Background material: Finitely generated abelian groups

This term we will be working with vector spaces and abelian groups. Thinking of abelian groups as "vectors spaces over \mathbb{Z} " - correctly as "modules over \mathbb{Z} " - much of the theory of vector spaces has an analogue for abelian groups.

Let $L: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{m}$ be a group homomorphism. Then with respect to a chosen basis (i.e. a set of n respectively m generators) of \mathbb{Z}^{n} and \mathbb{Z}^{m}, L can be represented as a matrix $M=\left(m_{i j}\right)$ of integers.

An integer matrix is invertible over \mathbb{Z} if its inverse has integer entries. Changing the matrix by such an over \mathbb{Z} invertible row operation corresponds to changing the basis of \mathbb{Z}^{m}, the target; changing it by an over \mathbb{Z} invertible column operation corresponds to changing the basis of \mathbb{Z}^{n}, the source.

Theorem (Smith Normal Form). Let L be a matrix with entries in \mathbb{Z} and m rows and n columns. Then there are square matrices P and Q, invertible over \mathbb{Z}, such that

$$
P L Q=\left(\begin{array}{cccc}
d_{1} & 0 & 0 & \ldots \\
0 & d_{2} & 0 & \ldots \\
0 & 0 & d_{3} & \ldots \\
0 & 0 & 0 & \ldots
\end{array}\right) .
$$

Furthermore, this can be done such that $d_{1}\left|d_{2}, d_{2}\right| d_{3}, \ldots$.

One of the most important applications of this theorem is the classification of finitely generated abelian groups.

Theorem (Classification of f.g. abelian groups). Let M be a finitely generated abelian group. Then M is isomorphic to the direct product of cyclic groups

$$
M \simeq \mathbb{Z} / d_{1} \mathbb{Z} \oplus \mathbb{Z} / d_{2} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / d_{t} \mathbb{Z}
$$

Again, it can be arranged such that $d_{1}\left|d_{2}, d_{2}\right| d_{3}, \ldots$.
Note that if $d_{i}=1$ then the corresponding factor is zero; if $d_{i}=0$ then the corresponding factor is free, i.e. \mathbb{Z}. In particular every finitely generated abelian group can be written as

$$
M=T \oplus F
$$

where T is the subgroup of all torsion elements of M and F is free abelian, i.e. $F \simeq \mathbb{Z}^{k}$ for some k.

