
Approximation Theory

and

Approximation Practice

Lloyd N. Trefethen

With 163 figures and 210 exercises.

For Kate

Contents

1. Introduction, 1
2. Chebyshev points and interpolants, 6
3. Chebyshev polynomials and series, 12
4. Interpolants, projections, and aliasing, 24
5. Barycentric interpolation formula, 31
6. Weierstrass approximation theorem, 40
7. Convergence for differentiable functions, 46
8. Convergence for analytic functions, 53
9. Gibbs phenomenon, 62
10. Best approximation, 71
11. Hermite integral formula, 79
12. Potential theory and approximation, 86
13. Equispaced points, Runge phenomenon, 93
14. Discussion of high-order interpolation, 101
15. Lebesgue constants, 105
16. Best and near-best, 116
17. Orthogonal polynomials, 123
18. Polynomial roots and colleague matrices, 132
19. Clenshaw–Curtis and Gauss quadrature, 142
20. Carathéodory–Fejér approximation, 153
21. Spectral methods, 163
22. Linear approximation: beyond polynomials, 175
23. Nonlinear approximation: why rational functions?, 187
24. Rational best approximation, 198
25. Two famous problems, 207
26. Rational interpolation and linearized least-squares, 219
27. Padé approximation, 232
28. Analytic continuation and convergence acceleration, 247
Appendix: Six myths of polynomial interpolation and quadrature, 260
References, 270
Index, 297

1. Introduction

Welcome to a beautiful subject!—the constructive approximation of functions.
And welcome to a rather unusual book.

Approximation theory is an established field, and my aim is to teach you
some of its most important ideas and results, centered on classical topics re-
lated to polynomials and rational functions. The style of this book, however,
is quite different from what you will find elsewhere. Everything is illustrated
computationally with the help of the Chebfun software package in Matlab, from
Chebyshev interpolants to Lebesgue constants, from the Weierstrass approxi-
mation theorem to the Remez algorithm. Everything is practical and fast, so
we will routinely compute polynomial interpolants or Gauss quadrature weights
for tens of thousands of points. In fact, each chapter of this book is a single
Matlab M-file, and the book has been produced by executing these files with
the Matlab “publish” facility. The chapters come from M-files called chap1.m,
. . . , chap28.m and you can download them and use them as templates to be
modified for explorations of your own.

Beginners are welcome, and so are experts, who will find familiar topics
approached from new angles and familiar conclusions turned on their heads. In-
deed, the field of approximation theory came of age in an era of polynomials of
degrees perhaps O(10). Now that O(1000) is easy and O(1,000,000) is not hard,
different questions come to the fore. For example, we shall see that “best” ap-
proximants are hardly better than “near-best”, though they are much harder to
compute, and that, contrary to widespread misconceptions, numerical methods
based on high-order polynomials can be extremely efficient and robust.

This is a book about approximation, not Chebfun, and for the most part we

2 Approximation Theory and Approximation Practice

shall use Chebfun tools with little explanation. For information about Chebfun,
see http://www.maths.ox.ac.uk/chebfun. In the course of the book we shall
use Chebfun overloads of the following Matlab functions, among others:

CONV, CUMSUM, DIFF, INTERP1, NORM, POLY, POLYFIT, ROOTS, SPLINE

as well as additional Chebfun commands such as

CF, CHEBELLIPSEPLOT, CHEBPADE, CHEBPOLY, CHEBPTS, LEBESGUE,

LEGPOLY, LEGPTS, PADEAPPROX, RATINTERP, REMEZ.

There are quite a number of excellent books on approximation theory. Three
classics are [Cheney 1966], [Davis 1975], and [Meinardus 1967], and a slightly
more recent computationally oriented classic is [Powell 1981]. Perhaps the first
approximation theory text was [Borel 1905].

A good deal of my emphasis will be on ideas related to Chebyshev points
and polynomials, whose origins go back more than a century to mathematicians
including Chebyshev (1821–1894), de la Vallée Poussin (1866–1962), Bernstein
(1880–1968), and Jackson (1888–1946). In the computer era, some of the early
figures who developed “Chebyshev technology,” in approximately chronological
order, were Lanczos, Clenshaw, Babenko, Good, Fox, Elliott, Mason, Orszag,
and V. I. Lebedev. Books on Chebyshev polynomials have been published by
Snyder [1966], Fox and Parker [1968], Paszkowski [1975], Rivlin [1990], and Ma-
son and Handscomb [2003]. One reason we emphasize Chebyshev technology so
much is that in practice, for working with functions on intervals, these methods
are unbeatable. For example, we shall see in Chapter 16 that the difference in
approximation power between Chebyshev and “optimal” interpolation points is
utterly negligible. Another reason is that if you know the Chebyshev material
well, this is the best possible foundation for work on other approximation topics,
and for understanding the links with Fourier analysis.

My style is conversational, but that doesn’t mean the material is all ele-
mentary. The book aims to be more readable than most, and the numerical
experiments help achieve this. At the same time, theorems are stated and
proofs are given, often rather tersely, without all the details spelled out. It is
assumed that the reader is comfortable with rigorous mathematical arguments
and familiar with ideas like continuous functions on compact sets, Lipschitz con-
tinuity, contour integrals in the complex plane, and norms of operators. If you
are a student, I hope you are an advanced undergraduate or graduate who has
taken courses in numerical analysis and complex analysis. If you are a seasoned
mathematician, I hope you are also a Matlab user.

Each chapter has a collection of exercises, which span a wide range from
mathematical theory to Chebfun-based numerical experimentation. Please do
not skip the numerical exercises! If you are going to do that, you might as well
put this book aside and read one of the classics from the 1960s.

To give readers easy access to all the examples in executable form, the book
was produced using publish in LATEX mode: thus this chapter, for example,
can be generated with the Matlab command publish(’chap1’,’latex’). To

1. Introduction 3

achieve the desired layout, we begin each chapter by setting a few default pa-
rameters concerning line widths for plots, etc., which are collected in an M-file
called ATAPformats that is included with the standard distribution of Chebfun.
Most readers can ignore these details and simply apply publish to each chap-
ter. For the actual production of the printed book, publish was executed not
chapter-by-chapter but on a concatenation of all the chapters, and a few tweaks
were made to the resulting LATEX file, including removal of Matlab commands
whose effects are evident from looking at the figures, like title, axis, hold
off, and grid on.

The Lagrange interpolation formula was discovered by Waring, the Gibbs
phenomenon was discovered by Wilbraham, and the Hermite integral formula
is due to Cauchy. These are just some of the instances of Stigler’s Law in ap-
proximation theory, and in writing this book I have taken pleasure in trying to
cite the originator of each of the main ideas. Thus the entries in the References
stretch back several centuries, and each has an editorial comment attached. Of-
ten the original papers are surprisingly readable and insightful, at least if you
are comfortable with French or German, and in any case, it seems particularly
important to pay heed to original sources in a book like this that aims to reexam-
ine material that has grown too standardized in the textbooks. Another reason
for looking at original sources is that in the last few years it has become far
easier to track them down, thanks to the digitization of journals, though there
are always difficult special cases like [Wilbraham 1848], which I finally found in
an elegant leather-bound volume in the Balliol College library. No doubt I have
missed originators of certain ideas, and I would be glad to be corrected on such
points by readers. For a great deal of information about approximation theory,
including links to dozens of classic papers, see the History of Approximation
Theory web site at http://www.math.technion.ac.il/hat/.

Perhaps I may add a further personal comment. As an undergraduate and
graduate student in the late 1970s and early 1980s, one of my main interests was
approximation theory. I regarded this subject as the foundation of my wider
field of numerical analysis, but as the years passed, research in approximation
theory came to seem to me dry and academic, and I moved into other areas. Now
times have changed, computers have changed, and my perceptions have changed.
I now again regard approximation theory as exceedingly close to computing,
and in this book we shall discuss many practical numerical problems, including
interpolation, quadrature, rootfinding, analytic continuation, extrapolation of
sequences and series, and solution of differential equations.

Why is approximation theory useful? The answer goes much further than
the rather tired old fact that your computer relies on approximations to evaluate
functions like sin(x) and exp(x). For my personal answer to the question, con-
cerning polynomials and rational functions in particular, take a look at the last
three pages of Chapter 23, beginning with the quotes of Runge and Kirchberger
from the beginning of the 20th century. There are also many other fascinat-
ing and important topics of approximation theory not touched upon in this
volume, including splines, wavelets, radial basis functions, compressed sensing,
and multivariate approximations of all kinds.

4 Approximation Theory and Approximation Practice

In summary, here are some distinctive features of this book:

• The emphasis is on topics close to numerical algorithms.

• Everything is illustrated with Chebfun.

• Each chapter is a publishable M-file, available online.

• There is a bias toward theorems and methods for analytic functions, which
appear so often in applications, rather than on functions at the edge of
discontinuity with their seductive theoretical challenges.

• Original sources are cited rather than textbooks, and each item in the
bibliography is listed with an editorial comment.

At a more detailed level, virtually every chapter contains mathematical and
scholarly novelties. Examples are the use of barycentric formulas beginning in
Chapter 5, the tracing of barycentric formulas and the Hermite integral for-
mula back to Jacobi in 1825 and Cauchy in 1826, Theorem 7.1 on the size of
Chebyshev coefficients, the introduction to potential theory in Chapter 12, the
discussion in Chapter 14 of prevailing misconceptions about interpolation, the
presentation of colleague matrices for rootfinding in Chapter 18 with Jacobi ma-
trices for quadrature as a special case in Chapter 19, Theorem 19.5 showing that
Clenshaw–Curtis quadrature converges about as fast as Gauss quadrature, the
first textbook presentation of Carathódory–Fejér approximation in Chapter 20,
the explanation in Chapter 22 of why polynomials are not optimal functions
for linear approximation, the extensive discussion in Chapter 23 of the uses
of rational approximations, and the SVD-based algorithms for robust rational
interpolation and linearized least-squares fitting and Padé approximation in
Chapters 26 and 27.

All in all, we shall see that there is scarcely an idea in classical approximation
theory that cannot be illustrated in a few lines of Chebfun code, and as I first
imagined around 1975, anyone who wants to be expert at numerical computation
really does need to know this material.

Dozens of people have helped me in preparing this book. I cannot name
them all, but I would like to thank in particular Serkan Gugercin, Nick Higham,
Jörg Liesen, Ricardo Pachón, and Ivo Panayotov for reading the whole text
and making many useful suggestions, Jean-Paul Berrut for teaching me about
rational functions and barycentric formulas, Folkmar Bornemann for bringing to
light historical surprises involving Jacobi, Cauchy, and Marcel Riesz, and Volker
Mehrmann for hosting a sabbatical visit to the Technical University of Berlin in
2010 during which much of the work was done. I am grateful to Max Jensen of
the University of Durham, whose invitation to give a 50-minute talk in March
2009 sparked the whole project, and to Marlis Hochbruck and Caroline Lasser
for testing a draft of the book with their students in Karlsruhe and Munich.
Here in the Numerical Analysis Group at Oxford, Endre Süli and Andy Wathen
have been the finest colleagues one could ask for these past fifteen years, and the
remarkable Lotti Ekert makes everything run smoothly. Finally, none of this

1. Introduction 5

would have been possible without the team who have made Chebfun so powerful
and beautiful, my good friends Zachary Battles, Ásgeir Birkisson, Toby Driscoll,
Pedro Gonnet, Stefan Güttel, Nick Hale, Ricardo Pachón, Rodrigo Platte, Mark
Richardson, and Alex Townsend.

Exercise 1.1. Chebfun download. Download Chebfun from the web site at
http://www.maths.ox.ac.uk/chebfun and install it in your Matlab path as instructed
there. Execute chebtest to make sure things are working, and note the time taken.
Execute chebtest again and note how much speedup there is now that various files
have been brought into memory. Now read Chapter 1 of the online Chebfun Guide,
and look at the list of Examples.

Exercise 1.2. The publish command. Execute help publish and doc publish

in Matlab to learn the basics of how the publish command works. Then download
the files chap1.m and chap2.m from http://www.maths.ox.ac.uk/chebfun/ATAP and
publish them with publish(’chap1’,’latex’) followed by appropriate LATEX com-
mands. If you are a student taking a course for which you are expected to turn in
writeups of the exercises, I recommend that you make it your habit to produce them
with publish.

Exercise 1.3. Textbook X. Buy or borrow a copy of an approximation theory
textbook, which we shall call X ; good examples are the books of Achieser, Braess, Ch-
eney, Davis, Lorentz, Meinardus, Natanson, Powell, Rice, Rivlin, Schönhage, Timan,
and Watson listed in the References. As you work through Approximation Theory
and Approximation Practice, keep X at your side and get in the habit of comparing
treatments of each topic between ATAP and X. (a) What are the author, title, and
publication date of X ? (b) Where did/does the author work and what were/are his/her
dates? (c) Look at the first three theorems in X and write down one of them that
interests you. You do not have to write down the proof.

2. Chebyshev points and interpolants

Any interval [a, b] can be scaled to [−1, 1], so most of the time, we shall just
talk about [−1, 1].

Let n be a positive integer:

n = 16;

Consider n + 1 equally spaced angles {θj} from 0 to π:

tt = linspace(0,pi,n+1);

We can think of these as the arguments of n+1 points {zj} on the upper half of
the unit circle in the complex plane. These are the (2n)th roots of unity lying
in the closed upper half-plane:

zz = exp(1i*tt); plot(zz,'.-k')

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Equispaced points on the unit circle

2. Chebyshev points and interpolants 7

The Chebyshev points associated with the parameter n are the real parts of
these points,

xj = Re zj =
1

2
(zj + z−1

j), 0 ≤ j ≤ n : (2.1)

xx = real(zz);

Some authors use the terms Chebyshev–Lobatto points, Chebyshev extreme
points, or Chebyshev points of the second kind, but as these are the points most
often used in practical computation, we shall just say Chebyshev points.

Another way to define the Chebyshev points is in terms of the original an-
gles,

xj = cos(jπ/n), 0 ≤ j ≤ n, (2.2)

xx = cos(tt);

and the problem of polynomial interpolation in these points was considered at
least as early as [Jackson 1913]. There is also an equivalent Chebfun command
chebpts:

xx = chebpts(n+1);

Actually this result isn’t exactly equivalent, as the ordering is left-to-right rather
than right-to-left. Concerning rounding errors when these numbers are calcu-
lated numerically, see Exercise 2.3.

Let us add the Chebyshev points to the plot:

hold on, for j = 2:n, plot([xx(n+2-j) zz(j)],'k'), end

plot(xx,0*xx,'.r')

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Chebyshev points

They cluster near 1 and −1, with the average spacing as n → ∞ being given by
a density function with square root singularities at both ends (Exercise 2.2).

Let {fj}, 0 ≤ j ≤ n, be a set of numbers, which may or may not come from
sampling a function f(x) at the Chebyshev points. Then there exists a unique
polynomial p of degree n that interpolates these data, i.e., p(xj) = fj for each j.

8 Approximation Theory and Approximation Practice

When we say “of degree n,” we mean of degree less than or equal to n, and we
let Pn denote the set of all such polynomials:

Pn = {polynomials of degree at most n}. (2.3)

As we trust the reader already knows, the existence and uniqueness of polyno-
mial interpolants applies for any distinct set of interpolation points. In the case
of Chebyshev points, we call the polynomial the Chebyshev interpolant.

Polynomial interpolants through equally spaced points have terrible prop-
erties, as we shall see in Chapters 11–15. Polynomial interpolants through
Chebyshev points, however, are excellent. It is the clustering near the ends of
the interval that makes the difference, and other sets of points with similar clus-
tering, like Legendre points (Chapter 17), have similarly good behavior. The
explanation of this fact has a lot to do with potential theory, a subject we shall
introduce in Chapter 12. Specifically, what makes Chebyshev or Legendre points
effective is that each one has approximately the same average distance from the
others, as measured in the sense of the geometric mean. On the interval [−1, 1],
this average distance is about 1/2 (Exercise 2.6).

Chebfun is built on Chebyshev interpolants [Battles & Trefethen 2004]. For
example, here is a certain step function:

x = chebfun('x'); f = sign(x) - x/2; plot(f,'k')

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

A step function

By calling chebfun with a second explicit argument of 6, we can construct the
Chebyshev interpolant to f through 6 points, that is, of degree 5:

p = chebfun(f,6); hold on, plot(p,'.-')

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

Degree 5 Chebyshev interpolant

2. Chebyshev points and interpolants 9

Similarly, here is the Chebyshev interpolant of degree 25:

plot(f,'k'), p = chebfun(f,26); hold on, plot(p,'.-')

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

Degree 25 Chebyshev interpolant

Here are a more complicated function and its interpolant of degree 100:

f = sin(6*x) + sign(sin(x+exp(2*x)));

plot(f,'k'), p = chebfun(f,101); hold on, plot(p)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

Degree 100 Chebyshev interpolant

Another way to use the chebfun command is by giving it an explicit vector
of data rather than a function to sample, in which case it interprets the vector
as data for a Chebyshev interpolant of the appropriate order. Here for example
is the interpolant of degree 99 through random data values at 100 Chebyshev
points in [−1, 1]:

p = chebfun(2*rand(100,1)-1); plot(p,'-'), hold on, plot(p,'.k')

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

1.5

Chebyshev interpolant through random data

10 Approximation Theory and Approximation Practice

This experiment illustrates how robust Chebyshev interpolation is. If we had
taken a million points instead of 100, the result would not have been much
different mathematically, though it would have been harder to plot. We shall
return to this figure in Chapter 15.

For illustrations like these it is interesting to pick data with jumps or wiggles,
and Chapter 9 discusses such interpolants systematically. In applications where
polynomial interpolants are most useful, however, the data will typically be
smooth.

Summary of Chapter 2. Polynomial interpolants in equispaced points in

[−1, 1] have very poor approximation properties, but interpolants in Cheby-

shev points, which cluster near ±1, are excellent.

Exercise 2.1. Chebyshev interpolants through random data. (a) Repeat the
experiment of interpolation through random data for 10, 100, 1000, and 10000 points.
In each case use minandmax(p) to determine the minimum and maximum values of
the interpolant and measure the computer time required for this computation (e.g.
using tic and toc). You may find it helpful to increase Chebfun’s standard plotting
resolution with a command like plot(p,'numpts',10000). (b) In addition to the four
plots over [−1, 1], use plot(p,’.-’,’interval’,[0.9999 1]) to produce another plot
of the 10000-point interpolant in the interval [0.9999, 1]. How many of the 10000 grid
points fall in this interval?

Exercise 2.2. Limiting density as n → ∞. (a) Suppose x0, . . . , xn are n + 1
points equally spaced from −1 to 1. If −1 ≤ a < b ≤ 1, what fraction of the points
fall in the interval [a, b] in the limit n → ∞? Give an exact formula. (b) Give the
analogous formula for the case where x0, . . . , xn are the Chebyshev points. (c) How
does the result of (b) match the number found in [0.9999, 1] in the last exercise for
the case n = 9999? (d) Show that in the limit n → ∞, the density of the Chebyshev
points near x ∈ (−1, 1) approaches N/(π

√
1 − x2) (see equation (12.10)).

Exercise 2.3. Rounding errors in computing Chebyshev points. On a com-
puter in floating point arithmetic, the formula (2.2) for the Chebyshev points is not
so good, because it lacks the expected symmetries. (a) Write a Matlab program that
finds the smallest even value n ≥ 2 for which, on your computer as computed by this
formula, xn/2 6= 0. (You will probably find that n = 2 is the first such value.) (b) Find
the line in the code chebpts.m in which Chebfun computes Chebyshev points. What
alternative formula does it use? Explain why this formula achieves perfect symmetry
for all n in floating point arithmetic. (c) Show that this formula is mathematically
equivalent to (2.2).

Exercise 2.4. Chebyshev points of the first kind. The Chebyshev points of
the first kind, also known as Gauss–Chebyshev points, are obtained by taking the
real parts of points on the unit circle mid-way between those we have considered, i.e.
xj = cos((j+ 1

2
)π/(n+1)) for integers 0 ≤ j ≤ n. Call help chebpts and help legpts

to find out how to generate these points in Chebfun and how to generate Legendre
points for comparison (these are roots of Legendre polynomials—see Chapter 17). For
n + 1 = 100, what is the maximum difference between a Chebyshev point of the first
kind and the corresponding Legendre point? Draw a plot to illustrate as informatively
as you can how close these two sets of points are.

2. Chebyshev points and interpolants 11

Exercise 2.5. Convergence of Chebyshev interpolants. (a) Use Chebfun to
produce a plot on a log scale of ‖f − pn‖ as a function of n for f(x) = ex on [−1, 1],
where pn is the Chebyshev interpolant in Pn. Take ‖ · ‖ to be the supremum norm,
which can be computed by norm(f-p,inf). How large must n be for accuracy at the
level of machine precision? What happens if n is increased beyond this point? (b) The
same questions for f(x) = 1/(1 + 25x2). Convergence rates like these will be analyzed
in Chapters 7 and 8.

Exercise 2.6. Geometric mean distance between points. Write a code
meandistance that takes as input a vector of points x0, . . . , xn in [−1, 1] and pro-
duces a plot with xj on the horizontal axis and the geometric mean of the distances
of xj to the other points on the vertical axis. (The Matlab command prod may be
useful.) (a) What are the results for Chebyshev points with n = 5, 10, 20? (b) The
same for Legendre points (see Exercise 2.4). (c) The same for equally spaced points
from x0 = −1 to xn = 1.

Exercise 2.7. Chebyshev points scaled to the interval [a, b]. (a) Use
chebpts(10) to print the values of the Chebyshev points in [−1, 1] for n = 9. (b)
Use chebfun(@sin,10) to compute the degree 9 interpolant p(x) to sin(x) in these
points. Make a plot showing p(x) and sin(x) over the larger interval [−6, 6], and also
a semilog plot of |f(x) − p(x)| over that interval. Comment on the results. (c) Now
use chebpts(10,[0 6]) to print the values of the Chebyshev points for n = 9 scaled
to the interval [0, 6]. (d) Use chebfun(@sin,[0 6],10) to compute the degree 9 inter-
polant to sin(x) in these points, and make the same two plots as before over [−6, 6].
Comment.

3. Chebyshev polynomials and series

Throughout applied mathematics, one encounters three closely analogous canon-
ical settings associated with the names of Fourier, Laurent, and Chebyshev. In
fact, if we impose certain symmetries in the Fourier and Laurent cases, the
analogies become equivalences. The Chebyshev setting is the one of central in-
terest in this book, concerning a variable x and a function f defined on [−1, 1]:

Chebyshev: x ∈ [−1, 1], f(x) ≈
n
∑

k=0

akTk(x). (3.1)

Here Tk is the kth Chebyshev polynomial, which we shall discuss in a moment.
For the equivalent Laurent problem, let z be a variable that ranges over the unit
circle in the complex plane. Given f(x), define a transplanted function F (z)
on the unit circle by the condition F (z) = f(x), where x = (z + z−1)/2 as in
(2.1). Note that this means that there are two values of z for each value of x,
and F satisfies the symmetry property F (z) = F (z−1). The series now involves
a polynomial in both z and z−1, known as a Laurent polynomial:

Laurent: |z| = 1, F (z) = F (z−1) ≈ 1

2

n
∑

k=0

ak(zk + z−k). (3.2)

For the equivalent Fourier problem, let θ be a variable that ranges over [−π, π],
which we regard as a 2π-periodic domain. Transplant f and F to a function F
defined on [−π, π] by setting F(θ) = F (eiθ) = f(cos(θ)) as in (2.2). Now we
have a 1-to-1 correspondence z = eiθ between θ and z and a 2-to-1 correspon-
dence between θ and x, with the symmetry F(θ) = F(−θ), and the series is a

3. Chebyshev polynomials and series 13

trigonometric polynomial:

Fourier: θ ∈ [−π, π], F(θ) = F(−θ) ≈ 1

2

n
∑

k=0

ak(eikθ + e−ikθ). (3.3)

One can carry (3.1)–(3.3) further by introducing canonical systems of grid points
in the three settings. We have already seen the (n + 1)-point Chebyshev grid,

Chebyshev points: xj = cos(jπ/n), 0 ≤ j ≤ n, (3.4)

and we have interpreted these in terms of the (2n)th roots of unity:

Roots of unity: zj = eijπ/n, −n + 1 ≤ j ≤ n. (3.5)

These grids are transplants of the set of 2n equispaced points in [−π, π]:

Equispaced points: θj = jπ/n, −n + 1 ≤ j ≤ n. (3.6)

All three of these settings are unassailably important. Real analysts cannot
do without Fourier, complex analysts cannot do without Laurent, and numeri-
cal analysts cannot do without Chebyshev. Moreover, the mathematics of the
connections between the three frameworks is beautiful. But all this symmetry
presents an expository problem. Without a doubt, a fully logical treatment
should consider x, z, and θ in parallel. Each theorem should appear in three
forms. Each application should be one of a trio.

It was on this basis that I started to write a book in 2008. The symmetries
were elegant, but as the chapters accumulated, I came to realize that this would
be a very long book and not a lovable one. The excellent logic was just a dead
weight. The next year, I started again with the decision that the book would
focus on x ∈ [−1, 1]. This is the setting closest to much of approximation theory
and numerical analysis, and it has a further special feature: it is the one least
familiar to people. Nobody is surprised if you compute a Fourier transform of
a million points, but the fact that you can compute a polynomial interpolant
through a million Chebyshev points surprises people indeed.

Here then is the mathematical plan for this book. Our central interest will
be the approximation of functions f(x) on [−1, 1]. When it comes to deriving
formulas and proving theorems, however, we shall generally transplant to F (z)
on the unit circle so as to make the tools of complex analysis most conveniently
available.

Now let us turn to the definitions, already implicit in (3.1)–(3.3). The kth
Chebyshev polynomial can be defined as the real part of the function zk on the
unit circle:

x = 1
2 (z + z−1) = cos θ, θ = cos−1 x, (3.7)

Tk(x) = 1
2 (zk + z−k) = cos(kθ). (3.8)

14 Approximation Theory and Approximation Practice

(Chebyshev polynomials were introduced by Chebyshev in the 1850s, though
without the connection to the variables z and θ [Chebyshev 1854 & 1859]. The
label T was apparently chosen by Bernstein, following French transliterations
such as “Tchebischeff.”) The Chebyshev polynomials are a family of orthogonal
polynomials with respect to a certain weight function (Exercise 3.7), but we
shall use orthogonality until Chapters 17–19.

It follows from (3.8) that Tk satisfies −1 ≤ Tk(x) ≤ 1 for x ∈ [−1, 1] and
takes alternating values ±1 at the k+1 Chebyshev points. What is not obvious
is that Tk is a polynomial. We can verify this property by the computation

1
2 (z + z−1)(zk + z−k) = 1

2 (zk+1 + z−k−1) + 1
2 (zk−1 + z−k+1)

for any k ≥ 1, that is,

2xTk(x) = Tk+1(x) + Tk−1(x), (3.9)

or in other words
Tk+1(x) = 2xTk(x) − Tk−1(x). (3.10)

By induction, this three-term recurrence relation implies that for each k ≥
1, Tk is a polynomial of degree exactly k with leading coefficient 2k−1. In
Chapters 18 and 19 the coefficients of this recurrence will be taken as the entries
of a “colleague matrix,” whose eigenvalues can be computed to find roots of
polynomials or quadrature nodes.

The Chebfun command chebpoly(n) returns the chebfun corresponding to
Tn.1 Here for example are T1, . . . , T6:

for n = 1:6, T{n} = chebpoly(n); subplot(3,2,n), plot(T{n}), end

−1 −0.5 0 0.5 1
−1

0

1
T1

−1 −0.5 0 0.5 1
−1

0

1
T2

−1 −0.5 0 0.5 1
−1

0

1
T3

−1 −0.5 0 0.5 1
−1

0

1
T4

−1 −0.5 0 0.5 1
−1

0

1
T5

−1 −0.5 0 0.5 1
−1

0

1
T6

These plots do not show the Chebyshev points, which are the extremes of each
curve: thus the numbers of Chebyshev points in the six plots are 2, 3, 4, 5, 6,
and 7.

Here are the coefficients of these polynomials with respect to the monomial
basis 1, x, x2, As usual, Matlab orders coefficients from highest degree down
to degree zero.

1The name of the software system is Chebfun, with a capital C. A representation of a
particular function in Chebfun is called a chebfun, with a lower-case c.

3. Chebyshev polynomials and series 15

for n = 1:6, disp(poly(T{n})), end

1 0

2 0 -1

4 0 -3 0

8 0 -8 0 1

16 0 -20 0 5 0

32 0 -48 0 18 0 -1

So, for example,
T5(x) = 16x5 − 20x3 + 5x.

The monomial basis is familiar and comfortable, but you should never use it
for numerical work with functions on an interval. Use the Chebyshev basis
instead (Exercise 3.8). (If the domain is [a, b] rather than [−1, 1], the Chebyshev
polynomials must be scaled accordingly, and Chebfun does this automatically
when it works on other intervals.) For example, x5 has the Chebyshev expansion

x5 =
5

80
T5(x) +

5

16
T3(x) +

5

8
T1(x).

We can calculate such expansion coefficients by using the command
chebpoly(p), where p is the chebfun whose coefficients we want to know:

x = chebfun('x'); chebpoly(x.^5)

ans =

0.0625 0 0.3125 0 0.6250 0

Any polynomial p can be written uniquely like this as a finite Chebyshev series:
the functions T0(x), T1(x), . . . , Tn(x) form a basis for Pn. Since p is determined
by its values at Chebyshev points, it follows that there is a one-to-one linear
mapping between values at Chebyshev points and Chebyshev expansion coeffi-
cients. This mapping can be applied in O(n log n) operations with the aid of the
Fast Fourier Transform (FFT) or the Fast Cosine Transform, a crucial observa-
tion for practical work that was perhaps first made by Ahmed and Fisher and
Orzsag around 1970 [Ahmed & Fisher 1970, Orszag 1971a and 1971b, Gentle-
man 1972b, Geddes 1978]. This is what Chebfun does every time it constructs
a chebfun. We shall not give details of the FFT.

Just as a polynomial p has a finite Chebyshev series, a more general function
f has an infinite Chebyshev series. Exactly what kind of “more general func-
tion” can we allow? For an example like f(x) = ex with a rapidly converging
Taylor series, everything will surely be straightforward, but what if f is merely
differentiable rather than analytic? Or what if it is continuous but not differ-
entiable? Analysts have studied such cases carefully, identifying exactly what
degrees of smoothness correspond to what kinds of convergence of Chebyshev
series. We shall not concern ourselves with trying to state the sharpest possible
result but will just make a particular assumption that covers most applications.

16 Approximation Theory and Approximation Practice

We shall assume that f is Lipschitz continuous on [−1, 1]. Recall that this
means that there is a constant C such that |f(x) − f(y)| ≤ C|x − y| for all
x, y ∈ [−1, 1]. Recall also that a series is absolutely convergent if it remains con-
vergent when each term is replaced by its absolute value, and that this implies
that one can reorder the terms arbitrarily without changing the result. Such
matters are discussed in analysis textbooks such as [Rudin 1976].

Here is our basic theorem about Chebyshev series and their coefficients.

Theorem 3.1. Chebyshev series. If f is Lipschitz continuous on [−1, 1],
it has a unique representation as a Chebyshev series,

f(x) =

∞
∑

k=0

akTk(x), (3.11)

which is absolutely and uniformly convergent, and the coefficients are given for
k ≥ 1 by the formula

ak =
2

π

∫ 1

−1

f(x)Tk(x)√
1 − x2

dx, (3.12)

and for k = 0 by the same formula with the factor 2/π changed to 1/π.

Proof. Equation (3.12) will come from the Cauchy integral formula, and
to make this happen, we begin by transplanting f to F on the unit circle as
described above: F (z) = F (z−1) = f(x) with x = (z + z−1)/2. To convert
between integrals in x and z, we have to convert between dx and dz:

dx = 1
2 (1 − z−2) dz = 1

2z−1(z − z−1) dz.

Since
1
2 (z − z−1) = iIm z = ±i

√

1 − x2,

this implies

dx = ±iz−1
√

1 − x2 dz.

In these equations the plus sign applies for Im z ≥ 0 and the minus sign for
Im z ≤ 0.

These formulas have implications for smoothness. Since
√

1 − x2 ≤ 1 for all
x ∈ [−1, 1], they imply that if f(x) is Lipschitz continuous, then so is F (z). By
a standard result in Fourier analysis, this implies that F has a unique repre-
sentation as an absolutely and uniformly convergent Laurent series on the unit
circle,

F (z) =
1

2

∞
∑

k=0

ak(zk + z−k) =

∞
∑

k=0

akTk(x).

Recall that a Laurent series is an infinite series in both positive and negative
powers of z, and that if F is analytic, such a series converges in the interior of
an annulus. A good treatment of Laurent series for analytic functions can be
found in [Markushevich 1985]; see also other complex variables texts such as
[Hille 1973, Priestley 2003, Saff & Snider 2003].

3. Chebyshev polynomials and series 17

The kth Laurent coefficient of a Lipschitz continuous function G(z) =
∑∞

k=−∞ bkzk on the unit circle can be computed by the Cauchy integral formula,

bk =
1

2πi

∫

|z|=1

z−1−kG(z) dz.

(We shall make more substantial use of the Cauchy integral formula in Chapters
8 and 11–12.) The notation |z| = 1 indicates that the contour consists of the
unit circle traversed once in the positive (counterclockwise) direction. Here we
have a function F with the special symmetry property F (z) = F (z−1), and we
have also introduced a factor 1/2 in front of the series. Accordingly, we can
compute the coefficients ak from either of two contour integrals,

ak =
1

πi

∫

|z|=1

z−1+kF (z) dz =
1

πi

∫

|z|=1

z−1−kF (z) dz, (3.13)

with πi replaced by 2πi for k = 0.
In particular, we can get a formula for ak that is symmetric in k and −k by

combining the two integrals like this:

ak =
1

2πi

∫

|z|=1

(z−1+k + z−1−k)F (z) dz =
1

πi

∫

|z|=1

z−1 Tk(x)F (z) dz, (3.14)

with πi replaced by 2πi for k = 0. Replacing F (z) by f(x) and z−1dz by
−i dx/(±

√
1 − x2) gives

ak = − 1

π

∫

|z|=1

f(x)Tk(x)

±
√

1 − x2
dx,

with π replaced by 2π for k = 0. We have now almost entirely converted to the x
variable, except that the contour of integration is still the circle |z| = 1. When z
traverses the circle all the way around in the positive direction, x decreases from
1 to −1 and then increases back to 1 again. At the turning point z = x = −1,
the ± sign attached to the square root switches from + to −. Thus instead
of cancelling, the two traverses of x ∈ [−1, 1] contribute equal halves to ak.
Converting to a single integration from −1 to 1 in the x variable multiplies the
integral by −1/2, hence multiplies the formula for ak by −2, giving (3.12).

We now know that any function f , so long as it is Lipschitz continous, has
a Chebyshev series. Chebfun represents a function as a finite series of some
degree n, storing both its values at Chebyshev points and also, equivalently,
their Chebyshev coefficients. How does it figure out the right value of n? Given
a set of n + 1 samples, it converts the data to a Chebyshev expansion of degree
n and examines the resulting Chebyshev coefficients. If several of these in a row
fall below a relative level of approximately 10−15, then the grid is judged to be
fine enough. For example, here are the Chebyshev coefficients of the chebfun
corresponding to ex:

18 Approximation Theory and Approximation Practice

f = exp(x); a = chebpoly(f); a(end:-1:1)'

ans =

1.266065877752008

1.130318207984970

0.271495339534077

0.044336849848664

0.005474240442094

0.000542926311914

0.000044977322954

0.000003198436462

0.000000199212481

0.000000011036772

0.000000000550590

0.000000000024980

0.000000000001039

0.000000000000040

0.000000000000001

Notice that the last coefficient is about at the level of machine precision.
For complicated functions it is often more interesting to plot the coefficients

than to list them. For example, here is a function with a number of wiggles:

f = sin(6*x) + sin(60*exp(x)); plot(f)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2
A function with wiggles

If we plot the absolute values of the Chebyshev coefficients, here is what we
find:

a = chebpoly(f); semilogy(abs(a(end:-1:1)),'m')

0 20 40 60 80 100 120 140 160
10

−15

10
−10

10
−5

10
0

Absolute values of Chebyshev coefficients

3. Chebyshev polynomials and series 19

One can explain this plot as follows. Up to degree about k = 80, a Chebyshev
series cannot resolve f much at all, for the oscillations occur on too short wave-
lengths. After that, the series begins to converge rapidly. By the time we reach
k = 150, the accuracy is about 15 digits, and the computed Chebyshev series is
truncated there. We can find out exactly where the truncation took place with
the command length(f):

length(f)

ans = 151

This tells us that the chebfun is a polynomial interpolant through 151 points,
that is, of degree 150.

Without giving all the engineering details, here is a fuller description of how
Chebfun constructs its approximation. First it calculates the polynomial inter-
polant through the function sampled at 9 Chebyshev points, i.e., a polynomial
of degree 8, and checks whether the Chebyshev coefficients appear to be small
enough. For the example just given, the answer is no. Then it tries 17 points,
then 33, then 65, and so on. In this case Chebfun judges at 257 points that
the Chebyshev coefficients have fallen to the level of rounding error. At this
point it truncates the tail of terms deemed to be negligible, leaving a series of
151 terms (Exercise 3.13). The corresponding degree 150 polynomial is then
evaluated at 151 Chebyshev points via FFT, and these 151 numbers become
the data defining this particular chebfun. Engineers would say that the signal
has been downsampled from 257 points to 151.

For another example we consider a function with two spikes:

f = 1./(1+1000*(x+.5).^2) + 1./sqrt(1+1000*(x-.5).^2); plot(f)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
A function with two spikes

Here are the Chebyshev coefficients of the chebfun. This time, instead of
chebpoly and semilogy, we execute the special command chebpolyplot, which
has the same effect.

chebpolyplot(f,'m')

20 Approximation Theory and Approximation Practice

0 100 200 300 400 500 600 700 800 900 1000
10

−20

10
−15

10
−10

10
−5

10
0

Absolute values of Chebyshev coefficients

Note that although it is far less wiggly, this function needs six times as many
points to resolve as the previous one (Exercise 3.13). We shall explain these
polynomial degrees in Chapter 8.

Chebyshev interpolants are effective for complex functions (still defined on
a real interval) as well as real ones. Here, for example, is a complex function
that happens to be periodic, though the Chebyshev representation does not take
advantage of this fact.

f = (3+sin(10*pi*x)+sin(61*exp(.8*sin(pi*x)+.7))).*exp(1i*pi*x);

A plot shows the image of [−1, 1] under f , which appears complicated:

plot(f,'color',[0 .8 0])

Yet the degree of the polynomial is not so high:

length(f)

ans = 617

3. Chebyshev polynomials and series 21

People often ask, is there anything special about Chebyshev points and
Chebyshev polynomials? Could we equally well interpolate in other points and
expand in other sets of polynomials? From an approximation point of view, the
answer is yes, and in particular, Legendre points and Legendre polynomials have
much the same power for representing a general function f , as we shall see in
Chapters 17–19. Legendre points and polynomials are neither much better than
Chebyshev for approximating functions, nor much worse; they are essentially
the same. One can improve upon both Legendre and Chebyshev, shrinking the
number of sample points needed to represent a given function by a factor of up
to π/2, but to do so one must leave the class of polynomials. See Chapter 22.

Nevertheless, there is a big advantage of Chebyshev over Legendre points,
and this is that one can use the FFT to go from point values to coefficients and
back again. There are algorithms that make such computations practicable for
Legendre interpolants too [Piessens 1974, Alpert & Rokhlin 1991, Dutt, Gu &
Rokhlin 1996, Potts, Steidl & Tasche 1998, Iserles 2011]—see also Theorem 19.6
of this book—but Chebyshev remains the easiest case.

Summary of Chapter 3. The Chebyshev polynomial Tk(x) is an ana-

logue for [−1, 1] of the monomial zk on the unit circle. Each Lipschitz con-

tinuous function f on [−1, 1] has an absolutely and uniformly convergent

Chebyshev series, that is, an expansion f(x) = a0T0(x) + a1T1(x) +

Exercise 3.1. Monomial and Chebyshev coefficients. Let p ∈ Pn have coeffi-
cient vectors a = (a0, a1, . . . , an)T for a Chebyshev series and b = (b0, b1, . . . , bn)T for
a series in the monomials 1, x, . . . , xn. Show that a and b are related by Aa = b, where
A is an upper-triangular matrix, whose entries you should describe precisely, though
you don’t have to give explicit formulas for them. Prove that any p ∈ Pn has uniquely
defined coefficient vectors a and b for both representations.

Exercise 3.2. A Chebyshev coefficient. Use Chebfun to determine numerically
the coefficient of T5 in the Chebyshev expansion of tan−1(x) on [−1, 1].

Exercise 3.3. Chebyshev coefficients and “rat”. (a) Use Chebfun to determine
numerically the coefficients of the Chebyshev series for 1 + x3 + x4. By inspection,
identify these rational numbers. Use the Matlab command [n,d] = rat(c) to confirm
this. (b) Use Chebfun and rat to make good guesses as to the Chebyshev coefficients
of x7/7 + x9/9. (Of course it is not hard to figure them out analytically.)

Exercise 3.4. Dependence on wave number. (a) Calculate the length L(k) of
the chebfun corresponding to f(x) = sin(kx) on [−1, 1] for k = 1, 2, 4, 8, . . . , 210. (You
can do this elegantly by defining a Matlab anonymous function f = @(k)....) Make a
loglog plot of L(k) as a function of k and comment on the result. (b) Do the same for
g(x) = 1/(1 + (kx)2).

Exercise 3.5. Chebyshev series of a complicated function. (a) Make
chebfuns of the three functions f(x) = tanh(x), g(x) = 10−5 tanh(10x), h(x) =
10−10 tanh(100x) on [−1, 1], and call chebpolyplot to show their Chebyshev coef-
ficients. Comment on the results. (b) Now define s = f + g + h and comment on the
result of chebpolyplot applied to s. Chebfun does not automatically chop the tail of

22 Approximation Theory and Approximation Practice

a Chebyshev series obtained by summation, but applying the simplify command will
do this. What happens with chebpolyplot(simplify(s))?

Exercise 3.6. Chebyshev series of sign(x) and |x| [Bernstein 1914]. Derive
the following Chebyshev series coefficients by using the first equality in (3.14). (a)
For f(x) = sign(x), ak = 0 for k even and ak = (4/π)(−1)k−1/k for k odd. (b) For
f(x) = |x|, ak = 0 for k odd, a0 = 2/π, and ak = (4/π)(−1)(k/2)/(1 − k2) for k ≥ 2
even.

Exercise 3.7. Orthogonality of Chebyshev polynomials. Equation (3.12) gives
the Chebyshev coefficient ak of f by integration of f against just the single Chebyshev
polynomial Tk. This formula implies an orthogonality property for {Tj} involving a
weighted integral. State exactly what this orthogonality property is and show carefully
how it follows from the equations of this chapter.

Exercise 3.8. Conditioning of the Chebyshev basis. Although the Chebyshev
polynomials are not orthogonal with respect to the standard unweighted inner prod-
uct, they are close enough to orthogonal to provide a well-behaved basis. Set T =

chebpoly(0:10) and explore the Chebfun “quasimatrix” that results with commands
like size(T), spy(T), plot(T), svd(T). Explain the meaning of T (you may find Chap-
ter 6 of the Chebfun Guide helpful) and determine the condition number of this basis
with cond(T). (b) Now construct the corresponding quasimatrix of monomials by ex-
ecuting x = chebfun(’x’); M = T; for j = 0:10, M(:,j+1) = x.^j; end. What is
the condition number of M? (c) Produce a plot of these two condition numbers for
quasimatrices whose columns span Pn over [−1, 1] for n = 0, 1, . . . , 10. (d) What hap-
pens to the condition numbers if M is constructed from monomials on [0, 1] rather
than [−1, 1] via x = chebfun(’x’,[0,1])?

Exercise 3.9. Derivatives at endpoints. Prove from (3.10) that the derivatives
of the Chebyshev polynomials satisfy T ′

n(1) = n2 for each n ≥ 0. (Markov’s inequality
asserts that for any p ∈ Pn, ‖p′‖ ≤ n2‖p‖, where ‖ · ‖ is the supremum norm.)

Exercise 3.10. Odd and even functions. Show that if f is an odd function on
[−1, 1], its Chebyshev coefficients of even order are zero; show similarly that if f is
even, its odd order coefficients are zero.

Exercise 3.11. A function neither even nor odd. Apply chebpolyplot to the
chebfun for f(x) = exp(x)/(1 + 10000x2). Why does the plot have the appearance of
a stripe?

Exercise 3.12. Extrema and roots of Chebyshev polynomials. Give formulas
for the extrema and roots of Tn in [−1, 1].

Exercise 3.13. Chebyshev coefficients and machine precision. By a command
like f = chebfun('exp(x)',np), one can force Chebfun to produce a chebfun of length
np (i.e., degree np−1) rather than determine the length automatically. (a) Do this for
the “function with wiggles” of this section with np = 257, and comment on how the
chebpolyplot result differs from that shown in the text. (b) Likewise for the “function
with two spikes” with np = 2049.

Exercise 3.14. Chebyshev series for a simple pole. (a) Let t be a complex
number with |t| < 1 and define F (z) = (z − t)−1 + (z−1 − t)−1. What is the Laurent
series for F ? (b) For the same t, show further that

1 + 2

∞
∑

k=1

tk Tk(x) =
1 − t2

1 − 2tx + t2
. (3.15)

(This formula can be interpreted as a generating function for the Chebyshev polyno-

3. Chebyshev polynomials and series 23

mials.) (c) Let a 6∈ [−1, 1] be a real or complex number and let t be a real or complex
number with |t| < 1 such that (t + t−1)/2 = a. Show that

1

x − a
=

2

t − t−1

[

1 + 2

∞
∑

k=1

tk Tk(x)

]

. (3.16)

Exercise 3.15. Chebyshev series of eax. It can be shown that the Chebyshev
series of eax is

eax = 2

∞
∑

k=0

′Ik(a)Tk(x), (3.17)

where Ik is the modified Bessel function of the first kind and the prime indicates that
the term k = 0 is to be multiplied by 1/2. Derive the Chebyshev series for sinh(ax)
and cosh(ax).

Exercise 3.16. Clenshaw’s algorithm. Let a polynomial p ∈ Pn be given by a
finite Chebyshev series (3.11) and let x ∈ [−1, 1] be given. Show that p(x) can be
evaluated by the following process. Set un+1 = 0 and un = an and

uk = 2xuk+1 − uk+2 + ak, k = n − 1, n − 2, . . . , 0. (3.18)

Then p(x) = 1
2
(a0 + u0 − u2).

4. Interpolants, projections, and aliasing

Suppose f(x) is a Lipschitz continuous function on [−1, 1] with Chebyshev series
coefficients {ak} as in Theorem 3.1,

f(x) =

∞
∑

k=0

akTk(x). (4.1)

One approximation to f in Pn is the polynomial obtained by interpolation in
Chebyshev points:

pn(x) =

n
∑

k=0

ckTk(x). (4.2)

Another is the polynomial obtained by truncation or projection of the series to
degree n, whose coefficients through degree n are the same as those of f itself:

fn(x) =

n
∑

k=0

akTk(x). (4.3)

The relationship of the Chebyshev coefficients of fn to those of f is obvious,
and in a moment we shall see that the Chebyshev coefficients of pn have simple
expressions too. In computational work generally, and in particular in Chebfun,
the polynomials {pn} are usually almost as good approximations to f as the
polynomials {fn}, and easier to work with, since one does not need to evaluate
the integral (3.12). The polynomials {fn}, on the other hand, are also interest-
ing. In this book, most of our computations will make use of {pn}, but many
of our theorems will treat both cases. A typical example is Theorem 8.2, which

4. Interpolants, projections, and aliasing 25

asserts that if f is analytic on [−1, 1], then both ‖f −fn‖ and ‖f −pn‖ decrease
geometrically to 0 as n → ∞.

The key to understanding {ck} is the phenomenon of aliasing, a term that
originated with radio engineers early in the 20th century. On the (n + 1) -
point Chebyshev grid, it is obvious that any function f is indistinguishable
from a polynomial of degree n. But something more is true: any Chebyshev
polynomial TN , no matter how big N is, is indistinguishable on the grid from a
single Chebyshev polynomial Tm for some m with 0 ≤ m ≤ n. We state this as
a theorem.

Theorem 4.1. Aliasing of Chebyshev polynomials. For any n ≥ 1
and 0 ≤ m ≤ n, the following Chebyshev polynomials take the same values on
the (n + 1)-point Chebyshev grid:

Tm, T2n−m, T2n+m, T4n−m, T4n+m, T6n−m,

Equivalently, for any k ≥ 0, Tk takes the same value on the grid as Tm with

m = |(k + n − 1)(mod2n) − (n − 1)|, (4.4)

a number in the range 0 ≤ m ≤ n.

Proof. Recall from (2.1) and (3.8) that Chebyshev polynomials on [−1, 1]
are related to monomials on the unit circle by Tm(x) = (zm + z−m)/2, and
Chebyshev points are related to (2n)th roots of unity by xm = (zm + z−1

m)/2.
It follows that the first assertion of the theorem is equivalent to the statement
that the following functions take the same values at the (2n)th roots of unity:

zm + z−m, z2n−m + zm−2n, z2n+m + z−2n−m,

Inspection of the exponents shows that in every case, modulo 2n, we have one
exponent equal to +m and the other to −m. The conclusion now follows from
the elementary phenomenon of aliasing of monomials on the unit circle: at the
(2n)th roots of unity, z2νn = 1 for any integer ν.

For the second assertion (4.4), suppose first that 0 ≤ k (mod2n) ≤ n. Then
n− 1 ≤ (k + n− 1)(mod2n) ≤ 2n− 1, so (4.4) reduces to m = k (mod2n), with
0 ≤ m ≤ n, and we have just shown that this implies that Tk and Tm take the
same values on the grid. On the other hand, suppose that n+1 ≤ k (mod2n) ≤
2n − 1. Then 0 ≤ (k + n − 1)(mod2n) ≤ n − 2, so the absolute value becomes
a negation and (4.4) reduces to m = −k (mod2n), with 1 ≤ m ≤ n. Again we
have just shown that this implies that Tk and Tm take the same values on the
grid.

Here is a numerical illustration of Theorem 4.1. Taking n = 4, let X be
the Chebyshev grid with n + 1 points, and let T {1}, . . . , T{10} be the first ten
Chebyshev polynomials:

n = 4; X = chebpts(n+1); for k = 1:10, T{k} = chebpoly(k); end

Then T3 and T5 are the same on the grid:

26 Approximation Theory and Approximation Practice

disp([T{3}(X) T{5}(X)])

T3 T5

-1.000000000000000 -1.000000000000000

0.707106781186548 0.707106781186547

0 0

-0.707106781186548 -0.707106781186547

1.000000000000000 1.000000000000000

So are T1, T7, and T9:

disp([T{1}(X) T{7}(X) T{9}(X)])

T1 T7 T9

-1.000000000000000 -1.000000000000000 -1.000000000000000

-0.707106781186547 -0.707106781186548 -0.707106781186547

0 0 0

0.707106781186547 0.707106781186548 0.707106781186547

1.000000000000000 1.000000000000000 1.000000000000000

As a corollary of Theorem 4.1, we can now derive the connection between
{ak} and {ck}. The following result can be found in [Clenshaw & Curtis 1960].

Theorem 4.2. Aliasing formula for Chebyshev coefficients. Let f be
Lipschitz continuous on [−1, 1], and let pn be its Chebyshev interpolant in Pn,
n ≥ 1. Let {ak} and {ck} be the Chebyshev coefficients of f and pn, respectively.
Then

c0 = a0 + a2n + a4n + · · · , (4.5)

cn = an + a3n + a5n + · · · , (4.6)

and for 1 ≤ k ≤ n − 1,

ck = ak + (ak+2n + ak+4n + · · ·) + (a−k+2n + a−k+4n + · · ·). (4.7)

Proof. By Theorem 3.1, f has a unique Chebyshev series (3.11), and it
converges absolutely. Thus we can rearrange the terms of the series without
affecting convergence, and in particular, each of the three series expansions
written above converges since they correspond to the Chebyshev series (3.11)
evaluated at x = 1. So the formulas (4.5)–(4.7) do indeed define certain numbers
c0, . . . , cn. Taking these numbers as coefficients multiplied by the correspond-
ing Chebyshev polynomials T0, . . . , Tn gives us a polynomial of degree n. By
Theorem 4.1, this polynomial takes the same values as f at each point of the
Chebyshev grid. Thus it is the unique interpolant pn ∈ Pn.

We can summarize Theorem 4.2 as follows. On the (n + 1)-point grid, any
function f is indistinguishable from a polynomial of degree n. In particular, the
Chebyshev series of the polynomial interpolant to f is obtained by reassigning

4. Interpolants, projections, and aliasing 27

all the Chebyshev coefficients in the infinite series for f to their aliases of degrees
0 through n.

As a corollary, Theorems 4.1 and 4.2 give us absolutely convergent series for
f − fn and f − pn, which we shall exploit in Chapters 7 and 8:

f(x) − fn(x) =

∞
∑

k=n+1

akTk(x), (4.8)

f(x) − pn(x) =

∞
∑

k=n+1

ak(Tk(x) − Tm(x)), (4.9)

where m = m(k, n) is given by (4.4).
To illustrate Theorem 4.2, here is the function f(x) = tanh(4x − 1) (solid)

and its degree 4 Chebyshev interpolant p4(x) (dashed):

x = chebfun('x'); f = tanh(4*x-1); n = 4;

pn = chebfun(f,n+1); plot(f), hold on, plot(pn,'.--r')

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

A function f and its degree 4 interpolant p
4

The first 5 Chebyshev coefficients of f ,

a = chebpoly(f); a = a(end:-1:1)'; a(1:n+1)

ans =

-0.166584582703135

1.193005991160944

0.278438064117869

-0.239362401056012

-0.176961398392888

are different from the Chebyshev coefficients of pn,

c = chebpoly(pn); c = c(end:-1:1)'

c =

-0.203351068209675

1.187719968517890

0.379583465333916

-0.190237989543227

-0.178659622412173

28 Approximation Theory and Approximation Practice

As asserted in (4.5) and (4.6), the coefficients c0 and cn are given by sums of
coefficients ak with a stride of 2n:

c0 = sum(a(1:2*n:end)), cn = sum(a(n+1:2*n:end))

c0 = -0.203351068209675

cn = -0.178659622412174

And as asserted in (4.7), the coefficients c1 through cn−1 involve two sums of
this kind:

for k = 1:n-1

ck = sum(a(1+k:2*n:end)) + sum(a(1-k+2*n:2*n:end))

end

ck = 1.187719968517889

ck = 0.379583465333916

ck = -0.190237989543227

Following up on the last figure, how does the truncated series fn compare
with the interpolant pn as an approximation to f? Chebfun includes a ’trunc’

option for computing fn, which we now add to the plot as a dot-dash line:

fn = chebfun(f,'trunc',n+1); plot(fn,'-.g')

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

Function f, interpolant p
4
, projected approximant f

4

Here are the errors f − fn and f − pn:

subplot(1,2,1), plot(f-fn,'g'), subplot(1,2,2), plot(f-pn,'r')

−1 −0.5 0 0.5 1

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Error in projection f−f
4

−1 −0.5 0 0.5 1

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Error in interpolant f−p
4

4. Interpolants, projections, and aliasing 29

Here is the analogous plot with n = 4 increased to 24:

n = 24; pn = chebfun(f,n+1); fn = chebfun(f,'trunc',n+1);

subplot(1,2,1), plot(f-fn,'g'), subplot(1,2,2), plot(f-pn,'r')

−1 −0.5 0 0.5 1
−5

0

5
x 10

−4 Error in projection f−f
24

−1 −0.5 0 0.5 1
−5

0

5
x 10

−4 Error in interpolant f−p
24

On the basis of plots like these, one might speculate that fn may often be a
better approximation than pn, but that the difference is small. This is indeed
the case, as we shall confirm in Theorems 7.2 and 8.2, both of which suggest a
difference of a factor of 2, and Theorem 16.1, which suggests a factor of π/2.

Let us review where we stand. We have considered Chebyshev interpolants
(Chapter 2) and Chebyshev expansions (Chapter 3) for a Lipschitz continuous
function f(x) defined on [−1, 1]. Mathematically speaking, each coefficient of a
Chebyshev expansion is equal to the value of the integral (3.12). This formula,
however, is not needed for effective polynomial approximation, since Chebyshev
interpolants are nearly as accurate as projections. Chebfun readily computes
Chebyshev coefficients of polynomial interpolants, and this is done not by eval-
uating the integral but by taking the FFT of the sample values in Chebyshev
points. If the degree of the interpolant is high enough that the polynomial
matches f to machine precision, then the Chebyshev coefficients will usually
match too.

Summary of Chapter 4. Two excellent methods of approximating a

function f on [−1, 1] by a polynomial are truncation of its Chebyshev se-

ries, also known as projection, and interpolation in Chebyshev points. The

Chebyshev interpolant is the polynomial obtained by reassigning contribu-

tions of degree > n in the Chebyshev series to their aliases of degree ≤n.

The two approximations are typically within a factor of 2 of each other in

accuracy.

Exercise 4.1. Node polynomial for Chebyshev points. Show using Theorem
4.1 that p(x) = 2−n(Tn+1(x)−Tn−1(x)) is the unique monic polynomial in Pn+1 with
zeros at the n + 1 Chebyshev points (2.2).

Exercise 4.2. Examples of aliasing. (a) On the (n + 1)-point Chebyshev grid
with n = 20, which Chebyshev polynomials Tk take the same values as T5? (b) Use
Chebfun to draw plots illustrating some of these intersections.

30 Approximation Theory and Approximation Practice

Exercise 4.3. Aliasing in roots of unity. For each n ≥ 0, let pn ∈ Pn be the
degree n polynomial interpolant to the function f(z) = z−1 at the (n + 1)st roots of
unity on the unit circle in the z-plane. Use the aliasing observation of the proof of
Theorem 4.1 to prove that in the closed unit disk of complex numbers z with |z| ≤ 1,
there is one and only one value z for which pn converges to f as n → ∞. (This example
comes from [Méray 1884].)

Exercise 4.4. Fooling the Chebfun constructor. (a) Construct the Mat-
lab anonymous function f = @(M) chebfun(@(x) 1+exp(-(M*(x-0.4)).^4)) and plot
f(10) and f(100). This function has a narrow spike of width proportional to 1/M .
Confirm this by comparing sum(f(10)) and sum(f(100)). (b) Plot length(f(M)) as
a function of M for M = 1, 2, 3, . . . , going into the region where the length becomes 1.
What do you think is happening? (c) Let Mmax be the largest integer for which the con-
structor behaves normally and execute semilogy(f(Mmax)-1,’interval’,[.3 .5]).
Superimpose on this plot information to show the locations of the points returned by
chebpts(9), which is the default initial grid on which Chebfun samples a function.
Explain how this result fits with (b). (d) Now for np taking values 17, 33, 65, 129,
execute chebfunpref(’minsamples’,np) and length(f(np)), and plot the Chebyshev
points on your semilog plot of (c). The minsamples flag forces Chebfun to sample the
function at the indicated number of points. How do these results match your observa-
tions of (b) and (c)? When you’re done, be sure to return Chebfun to its default state
with chebfunpref(’factory’).

Exercise 4.5. Relative precision. Try Exercise 4.4 again but without the “1+” in
the definition of f. The value of Mmax will be different, and the reason has to do with
Chebfun’s aim of constructing each function to about 15 digits of relative precision,
not absolute. Can you figure out what is happening and explain it quantitatively?

Exercise 4.6. Chebfun computation of truncations. In the text we computed
Chebyshev truncations of f(x) = tanh(4x − 1) using the ’trunc’ flag in the Chebfun
constructor. Another method is to compute all the Chebyshev coefficients of f and
then truncate the series. Compute f4 by this method and verify that the results agree
to machine precision.

Exercise 4.7. When projection equals interpolation. Sometimes the projection
fn and the interpolant pn are identical, even though both differ from f . Characterize
exactly when this occurs, and give an example with n = 3.

5. Barycentric interpolation formula

How does one evaluate a Chebyshev interpolant? One good approach, involving
O(n log n) work for a single point evaluation, is to compute Chebyshev coeffi-
cients and use the Chebyshev series. However, there is a direct method requiring
just O(n) work, not based on the series expansion, that is both elegant and nu-
merically stable. It also has the advantage of generalizing to sets of points other
than Chebyshev. It is called the barycentric interpolation formula, introduced
by Salzer [1972], with an earlier closely related formula due to Marcel Riesz
[1916]. The more general barycentric formula for arbitrary interpolation points,
of which Salzer’s formula is an exceptionally simple special case, was developed
earlier by Dupuy [1948], with origins at least as early as Jacobi [1825]. Tay-
lor [1945] introduced the barycentric formula for equispaced grid points. For a
survey of barycentric formulas, see [Berrut & Trefethen 2004].

The study of polynomial interpolation goes back a long time; the word “in-
terpolation” may be due to Wallis in 1656 (see [Pearson 1920] for an early
account of some of the history.) In particular, Newton addressed the topic and
devised a method based on divided differences. Many textbooks claim that it
is important to use Newton’s formulation for reasons of numerical stability, but
this is not true, and we shall not discuss Newton’s approach here.

Instead, the barycentric formula is of the alternative Lagrange form, where
the interpolant is written as a linear combination of Lagrange or cardinal or
fundamental polynomials:

p(x) =
n
∑

j=0

fj `j(x). (5.1)

32 Approximation Theory and Approximation Practice

Here we have a set of distinct interpolation points x0, . . . , xn, which could be real
or complex, and `j(x), the jth Lagrange polynomial, is the unique polynomial
in Pn that takes the value 1 at xj and 0 at the other points xk:

`j(xk) =

{

1 k = j,
0 k 6= j.

(5.2)

For example, here is a plot of `5 on the equispaced 7-point grid (i.e., n = 6):

d = domain(-1,1); s = linspace(-1,1,7); y = [0 0 0 0 0 1 0];

p = interp1(s,y,d); plot(p), hold on, plot(s,p(s),'.k')

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

Lagrange polynomial l
5
 on 7−point equispaced grid

It is easy to write down an explicit expression for `j :

`j(x) =

∏

k 6=j(x − xk)
∏

k 6=j(xj − xk)
. (5.3)

Since the denominator is a constant, this function is a polynomial of degree n
with zeros at the right places, and clearly it takes the value 1 when x = xj .
Equation (5.3) is very well known and can be found in many textbooks as a
standard representation for Lagrange interpolants. Lagrange worked with (5.1)
and (5.3) in 1795 [Lagrange 1795], and his name is firmly attached to these
ideas,2 but the same formulas were published earlier by Waring [1779] and Euler
[1783], who had been Lagrange’s predecessor at the Berlin Academy.

Computationally speaking, (5.1) is excellent but (5.3) is not so good. It
requires O(n) operations to evaluate `j(x) for each value of x, and then O(n)
such evaluations must be added up in (5.1), giving a total operation count of
O(n2) for evaluating p(x) at a single value of x.

By a little rearrangement we can improve the operation count. The key
observation is that for the various values of j, the numerators in (5.3) are the
same except that they are missing different factors x − xj . To take advantage
of this commonality, we define the node polynomial ` ∈ Pn+1 for the given grid
by

`(x) =
n
∏

k=0

(x − xk). (5.4)

2Perhaps Cauchy did some of the attaching, since he wrote in his Cours d’analyse, “Cette
formule, donnée pour la première fois par Lagrange, . . .” [Cauchy 1821].

5. Barycentric interpolation formula 33

Then (5.3) becomes the elementary but extremely important identity

`j(x) =
`(x)

`′(xj)(x − xj)
. (5.5)

(We shall use this equation to derive the Hermite integral formula in Chapter
11.) Equivalently, let us define

λj =
1

∏

k 6=j(xj − xk)
, (5.6)

that is,

λj =
1

`′(xj)
. (5.7)

Then (5.3) becomes

`j(x) = `(x)
λj

x − xj
, (5.8)

and the Lagrange formula (5.1) becomes

p(x) = `(x)

n
∑

j=0

λj

x − xj
fj . (5.9)

These formulas were derived by Jacobi in his PhD thesis in Berlin [Jacobi 1825],
and they appeared in 19th century textbooks.3

Equation (5.9) has been called the “modified Lagrange formula” (by Higham)
and the “first form of the barycentric interpolation formula” or the “type 1
barycentric formula” (starting with Rutishauser). What is valuable here is
that the dependence on x inside the sum is so simple. If the weights {λj} are
known, (5.9) produces each value p(x) with just O(n) operations. Computing
the weights from (5.6) requires O(n2) operations, but this computation only
needs to be done once and for all, independently of x ; and for special grids
{xj} such as Chebyshev, as we shall see in a moment, the weights are known
analytically and don’t need to be computed at all. (For Legendre and other
grids associated with orthogonal polynomials, the necessary computations can
be carried out very fast; see Exercise 5.11 and Theorem 19.6.)

However, there is another barycentric formula that is more elegant. If we
add up all the Lagrange polynomials `j, we get a polynomial in Pn that takes
the value 1 at every point of the grid. Since polynomial interpolants are unique,
this must be the constant polynomial 1:

n
∑

j=0

`j(x) = 1.

3I am grateful to Folkmar Bornemann for drawing this history to my attention.

34 Approximation Theory and Approximation Practice

Dividing (5.8) by this expression enables us to cancel the factor `(x), giving

`j(x) =
λj

x − xj

/

n
∑

k=0

λk

x − xk
. (5.10)

By inserting these representations in (5.1), we get the “second form of the
barycentric interpolation formula” or “true barycentric formula” for polynomial
interpolation in an arbitrary set of n + 1 points {xj}.

Theorem 5.1. Barycentric interpolation formula. The polynomial
interpolant through data {fj} at n + 1 points {xj} is given by

p(x) =

n
∑

j=0

λjfj

x − xj

/

n
∑

j=0

λj

x − xj
, (5.11)

with the special case p(x) = fj if x = xj for some j, where the weights {λj} are
defined by

λj =
1

∏

k 6=j(xj − xk)
. (5.12)

Proof. Given in the discussion above.

It is obvious that the function defined by (5.11) interpolates the data. As
x approaches one of the values xj , one term in the numerator blows up and so
does one term in the denominator. Their ratio is fj , so this is clearly the value
approached as x approaches xj . On the other hand if x is equal to xj , we can’t
use the formula: that would be a division of ∞ by ∞. This is why the theorem
is stated with the qualification for the special case x = xj .

What is not obvious is that the function defined by (5.11) is a polynomial,
let alone a polynomial of degree n: it looks like a rational function. The fact
that it is a polynomial depends on the special values (5.12) of the weights. For
choices of nonzero weights that differ from (5.12), (5.11) will still interpolate
the data, but in general it will be a rational function that is not a polynomial.
These rational barycentric interpolants can be very useful in some applications,
and they are likely to get more attention in the future [Berrut, Baltensperger
& Mittelmann 2005, Tee & Trefethen 2006, Floater & Hormann 2007, Berrut,
Floater & Klein 2011].

Chebfun’s overload of the Matlab interp1 command, which was illustrated
at the beginning of this chapter, incorporates an implementation of (5.11)–
(5.12). We shall make use of interp1 again in Exercise 5.7 and in Chapters 13
and 15. Now, however, let us turn to the special case that is so important in
practice.

For Chebyshev points, the weights {λj} are wonderfully simple: they are
equal to (−1)j times the constant 2n−1/n, or half this value for j = 0 and n.
These numbers were worked out by Marcel Riesz in 1916 [Riesz 1916]. The
constant cancels in the numerator and denominator when we divide by the

5. Barycentric interpolation formula 35

formula for 1 in (5.11), giving Salzer’s amazingly simple result from 1972 [Salzer
1972]:

Theorem 5.2. Barycentric interpolation in Chebyshev points. The
polynomial interpolant through data {fj} at the Chebyshev points (2.2) is

p(x) =
n
∑

j=0

′ (−1)jfj

x − xj

/

n
∑

j=0

′ (−1)j

x − xj
, (5.13)

with the special case p(x) = fj if x = xj . The primes on the summation signs
signify that the terms j = 0 and j = n are multiplied by 1/2.

Equation (5.13) is scale-invariant: for interpolation in Chebyshev points
scaled to any interval [a, b], the formula is exactly the same. This is a big
advantage on the computer when n is in the thousands or higher, because it
means that we need not worry about underflow or overflow.

Proof. Equation (5.13) is a special case of (5.11). To prove it, we will
show that for Chebyshev points, the weights (5.12) reduce to (−1)j times the
constant 2n−1/n, and half this value for j = 0 or n. To do this, we begin by
noting that for Chebyshev points, the node polynomial (5.4) can be written as
`(x) = 2−n(Tn+1(x)−Tn−1(x)) (Exercise 4.1). Together with (5.8), this implies

`j(x) = 2−n λj
Tn+1(x) − Tn−1(x)

x − xj
,

and from (5.7) we have

λj =
1

`′(xj)
=

2n

T ′
n+1(xj) − T ′

n−1(xj)
.

Now it can be shown that

T ′
n+1(xj) − T ′

n−1(xj) = 2n(−1)j, 1 ≤ j ≤ n − 1,

with twice this value for j = 0 and n (Exercise 5.3). So we have

λj =
2n−1

n
(−1)j , 1 ≤ j ≤ n − 1, (5.14)

with half this value for j = 0 and n, as claimed.

The formula (5.13) is extraordinarily effective, even if n is in the thousands
or millions, even if p must be evaluated at thousands or millions of points. As
a first example, let us construct a rather wiggly chebfun:

x = chebfun('x');

f = tanh(20*sin(12*x)) + .02*exp(3*x).*sin(300*x); length(f)

ans = 5158

36 Approximation Theory and Approximation Practice

We now plot f using 10000 sample points and note the time required:

tic, plot(f,'numpts',10000), toc

Elapsed time is 0.871149 seconds.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
A rather wiggly function

In this short time, Chebfun has evaluated a polynomial interpolant of degree
about 5000 at 10000 sample points.

Raising the degree further, let p be the Chebyshev interpolant of degree 106

to the function sin(105x) on [−1, 1]:

ff = @(x) sin(1e5*x); p = chebfun(ff,1000001);

How long does it take to evaluate this interpolant at 100 points?

xx = linspace(0,0.0001); tic, pp = p(xx); toc

Elapsed time is 1.224548 seconds.

Not bad for a million-degree polynomial! The result looks fine,

plot(xx,pp,'.')

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−4

−1

−0.5

0

0.5

1
A polynomial of degree 106 evaluated at 100 points

and it matches the target function closely:

5. Barycentric interpolation formula 37

for j = 1:5, r = rand; disp([ff(r) p(r) ff(r)-p(r)]), end

0.705930356624765 0.705930356617951 0.000000000006814

-0.931512002954607 -0.931512002958003 0.000000000003395

0.583585101736752 0.583585101743138 -0.000000000006386

-0.851482366899905 -0.851482366903565 0.000000000003660

0.988082673530624 0.988082673532397 -0.000000000001773

The apparent loss of 4 or 5 digits of accuracy is to be expected since the deriva-
tive of this function is of order 105: each evaluation is the correct result for a
value of x within about 10−16 of the correct one (Exercise 5.5).

Experiments like these show that barycentric interpolation in Chebyshev
points is a robust process: it is numerically stable, untroubled by rounding
errors on a computer. This may seem surprising if you look at (5.9) or (5.13)—
shouldn’t cancellation errors on a computer cause trouble if x is close to one of
the Chebyshev points xj? In fact they do not, and these formulas have been
proved stable in floating point arithmetic for all x ∈ [−1, 1] [Rack & Reimer
1982, Higham 2004]. This is in marked contrast to the more familiar algorithm
of polynomial interpolation via solution of a Vandermonde linear system of
equations, which is exponentially unstable (Exercise 5.2).

We must emphasize that whereas (5.13) is stable for interpolation, it is un-
stable for extrapolation, that is, the evaluation of p(x) for x 6∈ [−1, 1]. The more
general formula (5.11) is unstable for extrapolation too and is unstable even for
interpolation when used with arbitrary points rather than points suitably clus-
tered like Chebyshev points. In these cases it is important to use the “type
1” barycentric formula (5.9) instead, which Higham proved stable in all cases.
The disadvantage of (5.9) is that when n is larger than about a thousand, it
is susceptible to troubles of underflow or overflow, which must be countered by
rescaling [−1, 1] to [−2, 2] or by computing products by addition of logarithms.

More precisely, Higham [2004] showed that when they are used to evaluate
p(x) for x ∈ [−1, 1] with data at Chebyshev points, both (5.9) and (5.11)–(5.13)
have a certain property that numerical analysts call forward stability. If you
want to evaluate p(x) for values of x outside [−1, 1], however, (5.11)–(5.13) lose
their stability and it is important to use (5.9), which has the stronger prop-
erty known as backward stability [Webb, Trefethen & Gonnet 2011]. It is also
important to use (5.9) rather than (5.11) for computing interpolants through eq-
uispaced points or other point sets that are far from the Chebyshev distribution.
(As we shall discuss in Chapters 13–14, in these cases the problem is probably
so ill-conditioned that one should not be doing polynomial interpolation in the
first place.)

These observations show that (5.9) has advantages over (5.11) and (5.13), but
it also has an important disadvantage: it is not scale-invariant, and the weights
grow exponentially as functions of the inverse of the length of the interval of
interpolation. We see this in (5.14), where the weights have size 2n, and would
in fact overflow on a computer in standard IEEE double precision arithmetic for
n bigger than about 1000. (Higham’s analysis ignores overflow and underflow.)

38 Approximation Theory and Approximation Practice

We shall have more to say about this exponential dependence in Chapters 11–
15. So (5.11) and (5.13) remain a good choice for most applications, so long as
the interpolation points are Chebyshev or similar and the evaluation points lie
in [−1, 1].

Summary of Chapter 5. Polynomial interpolants can be evaluated fast

and stably by the barycentric formula, even for thousands or millions of

interpolation points. The barycentric formula has the form of a rational

function, but reduces to a polynomial because of the use of specially deter-

mined weights.

Exercise 5.1. Barycentric coefficients by hand. (a) Work out on paper the
barycentric interpolation coefficients {λj} for the case n = 3 and x0 = −1, x1 = 0,
x2 = 1/2, x3 = 1. (b) Confirm that (5.9) gives the right value p(−1/2) for the
polynomial interpolant to data 1, 2, 3, 4 in these points.

Exercise 5.2. Instability of Vandermonde interpolation. The best-known
numerical algorithm for polynomial interpolation, unlike the barycentric formula, is
unstable. This is the method implemented in the Matlab polyfit command, which
forms a Vandermonde matrix of sampled powers of x and solves a corresponding linear
system of equations. (In [Trefethen 2000], to my embarrassment, this unstable method
is used throughout, forcing the values of n used for plots in that book to be kept
small.) (a) Explore this instability by comparing a Chebfun evaluation of p(0) with
the result of polyval(polyfit(xx,f(xx),n),0) where f = @(x) cos(k*x) for k =
10, 20, . . . , 90, 100, n is the degree of the corresponding chebfun, and xx is a fine grid.
(b) Examining the Matlab polyfit code as appropriate, construct the Vandermonde
matrices V for each of these ten problems and compute their condition numbers. (You
can also use the Matlab vander command.) By contrast, the underlying Chebyshev
interpolation problem is well-conditioned.

Exercise 5.3. Calculating derivatives for the proof of Theorem 5.2. Derive
the following identities used in the proof of Theorem 5.2. (a) For 1 ≤ j ≤ n − 1,
T ′

n+1(xj) − T ′

n−1(xj) = 2n(−1)j . (b) For j = 0 and j = n, T ′

n+1(xj) − T ′

n−1(xj) =
4n(−1)j . One can derive this formula directly, or indirectly by a symmetry argument.

Exercise 5.4. Interpolating the sign function. Use x = chebfun(’x’), f =

sign(x) to construct the sign function on [−1, 1] and p = chebfun(’sign(x)’,10000)

to construct its interpolant in 10000 Chebyshev points. Explore the difference in the
interesting region by defining d = f-p, d = d{-0.002,0.002}. What is the maximum
value of p? In what subset of [−1, 1] is p smaller than 0.5 in absolute value?

Exercise 5.5. Accuracy of point evaluations. (a) Construct the chebfun g corre-
sponding to f(x) = sin(exp(10x)) on [−1, 1]. What is the degree of this polynomial?
(b) Let xx be the vector of 1000 linearly spaced points from −1 to 1. How long does it
take on your computer to evaluate f(xx)? g(xx)? (c) Draw a loglog plot of the vector
of errors |f(xx) − g(xx)| against the vector of derivatives |f ′(xx)|. Comment on why
the dots line up as they do.

Exercise 5.6. Equispaced points. Show that for equispaced points in [−1, 1] with
spacing h, the barycentric weights are λj = (−1)n−j/(j!(n− j)!hn), or after canceling
common factors, λj = (−1)j

(

n
j

)

[Taylor 1945].

Exercise 5.7. A greedy algorithm for choosing interpolation grids. Write
a program using Chebfun’s interp1 command to compute a sequence of polynomial

5. Barycentric interpolation formula 39

interpolants to a function f on [−1, 1] in points selected by a greedy algorithm: take
x0 to be a point where |f(x)| achieves its maximum, then x1 to be a point where
|(f − p0)(x)| achieves its maximum, then x2 to be a point where |(f − p1)(x)| achieves
its maximum, and so on. Plot the error curves (f − pn)(x), x ∈ [−1, 1] computed by
this algorithm for f(x) = |x| and 0 ≤ n ≤ 25. Comment on the spacing of the grid
{x0, . . . , x25}.
Exercise 5.8. Barycentric formula for Chebyshev polynomials. Derive an
elegant formula for Tn(x) from (5.13) [Salzer 1972].

Exercise 5.9. Barycentric interpolation in roots of unity. Derive the barycen-
tric weights {λj} for polynomial interpolation in (a) {±1}, (b) {1, i,−1,−i}, (c) The
(n + 1)st roots of unity for arbitrary n ≥ 0.

Exercise 5.10. Barycentric weights for a general interval. (a) How does the
formula (5.14) for Chebyshev barycentric weights on [−1, 1] change for weights on an
interval [a, b]? (b) The capacity of [a, b] (see Chapter 12) is equal to c = (b − a)/4.
How do the barycentric weights behave as n → ∞ for an interval of capacity c? As
a function of c, what is the maximal value of n for which they can be represented in
IEEE double precision arithmetic without overflow or underflow? (You may assume the
overflow and underflow limits are 10308 and 10−308 . The overflow/underflow problem
goes away with the use of the divided form (5.13).)

Exercise 5.11. Barycentric interpolation in Legendre points. Chebfun in-
cludes fast algorithms for computing barycentric weights for various distributions
of points other than Chebyshev, such as Legendre points, the zeros of Legendre
polynomials (see Chapter 17 and Theorem 19.6). Perform a numerical experi-
ment to compare the accuracy of interpolants in Chebyshev and Legendre points to
f(x) = ex sin(300x) at x = 0.99. Specifically, compute [s,w,lambda] = legpts(n+1)

and bary(0.99,f(s),s,lambda) for 1 ≤ n ≤ 500 and make a semilog plot of the ab-
solute value of the error as a function of n; compare this with the analogous plot for
Chebyshev points.

Exercise 5.12. Barycentric rational interpolation. (a) If the formula (5.13) is
used with points {xj} other than Chebyshev with maximum spacing h, it produces a
rational interpolant of accuracy O(h2) as h → 0 [Berrut 1988]. Confirm this numer-
ically for f(x) = ex and equispaced points in [−1, 1]. (b) Show numerically that the
accuracy improves to O(h3) if the pattern of coefficients near the left end is changed
from 1

2
,−1, 1,−1, . . . to 1

4
,− 3

4
, 1,−1, . . . and analogously at the right end [Floater &

Hormann 2007].

Exercise 5.13. Barycentric weights and geometric mean distances. (a) Give
an interpretation of (5.6) in terms of geometric mean distances between grid points.
(b) Explain how one of the theorems of this chapter explains the result of Exercise
2.6.

6. Weierstrass approximation theorem

Every continuous function on a bounded interval can be approximated to arbi-
trary accuracy by polynomials. This is the famous Weierstrass approximation
theorem, proved by Karl Weierstrass when he was 70 years old [Weierstrass
1885]. The theorem was independently discovered at about the same time,
in essence, by Carl Runge: as pointed out in 1886 by Phragmén in remarks
published as a footnote stretching over four pages in a paper by Mittag-Leffler
[1900], it can be derived as a corollary of results Runge published in a pair of
papers in 1885 [Runge 1885a & 1885b].

Here and throughout this book, unless indicated otherwise, ‖ · ‖ denotes the
supremum norm on [−1, 1].

Theorem 6.1. Weierstrass approximation theorem. Let f be a con-
tinuous function on [−1, 1], and let ε > 0 be arbitrary. Then there exists a
polynomial p such that

‖f − p‖ < ε.

Outline of proof. We shall not spell out an argument in detail. However,
here is an outline of the beautiful proof from Weierstrass’s original paper. First,
extend f(x) to a continuous function f̃ with compact support on the whole
real line. Now, take f̃ as initial data at t = 0 for the diffusion equation
∂u/∂t = ∂2u/∂x2 on the real line. It is known that by convolving f̃ with

the Gaussian kernel φ(x) = e−x2/4t/
√

4πt, we get a solution to this partial dif-
ferential equation that converges uniformly to f as t → 0, and thus can be
made arbitrarily close to f on [−1, 1] by taking t small enough. On the other
hand, since f̃ has compact support, for each t > 0 this solution is an integral

6. Weierstrass approximation theorem 41

over a bounded interval of entire functions and is thus itself an entire function,
that is, analytic throughout the complex plane. Therefore it has a uniformly
convergent Taylor series on [−1, 1], which can be truncated to give polynomial
approximations of arbitrary accuracy.

For a fuller presentation of the argument just given as “one of the most
amusing applications of the Gaussian kernel,” where the result is stated for the
more general case of a function of several variables approximated by multivariate
polynomials, see [Folland 1995].

Many other proofs of the Weierstrass theorem are also known, including
these early ones:

Runge (1885)
Picard (1891)
Lerch (1892 and 1903)
Volterra (1897)
Lebesgue (1898)
Mittag-Leffler (1900)
Fejér (1900 and 1916)
Landau (1908)
de la Vallée Poussin (1908)
Jackson (1911)
Sierpinski (1911)
Bernstein (1912)
Montel (1918)

For example, Bernstein’s proof is a discrete analogue of the argument just
given: continuous diffusion is replaced by a random walk made precise by the
notion of Bernstein polynomials (Exercise 6.4) [Bernstein 1912D]. Lebesgue’s
proof, which appeared in his first paper published as a student at age 23, is
based on reducing the approximation of general continuous functions to the ap-
proximation of |x| (Exercise 6.5) [Lebesgue 1898]. Fejér was an even younger
student, age 20, when he published his proof based on Cesàro means (Exer-
cise 6.6a) [Fejér 1900], and he published a different proof years later based on
Hermite–Fejér interpolation (Exercise 6.6b) [Fejér 1916]. This long list gives an
idea of the great amount of mathematics stimulated by Weierstrass’s theorem
and the significant role it played in the development of analysis in the early 20th
century. For a fascinating presentation of this corner of mathematical history,
see [Pinkus 2000].

Weierstrass’s theorem establishes that even extremely non-smooth func-
tions can be approximated by polynomials, functions like x sin(x−1) or even
sin(x−1) sin(1/ sin(x−1)). The latter function has an infinite number of points
near which it oscillates infinitely often, as we begin to see from the plot below
over the range [0.07, 0.4]. In this calculation Chebfun is called with a user-
prescribed number of interpolation points, 30,000, since the usual adaptive pro-
cedure has no chance of resolving the function to machine precision.

f = chebfun(@(x) sin(1./x).*sin(1./sin(1./x)),[.07 .4],30000);

42 Approximation Theory and Approximation Practice

plot(f)

0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
A continuous function that is far from smooth

We can illustrate the idea of Weierstrass’s proof by showing the convolution of
this complicated function with a Gaussian. First, here is the same function f
recomputed over a subinterval extending from one of its zeros to another:

a = 0.2885554757; b = 0.3549060246;

f2 = chebfun(@(x) sin(1./x).*sin(1./sin(1./x)),[a,b],2000);

plot(f2)

0.29 0.3 0.31 0.32 0.33 0.34 0.35
−0.3

−0.2

−0.1

0

0.1

0.2
Close−up

Here is a narrow Gaussian with integral 1.

t = 1e-7;

phi = chebfun(@(x) exp(-x.^2/(4*t))/sqrt(4*pi*t),.003*[-1 1]);

plot(phi)

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
0

200

400

600

800

1000
A narrow Gaussian kernel

Convolving the two gives a smoothed version of the close-up of f . Notice how
the short wavelengths vanish while the long ones are nearly undisturbed.

6. Weierstrass approximation theorem 43

f3 = conv(f2,phi); plot(f3)

0.29 0.3 0.31 0.32 0.33 0.34 0.35
−0.3

−0.2

−0.1

0

0.1

0.2
Convolution of the two

This is an entire function, which means it can be approximated by polynomials
by truncating the Taylor series.

Weierstrass’s theorem has an important generalization to complex analytic
functions. Suppose a function f is defined on a compact set K in the complex
plane whose complement is connected (so K cannot have any holes). Mergelyan’s
theorem asserts that if f is continuous on K and analytic in the interior, then f
can be approximated on K by polynomials [Mergelyan 1951, Gaier 1987]. The
earlier Runge’s theorem is the weaker result in which f is asumed to be analytic
throughout K, not just in the interior [Runge 1885a].

For all its beauty, power, and importance, the Weierstrass approximation
theorem has in some respects served as an unfortunate distraction. Knowing
that even troublesome functions can be approximated by polynomials, we nat-
urally ask, how can we do it? A famous result of Faber and Bernstein asserts
that there is no fixed array of grids of 1, 2, 3, . . . interpolation points, Cheby-
shev or otherwise, that achieves convergence as n → ∞ for all continuous f
[Faber 1914, Bernstein 1919]. So it becomes tempting to look at approximation
methods that go beyond interpolation, and to warn people that interpolation is
dangerous, and to try to characterize exactly what minimal properties of f suf-
fice to ensure that interpolation will work after all. A great deal is known about
these subjects. The trouble with this line of research is that for almost all the
functions encountered in practice, Chebyshev interpolation works beautifully!
Weierstrass’s theorem has encouraged mathematicians over the years to give too
much of their attention to pathological functions at the edge of discontinuity,
leading to the bizarre and unfortunate situation where many books on numeri-
cal analysis caution their readers that interpolation may fail without mentioning
that for functions with a little bit of smoothness, it succeeds outstandingly. For
a discussion of the history of such misrepresentations and misconceptions, see
Chapter 14 and also the appendix on “Six myths of polynomial interpolation
and quadrature.”

Summary of Chapter 6. A continuous function on a bounded interval

can be approximated arbitrarily closely by polynomials.

Exercise 6.1. A pathological function of Weierstrass. Weierstrass was one of
the first to give an example of a function continuous but nowhere differentiable on

44 Approximation Theory and Approximation Practice

[−1, 1], and it is one of the early examples of a fractal [Weierstrass 1872]:

w(x) =

∞
∑

k=0

2−k cos(3kx). (6.1)

(a) Construct a chebfun w7 corresponding to this series truncated at k = 7. Plot w7,
its derivative (use diff), and its indefinite integral (cumsum). What is the degree of
the polynomial defining this chebfun? (b) Prove that w is continuous. (You can use
the Weierstrass M-test.)

Exercise 6.2. Taylor series of an entire function. To illustrate the proof of the
Weierstrass approximation theorem, we plotted a Gaussian kernel. The key point of
the proof is that this kernel is entire, so its Taylor series converges for all x. (a) For
x = 1 at the given time t = 10−7, how many terms of the Taylor series about x = 0
would you have to take before the terms fall below 1? Estimate the answer at least to
within a factor of 2. You may find Stirling’s formula helpful. (b) Also for x = 1 and
t = 10−7, approximately how big is the biggest term in the Taylor series?

Exercise 6.3. Resolving a difficult function. Although the example func-
tion f(x) = sin(1/x) sin(1/ sin(1/x)) of this chapter is not Lipschitz continuous, its
Chebyshev interpolants do in fact converge. Explore this phenomenon numerically by
computing the degree n Chebyshev interpolant to f over the interval [0.07, 0.4] for
n +1 = 4, 8, 16, . . . , 214 and measuring the error in each case over a Chebyshev grid of
2n points. Plot the results on a loglog scale. How do you think the error depends on
n as n → ∞? Approximately how large would n have to be to get 16-digit accuracy
for this function over this interval?

Exercise 6.4. Bernstein’s proof. For f ∈ C([0, 1]), the associated degree n Bern-
stein polynomial is defined by

Bn(x) =

n
∑

k=0

f(k/n)

(

n

k

)

xk(1 − x)n−k. (6.2)

Bernstein proved the Weierstrass approximation theorem by showing that Bn(x) →
f(x) uniformly as n → ∞. (a) Give an interpretation of Bn(x) involving a random walk
driven by a coin which comes up heads with probability x and tails with probability
1 − x. (b) Show that max Bn(x) ≤ max f(x) and min Bn(x) ≥ min f(x) for x ∈ [0, 1].

Exercise 6.5. Lebesgue’s proof. (a) Show using uniform continuity that any f ∈
C([−1, 1]) can be approximated uniformly by a polygonal curve, i.e., a function g(x)
that is piecewise linear and continuous. (b) Show that such a function can be written
in the form g(x) = A + Bx +

∑m

k=1
Ck|x − xk|. (c) Show that |x| can be uniformly

approximated by polynomials on [−1, 1] by truncating the binomial expansion

[1 − (1 − x2)]1/2 =

∞
∑

k=0

(

1
2

n

)

(x2 − 1)n.

You may use without proof the fact that these binomial coefficients are of size O(n−3/2)
as n → ∞. (d) Explain how (a)–(c) combine to give a proof of the Weierstrass
approximation theorem.

Exercise 6.6. Fejér’s proofs. (a) In 1900 Fejér proved the Weierstrass approxima-
tion theorem via Cesàro means. In the Chebyshev case, define Sn to be the mean of
the partial sums of the Chebyshev series (3.11)–(3.12) of orders 0 through n. Then

6. Weierstrass approximation theorem 45

it can be shown that Sn → f uniformly as n → ∞ for any f ∈ C([−1, 1]). Explore
such approximations for f(x) = ex with various degrees n. For this very smooth func-
tion f , how does the accuracy compare with that of ordinary Chebyshev interpolants?
(b) In 1916 Fejér proved the theorem again by considering what are now known as
Hermite–Fejér interpolants: he showed that if p2n ∈ P2n is obtained by interpolating
f ∈ C([−1, 1]) in the zeros of Tn(x) and also setting p′(x) = 0 at these points, then
p2n → f uniformly as n → ∞. Explore such interpolants numerically for various n by
using interp1 to construct polynomials p2n with p2n(xj) = p2n(xj +10−6) = exp(xj).
Again how does the accuracy compare with that of ordinary Chebyshev interpolants?

Exercise 6.7. Convergent series of polynomials. (a) Show that any f ∈
C([−1, 1]) can be written as a uniformly convergent series

f(x) =

∞
∑

k=0

qk(x),

where each qk is a polynomial of some degree. (b) Show that a series of the same kind
also exists for a function continuous on the whole real line, with pointwise convergence
for all x and uniform convergence on any bounded subset.

