# Algebraic Topology <br> Miachaelmas 2013 <br> Question Sheet 6 

Künneth Formula, cup products, manifolds, Poincaré duality

1. Compute the homology and cohomology of $S^{2} \times \mathbb{R} P^{2}$ and $S^{1} \times F_{g}$ where $F_{g}$ is an oriented surface of genus $g$.
2. Identify $\mathbb{Z} / n \mathbb{Z} \otimes \mathbb{Z} / m \mathbb{Z}$ as a cyclic group for all $n, m \in \mathbb{N}$.
3. Consider the torus $T$ as a $\triangle$-complex with two 2 -simplices. Determine its simplicial homology and cohomology giving generators for each group. Compute the cup products in cohomology.
4. Using cup products, show that $X=S^{2} \vee S^{1} \vee S^{1}$ is not homotopic to $T$ (even though they have the same homology).
5. Let $M$ be a closed, connected, orientable manifold of dimension $n$.
(i) Show that $H_{n-1} M$ is torsion free.
(ii) Show that the rank of $H_{n-k} M$ is equal to that of $H_{k} M$.
(iii) Show that the Euler characteristic of any odd dimensional manifold is zero.
6. For a map $f: M \rightarrow N$ between connected, orientable, closed manifolds of dimension $n$ with fundamental classes $[M]$ and $[N]$, the degree of $f$ is defined to be the integer $\operatorname{deg}(f)$ such that $f_{*}([M])=\operatorname{deg}(f)[N]$. (Note the sign of the degree depends on the choice of fundamental classes.) Show that for any closed, connected, orientable manifold $M$ of dimension $n$ there is a degree $k$ map $M \rightarrow S^{n}$ for any integer $k$. Show that every map $S^{2} \rightarrow T$ has degree zero. [Hint: Use cup products.]
