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36 FEATURES

Notes of a Numerical Analyst

From Dice to Adjoints

NICK TREFETHEN FRS

David Acheson has a wonderful puzzle involving a
dice rolling along a track [1]. When it gets to the end,
what number will be on top?

If you try to solve this in your head, it will drive you
crazy. It’s just too complicated. Eventually you’ll give
up and look in the kitchen drawer to see if you’ve
got an old dice hanging around to help you out. But
then Acheson reveals his elegant trick. Just run the
problem backwards!

Imagine starting from the end, with the grey face on
top, and tracking the position of that face step by
step backwards to the start position. This is easy in
your head. At the start, the grey face is facing to the
left, opposite the single dot. So it must be the face
with 6 dots.

The trick of running it backwards turns out to be at
the heart of many things. What makes this problem
hard in forward mode is that there are 24 states of
the dice — 6 possible numbers on top, 4 rotations.
What makes it easy in reverse mode is that we don’t
care about the rotations, just the position of the grey
face. Actually, you could solve it forward via easy
6-state simulations: but you’d have to do six of them,
not just one. One forward simulation tells you where
the 3-face ends up, another where the 2-face ends
up, and so on. After six runs (or three, exploiting

symmetry), you’ll have solved the problem. But that’s
nowhere near as slick as one run in reverse.

For an analogy from linear algebra, think of the 6×24
matrix y resulting from a product of a sequence of
24 × 24 matrices A1, . . . ,An �nally times a 6 × 24
matrix x :

If you work from right to left multiplying the matrices
in the usual order of composition, it’s a sequence of
big square matrix products, but if you start from the
vector x and work from left to right, all the products
are small rectangular ones.

Rolling dice is not a major problem of computational
science, but the computation of derivatives is. The
same switch from forward to reverse mode is what
made the technique of Automatic Di�erentiation take
o� late in the last century [3]. More recently the idea
has grown even more conspicuous in the technique of
backpropagation for training neural networks. These
are all ideas related to the distinction between an
operator and its adjoint [2].
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