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The Support Presheaf

Recall that a probability table such as the Bell table can be represented by a
family {pc}cem with pc a probability distribution on £(C) = O¢, where
contexts C corresponds to the rows of the table.

Similarly, “possibility tables” such as the Hardy model and the PR box can be
represented by boolean distributions.

This latter case, with which the logical and strong forms of contextuality are
concerned, can equivalently be represented by a subpresheaf S of £, where for
each context U C X, S(U) C OV is the set of all possible outcomes.

Explicitly, S is defined as follows, where supp (pc|unc) is the support of the
marginal of pc at UN C.

S(U) :={s € 0V | VC € M. s|ync € supp (pclunc)}

Can be specified axiomatically. In particular, “flasque below the cover”
corresponding to No-Signalling/compatibility.
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Contextuality for support presheaves

Note also that any compatible family on the cover M has a unique global section
in £(X), and hence in S(X).
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Contextuality for support presheaves

Note also that any compatible family on the cover M has a unique global section
in £(X), and hence in §(X).

Definition
For any empirical model S:

o Forall C € M and s € S(C), S is logically contextual at s, written LC(S, s),
if s is not a member of any compatible family. S is logically contextual,
written LC(S), if LC(S, s) for some s.

o S is strongly contextual, written SC(S), if LC(S, s) for all s. Equivalently,
it is strongly contextual if it has no global section, i.e. if S(X) = @.
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All-versus-Nothing

This style of argument was first conceptualised by Mermin.

See in particular his paper
“A Simple Unified Form For the Major No-Hidden-Variables Theorems” (PRL
1990)

Many papers subsequently, with many examples.
However, no general definition of what an AvN argument is.

We shall provide such a definition, and formulate a conjecture of a simple
characterisation of when such arguments can be made.

Motivation:
o Understand where AvN sits in the hierarchy of contextuality properties

o Characterise the quantum states which give rise to maximal degrees of
non-locality /contextuality.
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The XOR Game

0/1 0/1

Alice
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Motivating Example: GHZ

[T+ )

GHZ =
V2
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Motivating Example: GHZ

gz — M+ )
V2
t++ - -+ = —+ - =4 ———
XXX | 1 0 0 1 0 1 1 0
XYYy | o 1 1 0 1 0 0 1
YXy | o 1 1 0 1 0 0 1
YYX | 0 1 1 0 1 0 0 1
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V2
+++ ++— -+ +—— —++ —+- ——F ——-—
XXX | 1 0 0 1 0 1 1 0
XYy | o 1 1 0 1 0 0 1
YXy | o 1 1 0 1 0 0 1
YYX | 0 1 1 0 1 0 0 1

Strongly contextual: no assignment
{X17 Y17X27 Y27X37 Y3} — {+17 _1}
consistent with this support.

Note that the eigenvalues of the operators XXX etc. are +1 and —1.
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Motivating Example: GHZ

cHy = TR+ WD
V2
t++ - -+ = —+ - =4 ———
XXX | 1 0 0 1 0 1 1 0
XYy | o 1 1 0 1 0 0 1
YXy | o 1 1 0 1 0 0 1
YYX | 0 1 1 0 1 0 0 1

Strongly contextual: no assignment

{X1, Y1, X2, Y2, X3, Y3} — {41, -1}
consistent with this support.
Note that the eigenvalues of the operators XXX etc. are +1 and —1.

The expected values of these measurements give information about the parity of

the support.
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The 1-qubit operators
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The Pauli Operators
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01 0 —i 1 0
X = Y = 7 =
1 0 i 0 0 -1
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The Pauli Operators

The 1-qubit operators

01 0 —i 1 0
X = Y = 7 =
1 0 i 0 0 -1

Self-adjoint operators with eigenvalues +1, —1.

Relations:
X2=vY2=27?2=]

XY =iz, YZ=iX, ZX=IiY,
YX = —iZ, ZY =—iX, XZ=-—iY
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Mermin's AvN Argument
The XYY, YXY and YYX operators all stabilise the GHZ state, i.e. leave it fixed.

Note that
(Av = (v[Alv),  (V|[Alv) =1 <= Alv) =v).

Thus the expected value of measuring any of these operators on GHZ is +1.

This says that the support of the outcomes of measuring XXX on GHZ should
have even parity.

However, their product is — XXX, which also stabilises GHZ.
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Yi X Vs = 1
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Mermin's AvN Argument
The XYY, YXY and YYX operators all stabilise the GHZ state, i.e. leave it fixed.

Note that
(Av = (v[Alv),  (V|[Alv) =1 <= Alv) =v).

Thus the expected value of measuring any of these operators on GHZ is +1.

This says that the support of the outcomes of measuring XXX on GHZ should
have even parity.

However, their product is — XXX, which also stabilises GHZ.

Xi Y. Vs = 1
Yi X Vs = 1
Yi Yo X3 = 1
X; X X3 = -1

However, this can never be the case for any assignment
{X17Y17X23 Y27X3; Y3} {+1771}
8/ 49
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Logical version of the AvN argument

Use the isomorphism
({+17 _1}7 X) = ({0’ 1}’ EB)

Samson Abramsky (Department of Computer Science, Computational Algebraic Topology Topic B: Sheaf coh



Logical version of the AvN argument

Use the isomorphism

({+1a _1}’ X) = ({O’ 1}’ EB)
We can translate the stabilisers into parity assertions:

XieoY,®Ys = 0
YieXodYs = 0
YieYadXs = 0
XieXodXs = 1
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Logical version of the AvN argument

Use the isomorphism

({"’_1’_1}’ X) = ({071}’@)

We can translate the stabilisers into parity assertions:

X1® Y29 Y3
VioXo0 Vs
Y1 Y28 X3
X1 X2 © X3

Clearly, these are inconsistent.

Samson Abramsky (Department of Computer Science, Computational Algebraic Topology Topic B: Sheaf coh

0
0
0
1

9/ 49



General Setting

amson Abrams| t of Computer Science, Computational Algebraic Topology Topic B: Sheaf coh



General Setting

We can define everything for general empirical models (i.e. “generalized probability
tables”) over a measurement scenario (X, M) (with dichotomic measurements).
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General Setting

We can define everything for general empirical models (i.e. “generalized probability
tables”) over a measurement scenario (X, M) (with dichotomic measurements).

To each such model e, we can associate an XOR theory Tg(e).

For each measurement context C € M, this will have the assertion

P =0
xeC

when the support of ec is even, and
P -1

xeC
when the support is odd.
We say that the model is AvN if this theory is inconsistent.
Proposition

If an empirical model e is AvN, then it is strongly contextual.
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The Stabiliser World

To see how such AvN models can arise from quantum mechanics, we generalise
Mermin's argument.
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The Stabiliser World

To see how such AvN models can arise from quantum mechanics, we generalise
Mermin's argument.

The natural setting for this is stabilisers.

The Pauli n-group P,: a list of n Pauli operators (from {X,Y,Z,1}), with a
global phase from {£1, +i}.

A Galois correspondence between Pauli operators and states/vectors in the Hilbert
space C™:
gRv <—= gv=v.

Closure operators on sets of group elements and of vectors:

St = {v|VgeS.gRv}, VvVt = {g|VveV.gRv}.
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The Stabiliser World

To see how such AvN models can arise from quantum mechanics, we generalise
Mermin's argument.

The natural setting for this is stabilisers.

The Pauli n-group P,: a list of n Pauli operators (from {X,Y,Z,1}), with a
global phase from {£1, +i}.

A Galois correspondence between Pauli operators and states/vectors in the Hilbert
space C™:
gRv <—= gv=v.

Closure operators on sets of group elements and of vectors:
St = {v|Vg e S gRv}, v+t = {g]|VveV.gRv}

The closed sets (X = X*=) are subgroups and subspaces respectively.

The subgroups of P, which stabilise non-trivial subspaces must be commutative,
and only contain elements with global phases +1.

Samson Abramsky (Department of Computer Science, 11 / 49



The Galois Correspondence

mson Abramsky (Department of Computer Science, Computational Algebraic Topology Topic B: Sheaf coh!



The Galois Correspondence
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K +—>W0n

|
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The Galois Correspondence

Ve-——-Ww

The subgroups are constraints on states: the more constraints, the fewer states
satisfy them.
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The Galois Correspondence

Vae———-Ww
The subgroups are constraints on states: the more constraints, the fewer states
satisfy them.
Akin to the Galois correspondence of theories and models in logic.

Note that the correspondence is tight: a rank k subgroup determines a dimension
2"~k subspace.

Samson Abramsky (Department of Computer Science, 12 / 49
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Stabiliser subgroups induce XOR theories

We can associate an XOR theory Tg(S) to each stabiliser subgroup S.
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Stabiliser subgroups induce XOR theories

We can associate an XOR theory Tg(S) to each stabiliser subgroup S.

For each element Py --- P, of S, P; € {X,Y,Z, 1}, with global phase +1, we have

the formula .
Br - o
i=1

and for each such element with global phase —1, we have the formula

e - 1
i=1
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For each element Py --- P, of S, P; € {X,Y,Z, 1}, with global phase +1, we have

the formula .
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Stabiliser subgroups induce XOR theories

We can associate an XOR theory Tg(S) to each stabiliser subgroup S.

For each element Py --- P, of S, P; € {X,Y,Z, 1}, with global phase +1, we have

the formula .
Br - o
i=1

and for each such element with global phase —1, we have the formula
Br -1
i=1

We say that S is AvN if Tg(S) is inconsistent.

Question:

‘ How can we characterise when this happens?

Samson Abramsky (Department of Computer Science, 13 / 49
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AvN Triples

Define an AvN triple in P, to be (e, f, g) (order is important) with global phases
+1, which pairwise commute, and additionally satisfy the following conditions:

(Al) Foralli=1,...,n at least two of ¢;, f;, g; are the same.

(A2) The number of i such that e; = g; # f;, all distinct from /, is odd.
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AvN Triples

Define an AvN triple in P, to be (e, f, g) (order is important) with global phases
+1, which pairwise commute, and additionally satisfy the following conditions:

(A1)

Forall i =1,...,n at least two of ¢;, f;, g; are the same.
(A2)

The number of i such that e; = g; # f;, all distinct from /, is odd.

So in (A2) these are triples PQP of Pauli matrices, all distinct from /, Q@ # P.
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Define an AvN triple in P, to be (e, f, g) (order is important) with global phases
+1, which pairwise commute, and additionally satisfy the following conditions:

(Al) Foralli=1,...,n at least two of ¢;, f;, g; are the same.

(A2) The number of i such that e; = g; # f;, all distinct from /, is odd.

So in (A2) these are triples PQP of Pauli matrices, all distinct from /, Q@ # P.
Now the claim is that such a triple yields an AvN argument.

Note that the conditions imply that the product e.f.g = —h , which translates
into a condition of odd parity on the support of any state stabilised by these
operators for the measurement h.
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AvN Triples

Define an AvN triple in P, to be (e, f, g) (order is important) with global phases
+1, which pairwise commute, and additionally satisfy the following conditions:

(Al) Foralli=1,...,n at least two of ¢;, f;, g; are the same.

(A2) The number of i such that e; = g; # f;, all distinct from /, is odd.

So in (A2) these are triples PQP of Pauli matrices, all distinct from /, Q@ # P.
Now the claim is that such a triple yields an AvN argument.

Note that the conditions imply that the product e.f.g = —h , which translates
into a condition of odd parity on the support of any state stabilised by these
operators for the measurement h.

On the other hand, condition (A1) implies that under any global
assignment/section on the variables, we can cancel the repeated items in each
column, and deduce an even parity for h.
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AvN Triples

Define an AvN triple in P, to be (e, f, g) (order is important) with global phases
+1, which pairwise commute, and additionally satisfy the following conditions:

(Al) Foralli=1,...,n at least two of ¢;, f;, g; are the same.

(A2) The number of i such that e; = g; # f;, all distinct from /, is odd.

So in (A2) these are triples PQP of Pauli matrices, all distinct from /, Q@ # P.
Now the claim is that such a triple yields an AvN argument.

Note that the conditions imply that the product e.f.g = —h , which translates
into a condition of odd parity on the support of any state stabilised by these
operators for the measurement h.

On the other hand, condition (A1) implies that under any global
assignment/section on the variables, we can cancel the repeated items in each
column, and deduce an even parity for h.

This means that any state in Vs, where S is the subgroup generated by {e, f, g},
admits an AvN argument. Note that this is a 2"~3-dimensional space, assuming
e, f, g are independent.

14 / 49



The AvN Triple Conjecture

mson Abramsky (Department of Computer Science, Computational Algebraic Topology Topic B: Sheaf coh!



The AvN Triple Conjecture

The further conjecture is that having an AvN triple is necessary as well as
sufficient for an AvN argument.
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The further conjecture is that having an AvN triple is necessary as well as
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The AvN Triple Conjecture

The further conjecture is that having an AvN triple is necessary as well as
sufficient for an AvN argument.

More precisely, any AvN subgroup S must contain an AvN triple.

Example from Mermin, yielding a GHZ argument:

< < X
< % <
X < <

Samson Abramsky (Department of Computer Science,
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Generalised All-vs-Nothing arguments

In fact, these arguments can be generalised far beyond parity arguments.
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Generalised All-vs-Nothing arguments
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In fact, these arguments can be generalised far beyond parity arguments.

‘Box 25' of the Pironio—Bancal-Scarani list of the vertices of the No-Signalling
polytope:

@ admits no parity argument;

o but satisfies an inconsistent system of equations mod 3:

ag + 2byp =0 mod 3 a1 +2c =0mod 3
ag+ b1 +c=2mod3 ag+ b1 +c1 =2 mod3
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o but satisfies an inconsistent system of equations mod 3:
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o In fact, the ring structure is the essential ingredient.

Samson Abramsky (Department of Computer Science, 16 / 49



Generalised All-vs-Nothing arguments

In fact, these arguments can be generalised far beyond parity arguments.

‘Box 25" of the Pironio—Bancal-Scarani list of the vertices of the No-Signalling
polytope:

@ admits no parity argument;

o but satisfies an inconsistent system of equations mod 3:

ag + 2byp =0 mod 3 a1 +2c=0mod 3
ag+ by +c=2mod 3 ag+ by +¢c1 =2 mod 3
a1+ bg+c1 =2 mod 3 ai+b;+c=2mod 3

o This suggests the use of general Z, instead of just Z,.
o In fact, the ring structure is the essential ingredient.

@ So, consider any commutative ring R.
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R-linear equations

o Context C of measurements
o Assignments £(C) = R¢ (measurements have outcomes valued in R)

@ R-linear equations, on assignments s: C — R, of the form:

Z ams(m) = b (am,b€R) .

meC

o A set of assignments S C £(C) determines an R-linear theory,

Tr(S):={¢|VseS.s E ¢}

o A system of equations I" has a set of satisfying assignments,
M(M) :={se€ &(C)|VpeTl.s | ¢}

T
— =

PE(V) Theories

~_
M
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Generalised All-vs-Nothing arguments

o Empirical model: § — &.

o S(C) C &(C) represents the possible outcome assignments when measuring
C.

o compatibility (no-signalling): S(C)|cncr = S(C')|chcr-
(equiv. “flasque beneath the cover”: S(U' C U): S(U) — S(U’) surjective)

Given an empirical model S, define its R-linear theory to be

Tr(S) = |J Tr(S(C)) .

ceM

The model S is AvNg if Tg(S) is inconsistent, meaning there is no global
assignment g: X — R consistent with the eqgs:

VC. glc = Tr(S(C)).
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The maps T, M form a Galois connection:

SCM() iff T(S)DT.

Given solutions si,...,s; to a linear equation, an affine combination of them,
c1s1+ - +c¢s¢ suchthat ¢ +---+c¢ =1,
is again a solution.

In other words, the set of solutions M(I) to a system of equations I is an affine
submodule of £(U).

This means that
aff < MoT, (1)

where aff S stands for the affine closure of a set S C £(V):

t t
aff S = {Zc;s,- s,-eS,c,-eR7Zc,:1} .
i=1 i=1
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Affine Closure
The maps T, M form a Galois connection:

SCM() iff T(S)DT.

Given solutions si,...,s; to a linear equation, an affine combination of them,
c1s1+ - +c¢s¢ suchthat ¢ +---+c¢ =1,
is again a solution.

In other words, the set of solutions M(I) to a system of equations I is an affine
submodule of £(U).

This means that
aff < MoT, (1)

where aff S stands for the affine closure of a set S C £(V):

t t
aff S = {Zc;s,- s,-eS,c,-eR7Zc,:1} .
i=1 i=1

In the particular case of vector spaces (i.e. when R is a field), This is an equality.
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The affine closure of a model
We now lift affine closure to the level of models.

Let S be an empirical model on the scenario (X, M, R). We define its affine
closure, Aff S, as the empirical model given, at each C € M, by

(AFFS)(C) = aff (S(C)) .
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closure, Aff S, as the empirical model given, at each C € M, by
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Checking this is well-defined uses the naturality of affine closure, and the
property of S being flasque below the cover.
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The affine closure of a model
We now lift affine closure to the level of models.

Let S be an empirical model on the scenario (X, M, R). We define its affine
closure, Aff S, as the empirical model given, at each C € M, by

(AFFS)(C) = aff (S(C)) .

Checking this is well-defined uses the naturality of affine closure, and the
property of S being flasque below the cover.

Since Tg(S) is given as the union of the theories at each maximal context, the
Galois connection above lifts to the level of empirical models. We also have

Aff <MoT
with equality when R is a field.

Proposition
Let S be an empirical model on (X, M, R). Then,
AVN(S) = SC(AFFS).

If R is a field, the converse also holds.
20/ 49
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We now aim to show that cohomology provides witnesses for all AvN arguments
(over any ring).
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Cohomology detects all AvN arguments

We now aim to show that cohomology provides witnesses for all AvN arguments
(over any ring).

All instances of quantum realisable strong contextuality known so far are in fact of
AvN type.

We shall begin by revisiting our description of the cohomology invariant.

We give a higher-level description, in terms of the connecting homomorphism of
the long exact sequence.

Samson Abramsky (Department of Computer Science, 21/ 49
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Relative Cohomology

In order to characterise when we can extend a local section to a global compatible

family, we need to consider the relative cohomology of F with respect to an open
subset U C X.
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Relative Cohomology

In order to characterise when we can extend a local section to a global compatible
family, we need to consider the relative cohomology of F with respect to an open
subset U C X.

We will assume that the presheaf is flasque beneath the cover (as is the case with
S).
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Relative Cohomology

In order to characterise when we can extend a local section to a global compatible
family, we need to consider the relative cohomology of F with respect to an open
subset U C X.

We will assume that the presheaf is flasque beneath the cover (as is the case with
S).

We define two auxiliary presheaves related to F. Firstly, F|y is defined by
Flu(V)=FUnV).
There is an evident presheaf map p: F — F|y given as

pv: F(V) — FUNV)r— rlunv .
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Relative Cohomology

In order to characterise when we can extend a local section to a global compatible
family, we need to consider the relative cohomology of F with respect to an open
subset U C X.

We will assume that the presheaf is flasque beneath the cover (as is the case with
S).

We define two auxiliary presheaves related to F. Firstly, F|y is defined by
Flu(V)=FUnV).
There is an evident presheaf map p: F — F|y given as
pv: F(V) — FUNV)r— rlunv .

Secondly, F; is defined by F;(V) := ker (py). Thus, we have an exact sequence
of presheaves

0 Fy F—Ls 7. (2)

The relative cohomology of F with respect to U is defined to be the
cohomology of the presheaf F;.

Samson Abramsky (Department of Computer Science, 22 /49
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Towards the obstruction

We now see how this can be used to identify cohomological obstructions to the
extension of a local section.
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Towards the obstruction

We now see how this can be used to identify cohomological obstructions to the
extension of a local section.

First, recall that the image of 6°, BY(M, F), is contained in Z'(M, F).
Therefore, the map 6° can be corestricted to a map
3% COM,F) — ZHM, F)

whose kernel is 5
Z°%(M, F) = H(M, F)

and whose cokernel is

ZH M, F)/BYM,F) = H (M, F).
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Towards the obstruction

We now see how this can be used to identify cohomological obstructions to the
extension of a local section.

First, recall that the image of 6°, BY(M, F), is contained in Z'(M, F).

Therefore, the map 6° can be corestricted to a map
3% COM,F) — ZHM, F)

whose kernel is 5
Z°%(M, F) = H(M, F)

and whose cokernel is

ZY (M, F)/BYM, F) = HY (M, F).
In summary, we have:
FO(M, F) <% co(M, F) —s 28 (M, F) < i m, F)

Samson Abramsky (Department of Computer Science, 23 /49



The short exact sequences

We now lift the exact sequence of presheaves (2) to the level of cochains.
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The short exact sequences

We now lift the exact sequence of presheaves (2) to the level of cochains.

The map CO(M, F) — CO(M, Fy) is surjective due to flaccidity beneath the
cover.
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The short exact sequences

We now lift the exact sequence of presheaves (2) to the level of cochains.

The map CO(M, F) — C°(M, Fy) is surjective due to flaccidity beneath the
cover.

Putting this together with the previous observation, we obtain the diagram below:

0— C°(M, Fg) — CO(M, F) — CO(M, Fly) —=0

[

OHZI(MPFU)HZI(Ma-F)‘)Zl(M,J—'WU)

whose two rows are short exact sequences.
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Enter the Snake

The snake lemma of homological algebra says that there exists a connecting
homomorphism turning the kernels of the first row followed by the cokernels of
the second into a long exact sequence, as shown in the following diagram.

HO(M, Fgg) — HO(M, F) —— H(M, Fly)

0—— C%(M, Fy) — COM, F) —— C'(M, Fly) —=0

0—— Z'(M, Fy) —= Z}M, F) ——= Z}(M, Fly) —=0

":ll(vafj)HFll(M’f)HFll(Mv—F‘U)
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The cohomology obstruction

We are interested in the case where U is an element Cy of the cover M.
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The cohomology obstruction

We are interested in the case where U is an element Cy of the cover M.

Then, it is clear that H°(M, F|c,) is isomorphic to F(Cp), meaning that its
elements are the local sections at (.
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The cohomology obstruction

We are interested in the case where U is an element Cy of the cover M.
Then, it is clear that H°(M, F|c,) is isomorphic to F(Cp), meaning that its
elements are the local sections at (.

Definition

Let Cy be an element of the cover M and ry € F((y). Then, the cohomological

obstruction of ry is the element v(rp) of Hl(M,fCO), where v is the connecting
homomorphism.
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The cohomology obstruction

We are interested in the case where U is an element Cy of the cover M.
Then, it is clear that H°(M, F|c,) is isomorphic to F(Cp), meaning that its
elements are the local sections at (.

Definition

Let Cy be an element of the cover M andvro € F(Gp). Then, the cohomological
obstruction of ry is the element v(rp) of Hl(/\/l,]-'éo), where v is the connecting
homomorphism.

The following justifies regarding these as obstructions.
Proposition

Let the cover M be connected, Co € M, and ry € F(Cy). Then, v(r) = 0 if and
only if there is a compatible family {rc € F(C)}crq such that re, = ro.

Samson Abramsky (Department of Computer Science, 26 / 49
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Witnessing contextuality

We now apply these tools to analyse the possibilistic structure of empirical models.
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Witnessing contextuality

We now apply these tools to analyse the possibilistic structure of empirical models.

The cohomological obstructions appear to be ideally suited to the problem of
identifying contextuality.
The caveat is that, in order to apply those tools, it is necessary to work over a

presheaf of abelian groups, whereas we are concerned with S, which is merely a
presheaf of sets.
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Witnessing contextuality

We now apply these tools to analyse the possibilistic structure of empirical models.

The cohomological obstructions appear to be ideally suited to the problem of
identifying contextuality.

The caveat is that, in order to apply those tools, it is necessary to work over a

presheaf of abelian groups, whereas we are concerned with S, which is merely a
presheaf of sets.

We firstly consider how to build an abelian group from a set.
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The free module functor
Definition

Given a ring R, we define a functor Fr: Set — R-Mod to the category of
R-modules (and thus, in particular, to the category of abelian groups). For each

set X, Fr(X) is the set of functions ¢: X — R of finite support. Given a
function f: X — Y, we define:

Frf: FRX — FRY = ¢ —> Ay. Z B(x) .
f(x)=y
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The free module functor

Definition

Given a ring R, we define a functor Fr: Set — R-Mod to the category of
R-modules (and thus, in particular, to the category of abelian groups). For each
set X, Fr(X) is the set of functions ¢: X — R of finite support. Given a
function f: X — Y, we define:

Frf: FRX — FRY = ¢ —> Ay. Z B(x) .
f(x)=y

This assignment is easily seen to be functorial. We regard a function ¢ € Fr(X)
as a formal R-linear combination of elements of X:

Z(b(x)-x.

xeX
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The free module functor

Definition

Given a ring R, we define a functor Fr: Set — R-Mod to the category of
R-modules (and thus, in particular, to the category of abelian groups). For each
set X, Fr(X) is the set of functions ¢: X — R of finite support. Given a
function f: X — Y, we define:

Frf: FRX — FRY = ¢ —> Ay. Z B(x) .
f(x)=y

This assignment is easily seen to be functorial. We regard a function ¢ € Fr(X)
as a formal R-linear combination of elements of X:

Z(b(x)-x.

There is a natural embedding x — 1 - x of X into Fr(X), which we shall use
implicitly throughout.
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The free module functor

Definition

Given a ring R, we define a functor Fr: Set — R-Mod to the category of
R-modules (and thus, in particular, to the category of abelian groups). For each
set X, Fr(X) is the set of functions ¢: X — R of finite support. Given a
function f: X — Y, we define:

Frf: FRX — FRY = ¢ —> Ay. Z B(x) .
f(x)=y

This assignment is easily seen to be functorial. We regard a function ¢ € Fr(X)
as a formal R-linear combination of elements of X:

Z o(x) - x .
xeX
There is a natural embedding x — 1 - x of X into Fr(X), which we shall use

implicitly throughout.

In fact, Fr(X) is the free R-module generated by X; and in particular, Fz(X) is
the free abelian group generated by X.
VS
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Cohomological contextuality for empirical models

Given an empirical model S defined on the measurement scenario (X, M, O), we

shall work with the (relative) Cech cohomology for the abelian presheaf FrS for
some ring R.
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Cohomological contextuality for empirical models

Given an empirical model S defined on the measurement scenario (X, M, O), we
shall work with the (relative) Cech cohomology for the abelian presheaf FgS for
some ring R.

Definition
With each local section, s € S(C), in the support of an empirical model, we

associate the cohomological obstruction g, s(s).

o If there exists some local section sy € S(Cp) such that ve,s(sp) # 0, we say
that S is cohomologically logically contextual, or CLCg(S).

o If yr.s(s) # 0 for all local sections, we say that e is cohomologically
strongly contextual, or CSCg.

Samson Abramsky (Department of Computer Science, 29 / 49



Cohomological contextuality for empirical models

Given an empirical model S defined on the measurement scenario (X, M, O), we
shall work with the (relative) Cech cohomology for the abelian presheaf FgS for
some ring R.

Definition
With each local section, s € S(C), in the support of an empirical model, we

associate the cohomological obstruction g, s(s).

o If there exists some local section sy € S(Cp) such that ve,s(sp) # 0, we say
that S is cohomologically logically contextual, or CLCg(S).

o If yr.s(s) # 0 for all local sections, we say that e is cohomologically
strongly contextual, or CSCg.

The following proposition justifies considering cohomological obstructions as
witnessing contextuality.

Proposition

o CLCg implies LC.

o CSCgr implies SC.
20 / 49
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How complete is the cohomology invariant?

Thus we have a sufficient condition for contextuality in the existence of a
cohomological obstruction.
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How complete is the cohomology invariant?

Thus we have a sufficient condition for contextuality in the existence of a
cohomological obstruction.

Unfortunately, this condition is not, in general, necessary. It is possible that “false
positives” arise in the form of families {rc € FRS(C)}cer which are not bona
fide global sections in S(X) in which genuine global sections do not exist.
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How complete is the cohomology invariant?

Thus we have a sufficient condition for contextuality in the existence of a
cohomological obstruction.

Unfortunately, this condition is not, in general, necessary. It is possible that “false
positives” arise in the form of families {rc € FrRS(C)}cem which are not bona
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The chain of implications

Here is the main result:

Theorem

Let S be an empirical model on (X, M, R). Then:

AVNg(S) = SC(AFfS) = CSCr(S) = CSCz(S) = SC(S) .

Samson Abramsky (Department of Computer Science, Computational Algebraic Topology Topic B: Sheaf coh
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The chain of implications

Here is the main result:

Theorem

Let S be an empirical model on (X, M, R). Then:

AVNR(S) = SC(AffS) = CSCg(S) = CSCz(S) = SC(S) .

We have already seen the first and fourth implications. The third implication is an
instance of the following general result:

Proposition

Let h: R" — R be a ring homomorphism. Then, for any C € M and s € S(C),
YFws(s) = 0 implies yr,s(s) = 0, and so CSCr = CSCgs and CLCg = CLCg:.
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Proving the second implication

In order to prove the second implication, we use the properties of the functor
Fr: Set — R-Mod.
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In order to prove the second implication, we use the properties of the functor
Fr: Set — R-Mod.

FrX is the free R-module generated by X, i.e. the left adjoint of the forgetful
functor U: R-Mod — Set.

Set 1 R-Mod

The unit 7 of this adjunction is the obvious embedding, which we have been
using, taking an element x € X to the formal linear combination 1 - x.
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Proving the second implication

In order to prove the second implication, we use the properties of the functor
Fr: Set — R-Mod.

FrX is the free R-module generated by X, i.e. the left adjoint of the forgetful
functor U: R-Mod — Set.

Set 1 R-Mod

The unit 7 of this adjunction is the obvious embedding, which we have been
using, taking an element x € X to the formal linear combination 1 - x.

The counit is the natural transformation €: Fgr o U = Idg.mod given, for each
R-module M, by the evaluation map

em: FRUMM) — M = r— Z r(x)x .
xEM
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We are interested in taking formal linear combinations of subsets of elements.

Samson Abramsky (Department of Computer Science, Computational Algebraic Topology Topic B: Sheaf coh 33 /49



Formal linear combinations of subsets
We are interested in taking formal linear combinations of subsets of elements.

Fix a module M and a subset S C U(M).
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We are interested in taking formal linear combinations of subsets of elements.

Fix a module M and a subset S C U(M).

Then the map €y, by virtue of being an R-module homomorphism, maps the
formal linear combinations of elements of S, Fg(S), which coincide with the linear
span in FRU(M) of n[S] = {1-s|s € S}, to the linear span of S in M, spany, S.
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Formal linear combinations of subsets
We are interested in taking formal linear combinations of subsets of elements.

Fix a module M and a subset S C U(M).

Then the map €y, by virtue of being an R-module homomorphism, maps the
formal linear combinations of elements of S, Fg(S), which coincide with the linear
span in FRU(M) of n[S] = {1-s|s € S}, to the linear span of S in M, span,, S.

Moreover, it maps the formal affine combinations F3"(S) = affg,y(m) n[S] to the
affine closure affy S.

Recall that we are dealing with measurement scenarios whose outcomes are
identified with a ring R, hence where £(U) are themselves R-modules,
ie. £: P(X)°? — R-Mod.
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Formal linear combinations of subsets
We are interested in taking formal linear combinations of subsets of elements.

Fix a module M and a subset S C U(M).

Then the map €y, by virtue of being an R-module homomorphism, maps the
formal linear combinations of elements of S, Fg(S), which coincide with the linear
span in FRU(M) of n[S] = {1-s|s € S}, to the linear span of S in M, span,, S.

Moreover, it maps the formal affine combinations F3"(S) = affg,y(m) n[S] to the
affine closure affy S.

Recall that we are dealing with measurement scenarios whose outcomes are
identified with a ring R, hence where £(U) are themselves R-modules,
ie. £: P(X)°? — R-Mod.

Thus the counit can be horizontally composed to yield a natural transformation,
or map of presheaves,
ide xe: FRoUo& — &,

given at each context U C X by
€g(U) - FRUE(U) — S(U)
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Affine restriction

Now, given an empirical model S, we can apply the observation regarding subsets
of the module at each context.
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But, since aff¢(yy S(U) = (Aff S)(U) by definition for U beneath the cover, and
since containment still holds above it,
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Affine restriction

Now, given an empirical model S, we can apply the observation regarding subsets
of the module at each context.

But, since aff¢(yy S(U) = (Aff S)(U) by definition for U beneath the cover, and
since containment still holds above it,

we conclude that the presheaf map restricts as follows:

Ff%fF US>—— FRUS>—— FRUE

L

Aff §>——= SpanS§>——=¢&
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Affine restriction

Now, given an empirical model S, we can apply the observation regarding subsets
of the module at each context.

But, since affg(yy S(U) = (Aff S)(U) by definition for U beneath the cover, and
since containment still holds above it,

we conclude that the presheaf map restricts as follows:

Ff;ff US>—— FRUS>—— FRUE

L

Aff §>——= SpanS§>——=¢&

We can use this to transfer compatible families of formal affine combinations of
sections to compatible families of Aff S, and hence to prove the second
implication by contraposition.
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The chain of implications for logical contextuality

Essentially the same strategy can be used to prove an analogous result for logical
contextuality.
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The chain of implications for logical contextuality

Essentially the same strategy can be used to prove an analogous result for logical
contextuality.

The notion of inconsistent theory has to be adapted: instead of asking whether
there is a global assignment satisfying all the equations in the theory, we can ask,
given a partial assignment sy € £(Cy) whether there is such a global assignment
with the additional requirement that it restricts to sp.
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The chain of implications for logical contextuality

Essentially the same strategy can be used to prove an analogous result for logical
contextuality.

The notion of inconsistent theory has to be adapted: instead of asking whether
there is a global assignment satisfying all the equations in the theory, we can ask,
given a partial assignment sy € £(Cy) whether there is such a global assignment
with the additional requirement that it restricts to sp.

This can be seen as a generalisation of the notion of robust constraint
satisfaction studied by SA, Gottlob and Kolaitis from the complexity perspective.

We write AvNg(e, ) if the theory of S has no solution extending so.

Then we have:

AvNg(e,s0) = LC(AfFS,s) = CLCR(S,s0) = CLCz(S,5) = LC(S, ) .
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Visualizing Contextuality

The Hardy table and the PR box as bundles
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Contextuality, Logic and Paradoxes
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Contextuality, Logic and Paradoxes
Liar cycles. A Liar cycle of length N is a sequence of statements

S1: S, is true,

S, S3is true,

Sn—1: Sy is true,
Sy @ Sp is false.

For N = 1, this is the classic Liar sentence

S: Sis false.
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Contextuality, Logic and Paradoxes
Liar cycles. A Liar cycle of length N is a sequence of statements

S1: S, is true,

S, S3is true,

Sn—1: Sy is true,
Sy @ Sp is false.

For N = 1, this is the classic Liar sentence

S: Sis false.

Following Cook, Walicki, Wen et al. we can model the situation by boolean
equations:

Xl :X2a M) Xn—l :XI'H Xn:_‘Xl
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Contextuality, Logic and Paradoxes
Liar cycles. A Liar cycle of length N is a sequence of statements

S1: S, is true,

S, S3is true,

Sn—1: Sy is true,
Sy @ Sp is false.

For N = 1, this is the classic Liar sentence

S: S is false.

Following Cook, Walicki, Wen et al. we can model the situation by boolean
equations:
Xl :X2a MR ] an]. :XI'H Xn:“X].

The “paradoxical” nature of the original statements is now captured by the
inconsistency of these equations.
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Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which
occur in it:

{x,%}: x1 = x

{x2,x3}: x2 = x3

{Xn—laxn}  Xp—1= Xn

XX} X =x1
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Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which

occur in it:

{x1,%}:

{x2,x3} :

{Xn—la Xn} .

{Xn, X1} :

x1

X2

Xn—1

Xn

X2

X3

Xn

= X1

Any subset of up to n — 1 of these equations is consistent; while the whole set is

inconsistent.
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Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which
occur in it:

{x,%}: x1 = x

{x,x3}: x2 = x3

{Xn—laxn}  Xp—1= Xn
{xmXx1}: x» =-x
Any subset of up to n — 1 of these equations is consistent; while the whole set is
inconsistent.

Up to rearrangement, the Liar cycle of length 4 corresponds exactly to the
PR box.
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Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which

occur in it:

{x1, %2} :

{x2,x3} :

{Xn—1,%n} :

{Xm Xl} :

X1

X2

Xn—1

Xn

X2

X3

Xn

= X1

Any subset of up to n — 1 of these equations is consistent; while the whole set is

inconsistent.

Up to rearrangement, the Liar cycle of length 4 corresponds exactly to the

PR box.

The usual reasoning to derive a contradiction from the Liar cycle corresponds
precisely to the attempt to find a univocal path in the bundle diagram.

Samson Abramsky (Department of Computer Science,
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Paths to contradiction

Suppose that we try to set a, to 1. Following the path on the right leads to the
following local propagation of values:

32:1’\»[)1:1’\231:1’\2[)2:1’\»32:0

32:0/\/> b1:OM31=OM bQZO’\/>32:1
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Paths to contradiction

Suppose that we try to set a, to 1. Following the path on the right leads to the
following local propagation of values:

=1~ b =1~a =1~ b=1~ a=0

=0~ b=0~a;=0~ bp=0~ ap=1
We have discussed a specific case here, but the analysis can be generalised to a

large class of examples.
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The Robinson Consistency Theorem
A classic result:

Theorem (Robinson Joint Consistency Theorem)

Let T; be a theory over the language L;, i = 1,2. If there is no sentence ¢ in
Ly N Ly with Ty F ¢ and T, F —¢, then T, U T, is consistent.
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Let T; be a theory over the language L;, i = 1,2. If there is no sentence ¢ in
Ly N Ly with Ty F ¢ and T, F —¢, then T, U T, is consistent.

Thus this theorem says that two compatible theories can be glued together. In
this binary case, local consistency implies global consistency.
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Let T; be a theory over the language L;, i = 1,2. If there is no sentence ¢ in
Ly N Ly with Ty F ¢ and T, F —¢, then T, U T, is consistent.

Thus this theorem says that two compatible theories can be glued together. In
this binary case, local consistency implies global consistency.

Note, however, that an extension of the theorem beyond the binary case fails.
That is, if we have three theories which are pairwise compatible, it need not be
the case that they can be glued together consistently.
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The Robinson Consistency Theorem

A classic result:

Theorem (Robinson Joint Consistency Theorem)

Let T; be a theory over the language L;, i = 1,2. If there is no sentence ¢ in
Ly N Ly with Ty F ¢ and T, F —¢, then T, U T, is consistent.

Thus this theorem says that two compatible theories can be glued together. In
this binary case, local consistency implies global consistency.

Note, however, that an extension of the theorem beyond the binary case fails.
That is, if we have three theories which are pairwise compatible, it need not be
the case that they can be glued together consistently.

A minimal counter-example is provided at the propositional level by the following
“triangle”:

T1 = {Xl — —\Xz}, T2 = {X2 — —|X3}, T3 = {X3 — —|X1}.
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The Robinson Consistency Theorem

A classic result:

Theorem (Robinson Joint Consistency Theorem)

Let T; be a theory over the language L;, i = 1,2. If there is no sentence ¢ in
Ly N Ly with Ty F ¢ and T, F —¢, then T, U T, is consistent.

Thus this theorem says that two compatible theories can be glued together. In
this binary case, local consistency implies global consistency.

Note, however, that an extension of the theorem beyond the binary case fails.
That is, if we have three theories which are pairwise compatible, it need not be
the case that they can be glued together consistently.

A minimal counter-example is provided at the propositional level by the following
“triangle”:

T1 = {Xl — —\Xz}, T2 = {X2 — —|X3}, T3 = {X3 — —\Xl}.
This example is well-known in the quantum contextuality literature as the

Specker triangle.
40 / 49
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Relational databases

This geometric picture and the associated methods can be applied to a wide range
of situations in classical computer science.
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Relational databases

This geometric picture and the associated methods can be applied to a wide range
of situations in classical computer science.

In particular, as we shall now see, there is an isomorphism between the formal
description we have given for the quantum notions of non-locality and
contextuality, and basic definitions and concepts in relational database theory.
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Relational databases

This geometric picture and the associated methods can be applied to a wide range
of situations in classical computer science.

In particular, as we shall now see, there is an isomorphism between the formal
description we have given for the quantum notions of non-locality and
contextuality, and basic definitions and concepts in relational database theory.

Samson Abramsky, ‘Relational databases and Bell's theorem’, In In Search of
Elegance in the Theory and Practice of Computation: Essays Dedicated to Peter
Buneman, Springer 2013.
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Relational databases

This geometric picture and the associated methods can be applied to a wide range
of situations in classical computer science.

In particular, as we shall now see, there is an isomorphism between the formal
description we have given for the quantum notions of non-locality and
contextuality, and basic definitions and concepts in relational database theory.

Samson Abramsky, ‘Relational databases and Bell's theorem’, In In Search of

Elegance in the Theory and Practice of Computation: Essays Dedicated to Peter
Buneman, Springer 2013.

branch-name | account-no | customer-name | balance

Cambridge 10991-06284 | Newton £2,567.53

Hanover 10992-35671 | Leibniz €11,245.75
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From possibility models to databases

Consider again the Hardy model:

(0,0) (0,1) (1,0) (1,1)
(a1, b1) 1 1 1 1
(a,b2) | 0O 1 1 1
(a2, b1) 0 1 1 1
(a2,b2) | 1 1 1 0
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From possibility models to databases

Consider again the Hardy model:

(0,0) (0,1) (1,0) (1,1)

(31, bl) 1 1 1 1

(81, b2) 0 1 1 1

(a2, b1) 0 1 1 1

(32, b2) 1 1 1 0

Change of perspective:

a1, a2, by, by attributes
0,1 data values

joint outcomes of measurements  tuples
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The Hardy model as a relational database

The four rows of the model turn into four relation tables:

ai

by

== O | o

= O | = | O

ai | b a | by a | b
0|1 0|1 0|0
110 110 110
1|1 111 0|1

Samson Abramsky (Department of Computer Science, Computational Algebraic Topology Topic B: Sheaf coh
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The Hardy model as a relational database
The four rows of the model turn into four relation tables:

a | b
0|0
0|1
110
111

ai | b a | by a | b
0|1 0|1 0|0
110 110 110
171 111 0|1

What is the DB property corresponding to the presence of

non-locality /contextuality in the Hardy table?
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The Hardy model as a relational database
The four rows of the model turn into four relation tables:

air | by

ap | by a | by a | by
0|0

0|1 0|1 0|0
01

110 1|0 110
110

1 1 1 1 0|1
1 1

What is the DB property corresponding to the presence of
non-locality /contextuality in the Hardy table?

There is no universal relation: no table

ay|a | b | b

whose projections onto {a;, b;}, i = 1,2, yield the above four tables.

Samson Abramsky (Department of Computer Science,
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A dictionary

Relational databases

measurement scenarios

attribute

set of attributes defining a relation table
database schema

tuple

relation/set of tuples

universal relation instance

acyclicity

Samson Abramsky (Department of Computer Science,

measurement

compatible set of measurements
measurement cover

local section (joint outcome)

boolean distribution on joint outcomes
global section/hidden variable model

Vorob'ev condition
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A dictionary

Relational databases

measurement scenarios

attribute

set of attributes defining a relation table
database schema

tuple

relation/set of tuples

universal relation instance

acyclicity

measurement

compatible set of measurements
measurement cover

local section (joint outcome)

boolean distribution on joint outcomes
global section/hidden variable model

Vorob'ev condition

We can also consider probabilistic databases and other generalisations;
cf. provenance semirings.

44 / 49
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Applications to Natural Language Semantics
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Need Grothendieck topology: not just inclusions of sets of variables, but
maps allowing for relabelling.
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Example: ‘John owns a donkey. It is grey.’

s1 = {John(x), Man(x)}, s, = {donkey(y),~Man(y)}, sz = {grey(z)}}.
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Applications to Natural Language Semantics
Preliminary work with Mehrnoosh Sadrzadeh.

o A presheaf of ‘Basic DRS'.

o Need Grothendieck topology: not just inclusions of sets of variables, but
maps allowing for relabelling.

o Gluing local sections into global ones as semantic unification.
o This is used to express resolution of anaphoric references.

Example: ‘John owns a donkey. It is grey.’

s1 = {John(x), Man(x)}, s, = {donkey(y),~Man(y)}, sz = {grey(z)}}.

Note that a cover which merged x and y would not have a gluing, since the
consistency condition would be violated.

However, using the cover
fi:x—a, fh:y—b f3:z+—b
we do have a gluing:
s = {John(a), Man(a), donkey(b), ~Man(b), grey(b)}.
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Contextual Semantics
Why do such similar structures arise in such apparently different settings?

The phenomenon of contextuality is pervasive. Once we start looking for it, we
can find it everywhere!

Physics, computation, logic, natural language, ... biology, economics, ...

The Contextual semantics hypothesis: we can find common mathematical
structure in all these diverse manifestations, and develop a widely applicable
theory.

More than a hypothesis! Already extensive results in

o Quantum information and foundations: hierarchy of contextuality, logical
characterisation of Bell inequalities, classification of multipartite entangled
states, cohomological characterisation of contextuality, structural explanation
of macroscopic locality, . ..

@ And beyond: connections with databases, robust refinement of the constraint
satisfaction paradigm, application of contextual semantics to natural language
semantics, connections with team semantics in Dependence logics, ...

For an accessible overview of Contextual Semantics, see the article in the Logic in
Computer Science Column, Bulletin of EATCS No. 113, June 2014 (and arXiv).
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Adam Brandenburger, Lucien Hardy, Shane Mansfield, Rui Soares Barbosa,
Ray Lal, Mehrnoosh Sadrzadeh, Phokion Kolaitis, Georg Gottlob, Carmen
Constantin, Kohei Kishida
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Some Recent Developments

o Hardy is almost everywhere: with bipartite exceptions, an algorithm which
given an n-qubit entangled state, constructs n + 2 local observables leading
to a logically contextual model.

o Characterization of the face lattice of the No-Signalling polytope as
isomorphic to the support lattice.

o General characterisation of All-versus-Nothing arguments. The cohomology
invariant captures contextuality for all such models. Large classes of quantum
examples using stabiliser groups.
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