ALGEBRAIC TOPOLOGY MICHAELMAS 2013 QUESTION SHEET 1

 \triangle -complexes, homology of \triangle -complexes with field and integer coefficients, Euler characteristic, exact sequences.

- 1. Find \triangle -complexes homeomorphic to S^1 , S^2 , $\mathbb{R}P^2$ and the torus. For each \triangle -complex, compute its homology.
- 2. Let X be a \triangle -complex, F be a field and $C_n^{\triangle}(X;F)$ denote the vector space over F with basis the n-simplices of X. Prove that $(C_{\bullet}^{\triangle}(X;F),\partial_{\bullet})$ is a chain complex where ∂_{\bullet} is defined as in the definition of simplicial homology. Denote its homology by $H_*(X;F)$.

Compute $H_*(K; F)$ for a \triangle -complex homeomorphic to the Klein bottle and $F = \mathbb{R}, \mathbb{Q}$, or \mathbb{F}_p where p is a prime number and \mathbb{F}_p denotes the field with p elements. [Watch out for p = 2!]

What is the relation between $H_*(X;\mathbb{R})$ and $H_*(X;\mathbb{Q})$? Can you say anything about the relation between $H_*(X;\mathbb{R})$ and $H_*(X;\mathbb{Z})$?

3. The Euler characteristic $\chi(X)$ of a finite \triangle -complex X is $\Sigma_{n\geq 0}(-1)^n\beta_n$ where β_n is the number of n simplices. [Note, this generalizes the definition of the Euler characteristic for surfaces given by V-E+F.] For a simplicial complex X define the number $E_{\mathbb{R}}(X) := \Sigma_{n\geq 0}(-1)^n \dim H_n(X;\mathbb{R})$. Prove that

$$E_{\mathbb{R}}(X) = \chi(X).$$

Is the same true if \mathbb{R} is replaced by any other field?

4. For each of the following exact sequences of abelian groups and homomorphisms, say as much as you can about the unknown group G and/or the unknown homomorphism α :

(i)
$$0 \longrightarrow \mathbb{Z}_3 \longrightarrow G \longrightarrow \mathbb{Z}_2 \longrightarrow \mathbb{Z} \stackrel{\alpha}{\longrightarrow} \mathbb{Z} \longrightarrow 0$$
.

(ii)
$$0 \longrightarrow G \longrightarrow \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \longrightarrow \mathbb{Z}_2 \longrightarrow 0$$
.