ALGEBRAIC TOPOLOGY MICHAELMAS 2013 QUESTION SHEET 5

Cell complexes, cellular homology, equivalence of homology theories, cochain complex and cohomology groups.

- 1. Express the following spaces as cell complexes and prove that, in each case, you have used the minimum number of cells: (i) $S^1 \vee S^1$; (ii) S^n ; (iii) $\mathbb{R}P^n/RP^m$ for n > m.
- 2. The Euler characteristic $\chi(X)$ of a finite cell complex X is $\Sigma_{n\geq 0}(-1)^n c_n$ where c_n is the number of n-cells. Let Y be another finite cell complex. Describe a cell structure on $X\times Y$ and hence prove that $\chi(X\times Y)=\chi(X)\chi(Y)$. Deduce that $\chi(S^1\times X)=0$ for all X. How would you prove that $\chi(X)$ is independent of the cell decomposition of X, and indeed only depends on the homotopy type of X?
- 3. In this question let H_*^{\triangle} denote simplicial and H_* denote singular homology of \triangle -complexes. Let $T: H_*^{\triangle} \to H_*$ denote the map between them induced by taking each n-simplex to its characteristic map. (i) Define relative homology for H_*^{\triangle} and derive the corresponding long exact homology sequence. (ii) For a finite \triangle -complex X, let X^k denote the union of all l-simplices for $l \leq k$. Compute the relative homology of (X^k, X^{k-1}) and deduce that T induces an isomorphism in homology for this pair. (iii) Use induction on k and the Five Lemma to prove that T induces an isomorphism on homology for X.
- 4. Let $\phi \in C^k(X)$ and $\psi \in C^l(X)$ be cochains of a space X in dimension k and l. Prove that $\partial^*(\phi \cup \psi) = \partial^*\phi \cup \psi + (-1)^k\phi \cup \partial^*\psi$.
- 5. Give an explicit singular cocycle in $C^1(S^1)$ that represents a generator for $H^1(S^1)$.