ALGEBRAIC TOPOLOGY MICHAELMAS 2013 QUESTION SHEET 2

Singular homology, naturallity and homotopy invariance; extensions of abelian groups; relation between $\pi_1(X;b)$ and $H_1(X;\mathbb{Z})$ (optional).

- 1. Using simplicial and/or singular homology (which are indeed isomorphic) compute the homology of (i) $S^1 \vee S^1$; (ii) $\mathbb{R}^2 \{0\}$; (iii) the Möbius band; and (iv) $\mathbb{R}^2 \{0,1\}$.
- 2. Let $x_1, x_2, ..., x_k$ be points of a path-connected space X, and $n_1, n_2, ..., n_k$ be integers, so that $a = \sum_{i=1}^k n_i x_i \in C_0(X)$ is a singular 0-chain. Show that there exists a 1-chain b with $\partial b = a$ if and only if $\sum_{i=1}^k n_i = 0$. Deduce that $H_0(X)$ is isomorphic to \mathbb{Z} . Describe $H_0(Y)$ for arbitrary spaces Y.
- 3. An exact sequence of abelian groups $0 \longrightarrow G \stackrel{\alpha}{\longrightarrow} H \stackrel{\beta}{\longrightarrow} K \longrightarrow 0$ splits if either
 - (i) there is a homomorphism $\gamma: K \to H$ such that $\beta \circ \gamma = \mathrm{id}_K$, or
 - (ii) there is a homomorphism $\delta: H \to G$ such that $\delta \circ \alpha = \mathrm{id}_G$.

Show that in this case $H \cong G \oplus K$.

Show that if $K = \mathbb{Z}^n$, then the sequence always splits. Deduce that if $0 \to \mathbb{Z}/2\mathbb{Z} \to G \to \mathbb{Z} \to 0$ is exact, then G is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$. If $0 \to \mathbb{Z} \to G \to \mathbb{Z}/2\mathbb{Z} \to 0$ is exact, show that G does not have to be isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$.

- 4. Define $\tilde{H}_0(X)$ to be the kernel of the map induced by the canonical map from X to a point p. For a continuous map $f: X \to Y$ show that f_* restricts to a map from $\tilde{H}_0(X)$ to $\tilde{H}_0(Y)$. Proof that $H_0(X) \simeq \tilde{H}_0(X) \oplus \mathbb{Z}$.
- 5. Let $i:A. \to B$. be an inclusion of chain complexes.
 - (i) Prove that the boundary in B, induces a boundary map $B_n/A_n \to B_{n-1}/A_{n-1}$ so that the quotients B_n/A_n form again a chain complex.
 - (ii) Define the connecting homomorphism $\delta: H_n(B./A.) \to H_{n-1}(A.)$ in this context, and prove exactness of the resulting long sequence at $H_n(B.)$.
- 6. (Optional) Let γ, δ be two loops based at $x_0 \in X$ which are path-homotopic via the homotopy F. By collapsing the right-hand edge of the square domain of $F: I \times I \to X$, construct a 2-simplex $\sigma: \triangle^2 \to X$ such that $\partial \sigma = \gamma \delta + \epsilon$, where ϵ is the constant 1-simplex that maps all of \triangle^1 to the point x_0 . Deduce that there is a well-defined map $\psi: \pi_1(X, x_0) \to H_1(X)$ with $\psi([\gamma]) = [\gamma]$.