and coboundaries

Given a q + 1-simplex σ = (C0, . . . ,Cq+1), there are q-simplices

∂j(σ) := (C0, . . . , Ĉj , . . . ,Cq+1), 0 ≤ j ≤ q

obtained by omitting one of the elements of the q + 1-simplex. Note that:

|σ| ⊆ |∂j(σ)|.

We shall now define the C̆ech cochain complex. For each q ≥ 0, we define the
abelian group C q(U,F):

C q(U,F) :=
∏

σ∈N(U)q

F(|σ|).

We also define the coboundary maps

δq : C q(U,F) −→ C q+1(U,F).

For ω = (ω(τ))τ∈N(U)q ∈ C q(U,F), and σ ∈ N(U)q+1, we define:

δq(ω)(σ) :=

q∑
j=0

(−1)jρ
|∂j (σ)|
|σ| ω(∂jσ).
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For ω = (ω(τ))τ∈N(U)q ∈ C q(U,F), and σ ∈ N(U)q+1, we define:

δq(ω)(σ) :=

q∑
j=0

(−1)jρ
|∂j (σ)|
|σ| ω(∂jσ).
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Cocycles, coboundaries, cohomology

For each q, δq is a group homomorphism.

We shall also consider the augmented complex 0→ C 0(U,F)→ · · · .

Proposition

For each q, δq+1 ◦ δq = 0.

We define Z q(U,F), the q-cocycles, to be the kernel of δq.

We define Bq(U,F), the q-coboundaries, to be the image of δq−1.

These are subgroups of C q(U,F), and by Proposition 1, Bq(U,F) ⊆ Z q(U,F).

We define the q-th C̆ech cohomology group H̆q(U,F) to be the quotient group
Z q(U,F)/Bq(U,F).

Note that B0(U,F) = 0, so H̆0(U,F) ∼= Z 0(U,F).

Given a cocycle z ∈ Z q(U,F), the cohomology class [z ] is the image of z under
the canonical map

Z q(U,F) −→ H̆q(U,F).
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Compatible families

A compatible family with respect to a cover U = {C1, . . . ,Cn} is a family
{ri ∈ F(Ci )}ni=1, such that, for all i , j :

ri |Ci ∩ Cj = rj |Ci ∩ Cj .

Proposition

There is a bijection between compatible families and elements of the zeroth
cohomology group H̆0(U,F).

Proof Cochains c = (ri )Ci∈U in C 0(U,F) correspond to families {ri ∈ F(Ci )}.
For each 1-simplex σ = (Ci ,Cj),

δ0(c)(σ) = ri |Ci ∩ Cj − rj |Ci ∩ Cj .

Hence δ0(c) = 0 if and only if the corresponding family is compatible. �

Samson Abramsky (Department of Computer Science, University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 58 / 29



Compatible families

A compatible family with respect to a cover U = {C1, . . . ,Cn} is a family
{ri ∈ F(Ci )}ni=1, such that, for all i , j :

ri |Ci ∩ Cj = rj |Ci ∩ Cj .

Proposition

There is a bijection between compatible families and elements of the zeroth
cohomology group H̆0(U,F).

Proof Cochains c = (ri )Ci∈U in C 0(U,F) correspond to families {ri ∈ F(Ci )}.
For each 1-simplex σ = (Ci ,Cj),

δ0(c)(σ) = ri |Ci ∩ Cj − rj |Ci ∩ Cj .

Hence δ0(c) = 0 if and only if the corresponding family is compatible. �

Samson Abramsky (Department of Computer Science, University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 58 / 29



Compatible families

A compatible family with respect to a cover U = {C1, . . . ,Cn} is a family
{ri ∈ F(Ci )}ni=1, such that, for all i , j :

ri |Ci ∩ Cj = rj |Ci ∩ Cj .

Proposition

There is a bijection between compatible families and elements of the zeroth
cohomology group H̆0(U,F).

Proof Cochains c = (ri )Ci∈U in C 0(U,F) correspond to families {ri ∈ F(Ci )}.
For each 1-simplex σ = (Ci ,Cj),

δ0(c)(σ) = ri |Ci ∩ Cj − rj |Ci ∩ Cj .

Hence δ0(c) = 0 if and only if the corresponding family is compatible. �

Samson Abramsky (Department of Computer Science, University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 58 / 29



Compatible families

A compatible family with respect to a cover U = {C1, . . . ,Cn} is a family
{ri ∈ F(Ci )}ni=1, such that, for all i , j :

ri |Ci ∩ Cj = rj |Ci ∩ Cj .

Proposition

There is a bijection between compatible families and elements of the zeroth
cohomology group H̆0(U,F).

Proof Cochains c = (ri )Ci∈U in C 0(U,F) correspond to families {ri ∈ F(Ci )}.
For each 1-simplex σ = (Ci ,Cj),

δ0(c)(σ) = ri |Ci ∩ Cj − rj |Ci ∩ Cj .

Hence δ0(c) = 0 if and only if the corresponding family is compatible. �

Samson Abramsky (Department of Computer Science, University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 58 / 29



Relative cohomology

We shall also use the relative cohomology of F with respect to an open subset
U ⊆ X .

We define two auxiliary presheaves related to F .

Firstly, F|U is defined by

F|U(V ) := F(U ∩ V ).

There is an evident presheaf morphism

p : F −→ F|U :: pV : r 7→ r |U ∩ V .

Then FŪ is defined by FŪ(V ) := ker(pV ). Thus we have an exact sequence of
presheaves

0 - FŪ
- F p- F|U.

The relative cohomology of F with respect to U is defined to be the cohomology
of the presheaf FŪ .
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Then FŪ is defined by FŪ(V ) := ker(pV ). Thus we have an exact sequence of
presheaves

0 - FŪ
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Killing a section

We have the following refined version of Proposition 2.

Proposition

For any Ci ∈ U, the elements of the relative cohomology group Ȟ0(U,FC̄i
)

correspond bijectively to compatible families {rj} such that ri = 0.

Proof By the previous Proposition, compatible families correspond to cocycles
r = (rj) in C 0(U,F). By compatibility, ri |Ci ∩ Cj = rj |Ci ∩ Cj for all j . Hence r is
in C 0(U,FŪi

) if and only if ri = pUi (ri ) = 0. �
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Application to our setting

Given a commutative ring R, we define a functor FR : Set −→ Set. For any set
X , the support supp(φ) of a function φ : X → R is the set of x ∈ X such that
φ(x) 6= 0. We define FR(X ) to be the set of functions φ : X → R of finite
support. There is an embedding x 7→ 1 · x of X in FR(X ), which we shall use
implicitly throughout.

Given f : X → Y , we define:

FR f : FRX −→ FRY :: φ 7→ [y 7→
∑

f (x)=y

φ(x)].

This assignment is easily seen to be functorial.

In fact, FR(X ) is the free R-module generated by X , and in particular, it is an
abelian group; while FR(f ) is a group homomorphism for any function f . In
particular, taking R = Z, FZ(X ) is the free abelian group generated by X .

Given an empirical model e defined on the cover U, we shall work with the
C̆ech cohomology groups H̆q(U,F) for the abelian presheaf F := FZSe . Note
that, for any set of measurements U, F(U) is the set of formal Z-linear
combinations of sections in the support of eU .
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C̆ech cohomology groups H̆q(U,F) for the abelian presheaf F := FZSe . Note
that, for any set of measurements U, F(U) is the set of formal Z-linear
combinations of sections in the support of eU .
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Cohomology obstruction

To each s ∈ Se(C ), we shall associate an element γ(s) of a cohomology group,
which can be regarded as an obstruction to s having an extension within the
support of e to a global section. In particular, the existence of such an extension
implies that the obstruction vanishes, yielding cohomological witnesses for
contextuality and strong contextuality.

For notational convenience, we shall fix an element s = s1 ∈ Se(C1). Because of
the compatibility of the family {eC}, there is a family {si ∈ Se(Ci )} with
s1|C1 ∩ Ci = si |C1 ∩ Ci , i = 2, . . . , n.

We define the cochain c := (s1, . . . , sn) ∈ C 0(U,F). The coboundary of this
cochain is z := δ0(c).

Proposition

The coboundary z of c vanishes under restriction to C1, and hence is a cocycle in
the relative cohomology with respect to C1.
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Defining the obstruction

Proof We write Ci,j := Ci ∩ Cj .

For all i , j , we define zi,j := z(Ci,j) = si |Ci,j − sj |Ci,j .

Because of the compatibility assumption on the family {si}, for all i , j ,

si |C1 ∩ Ci,j = (s1|C1 ∩ Ci )|Cj = s1|C1 ∩ Ci,j .

Similarly, sj |C1 ∩ Ci,j = s1|C1 ∩ Ci,j .

Hence zi,j |C1 ∩ Ci,j = 0, and zi,j ∈ FC̄1
(Ci ∩ Cj).

Thus z = (zi,j)i,j ∈ C 1(U,FC̄1
).

Note that δ1 : C 1(U,FC̄1
)→ C 2(U,FC̄1

) is the restriction of the coboundary map
on C 1(U,F). Hence z = δ0(c) is a cocycle. �

We define γ(s1) as the cohomology class [z ] ∈ Ȟ1(U,FC̄1
).
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).

Samson Abramsky (Department of Computer Science, University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 513 / 29



Defining the obstruction

Proof We write Ci,j := Ci ∩ Cj .

For all i , j , we define zi,j := z(Ci,j) = si |Ci,j − sj |Ci,j .

Because of the compatibility assumption on the family {si}, for all i , j ,

si |C1 ∩ Ci,j = (s1|C1 ∩ Ci )|Cj = s1|C1 ∩ Ci,j .

Similarly, sj |C1 ∩ Ci,j = s1|C1 ∩ Ci,j .

Hence zi,j |C1 ∩ Ci,j = 0, and zi,j ∈ FC̄1
(Ci ∩ Cj).

Thus z = (zi,j)i,j ∈ C 1(U,FC̄1
).

Note that δ1 : C 1(U,FC̄1
)→ C 2(U,FC̄1

) is the restriction of the coboundary map
on C 1(U,F). Hence z = δ0(c) is a cocycle. �

We define γ(s1) as the cohomology class [z ] ∈ Ȟ1(U,FC̄1
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).

Samson Abramsky (Department of Computer Science, University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 513 / 29



Defining the obstruction

Proof We write Ci,j := Ci ∩ Cj .

For all i , j , we define zi,j := z(Ci,j) = si |Ci,j − sj |Ci,j .

Because of the compatibility assumption on the family {si}, for all i , j ,

si |C1 ∩ Ci,j = (s1|C1 ∩ Ci )|Cj = s1|C1 ∩ Ci,j .

Similarly, sj |C1 ∩ Ci,j = s1|C1 ∩ Ci,j .

Hence zi,j |C1 ∩ Ci,j = 0, and zi,j ∈ FC̄1
(Ci ∩ Cj).

Thus z = (zi,j)i,j ∈ C 1(U,FC̄1
).

Note that δ1 : C 1(U,FC̄1
)→ C 2(U,FC̄1

) is the restriction of the coboundary map
on C 1(U,F). Hence z = δ0(c) is a cocycle. �

We define γ(s1) as the cohomology class [z ] ∈ Ȟ1(U,FC̄1
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Remarks

There is a more conceptual way of defining this obstruction, using the connecting
homomorphism from the long exact sequence of cohomology.

We have given a more concrete formulation, which may be easier to grasp, and is
also convenient for computation.

Note that, although z = δ0(c), it is not necessarily a coboundary in C 1(U,FC̄1
),

since c is not a cochain in C 0(U,FC̄1
), as pCi (si ) = si |C1 ∩ Ci 6= 0.

Thus in general, we need not have [z ] = 0.
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Key Property of the Obstruction

Proposition

The following are equivalent:

1 The cohomology obstruction vanishes: γ(s1) = 0.

2 There is a family {ri ∈ F(Ci )} with s1 = r1, and for all i , j :

ri |Ci ∩ Cj = rj |Ci ∩ Cj .

Proof The obstruction vanishes if and only if there is a cochain
c ′ = (c ′1, . . . , c

′
n) ∈ C 0(U,FC̄1

) with δ0(c ′) = δ0(c), or equivalently
δ0(c − c ′) = 0, i.e. such that c − c ′ is a cocycle.

By Proposition 2, this is equivalent to {ri := si − c ′i } forming a compatible family.
Moreover, c ′ ∈ C 0(U,FC̄1

) implies c ′1 = pC1 (c ′1) = 0, so r1 = s1.

For the converse, suppose we have a family {ri ∈ F(Ci )} as in (2).
We define c ′ := (c ′1, . . . , c

′
n), where c ′i := si − ri .

Since r1 = s1, pCi (c
′
i ) = s1|C1,i − r1|C1,i = 0 for all i , and c ′ ∈ C 0(U,FC̄1

).
We must show that δ0(c ′) = z , i.e. that zi,j = c ′i |Ci,j − c ′j |Ci,j . This holds since
ri |Ci,j = rj |Ci,j . �
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ri |Ci ∩ Cj = rj |Ci ∩ Cj .

Proof The obstruction vanishes if and only if there is a cochain
c ′ = (c ′1, . . . , c

′
n) ∈ C 0(U,FC̄1

) with δ0(c ′) = δ0(c), or equivalently
δ0(c − c ′) = 0, i.e. such that c − c ′ is a cocycle.

By Proposition 2, this is equivalent to {ri := si − c ′i } forming a compatible family.
Moreover, c ′ ∈ C 0(U,FC̄1

) implies c ′1 = pC1 (c ′1) = 0, so r1 = s1.

For the converse, suppose we have a family {ri ∈ F(Ci )} as in (2).
We define c ′ := (c ′1, . . . , c

′
n), where c ′i := si − ri .

Since r1 = s1, pCi (c
′
i ) = s1|C1,i − r1|C1,i = 0 for all i , and c ′ ∈ C 0(U,FC̄1

).
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Application of contextuality

As an immediate application to contextuality, we have the following.

Proposition

If the model e is possibilistically extendable, then the obstruction vanishes for
every section in the support of the model. If e is not strongly contextual, then the
obstruction vanishes for some section in the support.

Proof If e is possibilistically extendable, then for every s ∈ Se(Ci ), there is a
compatible family {sj ∈ Se(Cj)} with s = si .

Applying the embedding of Se(Cj) into F(Cj), by Proposition 5 we conclude that
γ(s) = 0.

The same argument can be applied to a single section witnessing the failure of
strong contextuality. �

Thus we have a sufficient condition for contextuality in the non-vanishing of the
obstruction.
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False Positives

The non-necessity of the condition arises from the possibility of ‘false positives’:
families {ri ∈ F(Ci )} which do not determine a bona fide global section in E(X ).

We shall now go on to look at a range of examples.

We shall be able to computes cohomological obstructions witnessing contextuality
for many well-known examples.

We shall begin, however, with a false positive.

Samson Abramsky (Department of Computer Science, University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 517 / 29



False Positives

The non-necessity of the condition arises from the possibility of ‘false positives’:
families {ri ∈ F(Ci )} which do not determine a bona fide global section in E(X ).

We shall now go on to look at a range of examples.

We shall be able to computes cohomological obstructions witnessing contextuality
for many well-known examples.

We shall begin, however, with a false positive.

Samson Abramsky (Department of Computer Science, University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 517 / 29



False Positives

The non-necessity of the condition arises from the possibility of ‘false positives’:
families {ri ∈ F(Ci )} which do not determine a bona fide global section in E(X ).

We shall now go on to look at a range of examples.

We shall be able to computes cohomological obstructions witnessing contextuality
for many well-known examples.

We shall begin, however, with a false positive.

Samson Abramsky (Department of Computer Science, University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 517 / 29



False Positives

The non-necessity of the condition arises from the possibility of ‘false positives’:
families {ri ∈ F(Ci )} which do not determine a bona fide global section in E(X ).

We shall now go on to look at a range of examples.

We shall be able to computes cohomological obstructions witnessing contextuality
for many well-known examples.

We shall begin, however, with a false positive.

Samson Abramsky (Department of Computer Science, University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 517 / 29



False Positives

The non-necessity of the condition arises from the possibility of ‘false positives’:
families {ri ∈ F(Ci )} which do not determine a bona fide global section in E(X ).

We shall now go on to look at a range of examples.

We shall be able to computes cohomological obstructions witnessing contextuality
for many well-known examples.

We shall begin, however, with a false positive.

Samson Abramsky (Department of Computer Science, University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 517 / 29



The Hardy Model

Support of the Hardy Model

(0, 0) (0, 1) (1, 0) (1, 1)

(A,B) 1 0 0 0

(A,B ′) 0 1 0 0

(A′,B) 0 1 1 1

(A′,B ′) 1 1 1 0

Possibilistically non-local

Not strongly contextual

The section (A,B)→ (0, 0) witnesses non-locality

All other sections belong to compatible families of sections

Samson Abramsky (Department of Computer Science, University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 518 / 29



The Hardy Model

Support of the Hardy Model

(0, 0) (0, 1) (1, 0) (1, 1)

(A,B) s1 s2 s3 s4

(A,B ′) 0 s6 s7 s8

(A′,B) 0 s10 s11 s12

(A′,B ′) s13 s14 s15 0

Label non-zero sections

Compatible family of Z-linear combinations of sections:

r1 = s1, r2 = s6 + s7 − s8, r3 = s11, r4 = s15

One can check that

r2|A = 1 · (A 7→ 0) + 1 · (A 7→ 1)− 1 · (A 7→ 1) = r1|A,

r2|B ′ = 1 · (B ′ 7→ 1) + 1 · (B ′ 7→ 0)− 1 · (B ′ 7→ 1) = r4|B ′
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The Hardy Model

γ(s1) vanishes!

This example illustrates that false positives do arise

The cohomological obstruction does not show the non-locality of the Hardy
model
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The PR Box

Coefficients for Candidate Family {ri}

(0, 0) (0, 1) (1, 0) (1, 1)

C1 = (A,B) a 0 0 b

C2 = (A,B ′) c 0 0 d

C3 = (A′,B) e 0 0 f

C4 = (A′,B ′) 0 g h 0

Restrictions

r1|C1,2 = r2|C1,2 −→ a = c b = d

r1|C1,3 = r3|C1,2 −→ a = e b = f

r2|C2,4 = r4|C2,4 −→ c = h d = g

r3|C3,4 = r4|C3,4 −→ e = g f = h

All coefficients are required to be equal
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coefficient to 1 and all other coefficients in its context to 0
The equations then require 1 = 0
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Other Examples

The cohomology approach witnesses strong contextuality in a number of other
well-known examples:

GHZ model

Peres-Mermin Square

18-vector Kochen-Specker model

Other KS-type models
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GHZ

The previous example suggests looking at GHZ, which is also strongly contextual,
and of course is realizable in quantum mechanics.

The support for (the relevant part of) GHZ is as follows:

000 001 010 011 100 101 110 111

ABC 1 0 0 1 0 1 1 0

AB ′C ′ 0 1 1 0 1 0 0 1

A′BC ′ 0 1 1 0 1 0 0 1

A′B ′C 0 1 1 0 1 0 0 1
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Equational form

We display the coefficients for a candidate family as follows:

000 001 010 011 100 101 110 111

ABC a 0 0 b 0 c d 0

AB ′C ′ 0 e f 0 g 0 0 h

A′BC ′ 0 i j 0 k 0 0 l

A′B ′C 0 m n 0 o 0 0 p

The constraints arising from the requirements that ri |Ci,j = rj |Ci,j are:

a + b = e + f c + d = g + h

a + c = i + k b + d = j + l

a + d = n + o b + c = m + p

f + g = j + k e + h = i + l

e + g = m + o f + h = n + p

i + j = m + n k + l = o + p
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Calculating the obstructions

Checking that a section in the support is a member of such a family amounts to
assigning 1 to the variable labelling that section, and 0 to the other variables in its
row.

It suffices to show that these constraints cannot be satisfied over the integers mod
2; this implies that they cannot be satisfied over Z, since otherwise such a
solution would descend via the homomorphism Z→ Z/2Z.

Of course, this will also show that the cohomology obstruction does not vanish
even if we use Z/2Z as the coefficient group.

All cases for GHZ have been machine-checked in mod 2 arithmetic, and it has
been confirmed that the cohomology obstruction witnesses the impossibility of
extending any section in the support to all measurements; thus cohomology
witnesses the strong contextuality of GHZ.
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Kochen-Specker-type Models

In a Kochen-Specker problem, we
wish to assign the outcome 1 to a
single measurement in each context

So sections in the support are the
ones with exactly one 1

E.g. 18-vector K-S model
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1000 0100 0010 0001

ABCD a b c d

AEFG a e f g

HICJ h i c j

HKGL h k g l

BEMN b e m n

IKNO i k n o

PQDJ p q d j

PRFL p r f l

QRMO q r m o
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Kochen-Specker-type Models

In a Kochen-Specker problem, we
wish to assign the outcome 1 to a
single measurement in each context

So sections in the support are the
ones with exactly one 1

E.g. 18-vector K-S model

b + c + d = e + f + g

a + b + d = h + i + j

a + c + d = e + m + n

a + b + c = p + q + j

a + f + g = b + m + n

a + e + f = h + k + l

a + e + g = p + r + l

i + c + j = k + g + l

h + c + j = k + n + o

h + i + c = p + q + d

h + g + l = i + n + o

h + k + g = p + r + f

b + e + n = q + r + o

b + e + m = i + k + o

i + k + n = q + r + m

q + d + j = r + f + l

p + d + j = r + m + o

p + f + l = q + m + o
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A Class of KS-type Models

Proposition (Abramsky-Brandenburger)

A necessary condition for Kochen-Specker-type models to have a global section is:

gcd{dm | m ∈ X} | |U|,

where dm := |{C ∈ U | m ∈ C}|

Corollary

All models that do not satisfy the above condition are therefore strongly
contextual
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A Class of KS-type Models

Proposition (AMB)

If γ(s) vanishes for some section s in the support of a connected
Kochen-Specker-type model, then the GCD condition holds for that model

Corollary

The vanishing of the cohomological obstruction is a complete invariant for the
non-locality/contextuality of any connected KS-type model that violates the
GCD condition
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Further Directions

In general, the cohomological condition for contextuality is sufficient, but not
necessary

Conjecture

Under suitable assumptions of symmetry and connectedness, the cohomology
obstruction is a complete invariant for strong contextuality

We have been computing the obstructions by brute force enumeration
We would like to use the machinery of homological algebra and exact
sequences to obtain more conceptual and general results.

Use additional structure of cohomology: products, Steenrod squares etc. to
create refined invariants of quantum mechanical behavior.

See if cohomology can be applied to entanglement classes to study the
structure of multipartite quantum entanglement, and to develop new
invariants of quantum entanglement.
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