ALGEBRAIC TOPOLOGY MIACHAELMAS 2013 QUESTION SHEET 6

Künneth Formula, cup products, manifolds, Poincaré duality

- 1. Compute the homology and cohomology of $S^2 \times \mathbb{R}P^2$ and $S^1 \times F_g$ where F_g is an oriented surface of genus g.
- 2. Identify $\mathbb{Z}/n\mathbb{Z} \otimes \mathbb{Z}/m\mathbb{Z}$ as a cyclic group for all $n, m \in \mathbb{N}$.
- 3. Consider the torus T as a \triangle -complex with two 2-simplices. Determine its simplicial homology and cohomology giving generators for each group. Compute the cup products in cohomology.
- 4. Using cup products, show that $X = S^2 \vee S^1 \vee S^1$ is not homotopic to T (even though they have the same homology).
- 5. Let M be a closed, connected, orientable manifold of dimension n.
 - (i) Show that $H_{n-1}M$ is torsion free.
 - (ii) Show that the rank of $H_{n-k}M$ is equal to that of H_kM .
 - (iii) Show that the Euler characteristic of any odd dimensional manifold is zero.
- 6. For a map $f: M \to N$ between connected, orientable, closed manifolds of dimension n with fundamental classes [M] and [N], the degree of f is defined to be the integer deg(f) such that $f_*([M]) = deg(f)[N]$. (Note the sign of the degree depends on the choice of fundamental classes.) Show that for any closed, connected, orientable manifold M of dimension n there is a degree k map $M \to S^n$ for any integer k. Show that every map $S^2 \to T$ has degree zero. [Hint: Use cup products.]