
Predictions for Scienti�c ComputingFifty Years From NowLloyd N. TrefethenOxford University Computing LaboratoryLNT@comlab.ox.ac.ukThis essay is adapted from a talk given June 17, 1998 at the conference \NumericalAnalysis and Computers|50 Years of Progress" held at the University of Manchester incommemoration of the 50th anniversary of the Mark 1 computer.Fifty years is a long, long time in any technological �eld. In our own �eld of scienti�ccomputing or numerical analysis, think back to 1950. Around the world, numericalproblems in 1950 were solved with slide rules and on paper, or with mechanical calculatorsthat had little in common with today's computers. Some of the algorithms we use todaywere in existence then, but on the whole, the last �fty years have changed numericalcomputing beyond recognition. The next �fty will do it again.My remarks consist of twelve predictions. I did not aim for these to orbit around aunifying theme, but that is nevertheless what happened.1. We may not be here.In the 20th century, everything technological seems to be changing exponentially.This raises a problem. Exponentials do not go on for ever; something happens to them.Now in my opinion, many of the exponentials we are sitting on have not yet started tolevel o�. Here at the beginning of the third millennium, biology is just beginning itsgreat explosion, and although electronics got a head start of a few decades, it is hardlyslowing down yet.The presence of exponentials all around us overshadows any attempt to predictthe future. I feel I must dwell for a moment on one of the shadows, one that hasnothing speci�cally to do with computing. In my opinion, our position on an exponentialtrajectory is evidence that technological civilisations do not last very long. I do not claimthat our civilisation must end within �fty years, or �ve hundred, but I do believe thereis reason to doubt it can survive for, say, ten thousand years.My reasoning has nothing to do with any particular cataclysm that may befall us,such as environmental catastrophe or exhaustion of resources or asteroid impact or bio-logical or nuclear war. The argument is more abstract, and it goes like this. The indus-trial explosion on earth began just two or three hundred years ago. Now if technologicalcivilisations can last tens of thousands of years, how do you explain the extraordinarycoincidence that you were born in the �rst few generations of this one? | in the very �rstcentury of radio, television, light bulbs, telephones, phonographs, lasers, refrigerators,1



automobiles, airplanes, spacecraft, computers, nuclear power, nuclear weapons, plastics,antibiotics, and genetic engineering?I believe that the explanation of our special position in history may be that it is notso special after all, because history tends not to last very long. This argument has beencalled the Copernican Principle by J. R. Gott of Princeton University.There is a second line of evidence, sometimes known as Fermi's paradox, that alsosuggests that technological civilisations are short-lived. The human race is not an outpostof a galactic society; it is a domestic product. How can we explain this if technologicalcivilisations last tens of thousands of years? An ages-old technological civilisation willexpand across its galaxy, simply because it can. (Don't ask why, for expanding is what lifedoes. If one species doesn't, another will replace it.) Yet in 100,000 years of expandingat one hundredth the speed of light, a civilisation can spread one thousand light years,a distance encompassing millions of stars. Is it plausible that technological civilisationsare so rare as to arise on only one star among millions?I believe that the explanation of the emptiness out there may be that technologicalcivilisations perish before they start to spread across their galaxy|or that they startspreading, then perish in a cataclysm so great as to take the galaxy with them.Suddenly the problem of predicting �fty years of scienti�c computing begins to lookeasy! Let's get down to it.2. We'll talk to computers more often than type to them, and they'll respond with picturesmore often than numbers.A big change in the last twenty years has been the arrival of graphical interfaces.When I was a graduate student at Stanford around 1980, we played with some Alto ma-chines donated by Xerox, early workstations featuring windows, icons, mice and pointers,but I thought these were party tricks, too gimmicky to catch on. Today the descendantsof the Altos have driven other machines to extinction. It takes no special insight topredict that soon, an equally great change will occur as we take to interacting with com-puters by speech. It has been a long time coming, but this transformation is now aroundthe corner.It is good fun to imagine what computer graphics will be like in �fty years. I hardlydare, except to note that three-dimensional virtual reality will be as ordinary as Velcro.Curiously, though the development of speech and graphics will make our numericalwork ever more human in feel, less obviously numerical, the underlying computationswill continue to be based on numbers represented digitally to many digits of precision.The digital idea is what makes everything possible, and it is not going to go away. Thisis one sense in which the scientists and engineers of the future will be further removedfrom the details of computing than we are, just as we are further removed than were ourparents.3. Numerical computing will be adaptive, iterative, exploratory, intelligent|and thecomputational power will be beyond your wildest dreams.Adaptive numerical computing is one of the glories of the computer age. Gauss2



quadrature was invented two centuries ago, but adaptive quadrature didn't arrive untilthe 1960s. Adaptive ODE solvers came soon after, and turned the solution of most ordi-nary di�erential equations into the use of a black box. Partial di�erential equations arenot yet boxed in black, but the trend is in that direction. As time goes by, adaptivitymanaged by the computer's intelligence becomes more and more widespread. Computersare not as wise as people, but they can explore a forest of possibilities faster than wecan. In �fty years, this is how most numerical problems will be solved. We will tell themachine what we want, and the machine, an intelligent control system sitting atop anencyclopaedia of numerical methods, will juggle computational options at incomprehen-sible speed until it has solved the problem to the accuracy required. Then it will give usthe answer; and if we insist, it may even tell us something of how it got there.The power unleashed by this kind of computing will be vast. Large parts of physicalreality will be simulated in real time before our eyes, with e�ects so far beyond what themen of 1950 could envision that the word \computation" may begin to seem old-fashionedand drop out of use.When computations are all intelligent, when everything is embedded in a controlloop, the mathematical landscape will change. One distinction that means a great dealto us today is that, broadly speaking, linear problems can be solved in one pass, butnonlinear ones require iteration. In �fty years, when everything is embedded in aniterative loop anyway, this di�erence will have diminished. For the same reason, today'sbig distinction between forward and inverse problems will have faded too.My next prediction is a corollary.4. Determinism in numerical computing will be gone.Recently our family rented a car for a holiday. One evening we wanted to look atthe stars, which meant turning o� the dome light. We couldn't �gure out how to do it!A decade ago, closing the doors and ipping a switch would have su�ced, but nowadays,cars are more intelligent. In some, the light stays on for a �xed period after you closethe doors, and in ours, the situation was even more complicated. There was an interlockwith the engine, plus some additional intelligence that we never got to the bottom of.Eventually we got the light o�, but we were not quite sure how we had done it, or if wecould do it the same way again.Have you noticed how many of our machines behave this way? Photocopiers used tobe deterministic, but nowadays they have complicated arrays of internal states. The �rstcopy may come out in landscape orientation, but the second in portrait, if the machinedecides in-between that it ought to change modes. Typewriters used to be predictabletoo: you knew what would happen when you pressed a key. Nowadays, in Word orLaTeX, changing one character of input may alter the whole document in startling ways.Why, at motorway rest stops, even toilets are intelligent devices now whose states ofmind we don't fully understand, and when you're �nished with the toilet, you have twofurther negotiations to undertake with the intelligent sink and the intelligent hand drier!What's true of toilets will be true of numerical computations. In �fty years, thoughthe answers you get will be accurate without fail to the prescribed precision, you will3



not expect to duplicate them exactly if you solve the problem a second time. I don'tsee how this loss of determinism can be stopped. Of course, from a technical point ofview, it would be easy to make our machines deterministic by simply leaving out all thatintelligence. However, we will not do this, for intelligence is too powerful.In the last �fty years, the great message communicated to scientists and engineerswas that it is unreasonable to ask for exactness in numerical computation. In the next�fty, they will learn not to ask for repeatability, either.5. The importance of oating point arithmetic will be undiminished.So much will change in �fty years that it is refreshing to to predict some continuity.One thing that I believe will last is oating point arithmetic. Of course, the details willchange, and in particular, word lengths will continue their progression from 16 to 32to 64 to 128 bits and beyond, as sequences of computations become longer and requiremore accuracy to contain accumulation of errors. Conceivably we might even switchto hardware based on a logarithmic representation of numbers. But I believe the twode�ning features of oating point arithmetic will persist: relative rather than absolutemagnitudes, and rounding of all intermediate operations.Outside the numerical analysis community, some people feel that oating pointarithmetic is an anachronism, a 1950s kludge that is destined to be cast aside as machinesbecome more sophisticated. Computers may have been born as number crunchers, thefeeling goes, but now that they are fast enough to do arbitrary symbolic manipulations,we must move to a higher plane. In truth, no amount of computer power will changethe fact that most numerical problems cannot be solved symbolically. You have to makeapproximations, and oating point arithmetic is the best general-purpose approximationidea ever devised. It will persist, but get hidden deeper in the machine.6. Linear systems of equations will be solved in O(N2+�) ops.Matrix computations as performed on machines around the world typically requireO(N3) oating point operations|\ops"|where N is the dimension of the problem.This statement applies exactly for computing inverses, determinants, and solutions ofsystems of equations, and it applies approximately for eigenvalues and singular values.But all of these problems involve only O(N2) inputs, and as machines get faster, it isincreasingly aggravating that O(N3) operations should be needed to solve them.Strassen showed in 1968 that the O(N3) barrier could be breached. He devised arecursive algorithm whose running time was O(N log27), approximately O(N2:81), andsubsequent improvements by Coppersmith, Winograd and others have brought the ex-ponent down to 2.376. However, the algorithms in question involve constants so largethat they are impractical, and they have had little e�ect on scienti�c computing. As aresult, the problem of speeding up matrix computations is viewed by many numericalanalysts as a theoretical distraction. This is a strange attitude to take to the most con-spicuous unsolved problem in our �eld! Of course, it may be that there is some reasonwhy no practical algorithm can ever be found, but we certainly do not know that today.A \fast matrix inverse" may be possible, perhaps one with complexity O(N2 logN) or4



O(N2 log2N), and discovering it would change everything.In 1985 I made a bet with Peter Alfeld of the University of Utah that a matrixalgorithm with complexity 0(N2+�) for any � > 0 would be found within ten years. Nonewas, and I gave Alfeld a check for $100. We renewed our bet, however, to 2005, and inthat year I will renew it again if necessary. One morning, with luck, the headlines willappear. I think �fty years should be long enough.7. Multipole methods and their descendants will be ubiquitous.The conjugate gradient and Lanczos algorithms were invented around 1950, andtheir story is a curious one. Nowadays we have no doubt as to what these methods aregood for: they are matrix iterations, which for certain structured matrices bring thoseO(N3) operation counts down to O(N2) or even better. Though there are constantshidden in the \O", these methods are often much faster than Gaussian elimination andits relatives when N is large.What is curious is that Hestenes, Stiefel, Lanczos and the rest didn't see this coming.In the 1950s, N was too small for conjugate gradients and Lanczos yet to be competitive,but all the mathematical pieces were in place. These men knew something of the conver-gence properties of their iterations, enough to have been able to predict that eventually,as machines grew faster, they must beat the competition. Yet they seem not to havemade this prediction. A numerical analyst writing an essay like this one in 1960 mightnot have mentioned conjugate gradients at all.It is with this history in mind that I mention multipole methods, by which I meanmethods related to the recent algorithms of Rokhlin and Greengard forN -body problemsand integral equations. Times have changed, and we are all asymptotickers. Whenmultipole methods were being invented in the 1980s, they were competitive in 2D butnot 3D. Yet Rokhlin and Greengard saw immediately that these techniques reducedoperation counts from O(N2) to O(N), give or take a logarithmic factor, so how couldthey not win in the long run? And so they will.The success of multipole methods will exemplify a general trend. As time goes by,large-scale numerical computations rely more on approximate algorithms, even for prob-lems that might in principle be solved exactly in a �nite number of steps. Approximatealgorithms are more robust than exact ones, and they are also often faster.8. Breakthroughs will have occurred in matrix preconditioners, spectral methods, andtime stepping for partial di�erential equations.It is hard not to be optimistic about merely technical hurdles. The business of matrixpreconditioners is vitally important, but it is a jungle these days|surely improvementsare in store! Spectral methods for PDEs are in a similar state|remarkably powerful, butvarying awkwardly from one application to the next. Order is needed here, and it willcome. As for time-stepping, this is the old problems of sti�ness, reasonably well in handfor ODEs but still unsolved in a general way for PDEs. To this day, the CFL restrictionconstrains our computations all across the range of science and engineering. To getaround this constraint, time steps are taken smaller than we would wish, huge matrix5



problems are solved at great cost, and physically important terms are thrown away justbecause they are too hard to implement. The CFL condition will not disappear, but newweapons will be devised to help us in the day-to-day struggle against it.9. The dream of seamless interoperability will have been achieved.Users and onlookers complain year after year, why is so much human interventionneeded to get from the whiteboard to the solution? Why does one computer programhave to be written for the grid generator, another for the discretisation, and another forthe linear algebra, requiring interfaces all along the way with repeated opportunities forhuman error? Why are symbolic and numerical calculations separate? Why can't ourideas and tools blend together into a seamless interoperable system? Well, of course,they can, and getting there is merely an engineering problem. Fifty years from now, thegrids and the solvers will have been coupled|and humans will more and more rarelycatch sight of actual numbers in the course of doing science.10. The problem of massively parallel computing will have been blown open by ideasrelated to the human brain.The information revolution is well underway, but the revolution in understandingthe human brain has not arrived yet. Some key idea is missing.Another fact of scienti�c life is that the problem of massively parallel computingis stalled. For decades it has seemed plain that eventually, serial computers must runup against the constraints of the speed of light and the size of atoms, at which pointfurther increases in power must come about through parallelism. Yet parallel computingnowadays is a clumsy business, bogged down in communication problems, nowhere nearas advanced as everyone expected a decade ago.I believe that the dream of parallel computing will be ful�lled. And it is hardto avoid the thought that if parallel computing and the human brain are both on theagenda, the two revolutions in store will somehow be linked. Brain researchers will makediscoveries that transform our methods of parallel computing; or computer scientists willmake discoveries that unlock the secrets of the brain; or, just as likely, the two �elds willchange in tandem, perhaps during an astonishing ten years of upheaval. The upheavalcould begin tomorrow, or it might take another generation, but it will come before 2050.Meanwhile, another revolution in biology is already happening: the working out ofDNA/RNA genomes and their implications. Every organism from virus to man is spec-i�ed by a program written in the alphabet of the nucleotides. Since Watson and Crick,we have known this must be true, and in 1995, the �rst genome of a free-standing or-ganism was sequenced. Since then, dozens more have followed, with the human genomeitself now nearly complete, and everything in biology, from development to drug design,is being reinvented as we watch. If I give you the sequence KPSGCGEQNMINFYPNVL inthe standard code for the amino acids, this is enough for you to determine in a fewseconds that I am speaking of an �-macroglobulin proteinase inhibitor of Octopus vul-garis, and to locate related enzymes in ten other species. Just point your browser tohttp://www.ncbi.nlm.nih.gov and run blastp.6



I believe that this drama has implications for computing.11. Our methods of programming will have been blown open by ideas related to genomesand natural selection.Genetic programs and computer programs are strangely analogous. Both are abso-lutely precise digital codes, and no other codes that we know of have anything like thecomplexity of these two, with the size of a genome being of roughly the same order of mag-nitude (3�109 nucleotides for Homo sapiens) as the size of an operating system (2�109bits for Windows 98). As a generation of engineers grows up with genomics, thinkingdigitally about the evolution of life on earth, our methods of computer programmingwill change. (Some ideas in this direction are already with us.) Traditionally, computerprograms are written in a di�erent way from biological ones. There's a programmerin the loop, an intelligence, which gives computer programs a logical structure that bi-ological programs lack (not to mention comments!). Yet it is notable that nowadays,large-scale software systems are too big to be understood in detail by any individual, letalone mechanically analysed or veri�ed, and indeed, the process of industrial softwaredesign already seems as close to evolution by natural selection as to mathematical logic.Software at a place like Microsoft is generated by an unending process of experimentand test, code and correct, a process in which individual human intelligences seem lessimportant than they used to. Software systems evolve from one generation to the next,and they are never perfect, but they work. The process is repugnant to some computerscientists, but it is scalable and unstoppable.Finally, a prediction that is not really a prediction, just a pious wish.12. If we start thinking now, maybe we can cook up a good name for our �eld!* * *Table 1 lists some highlights from the history of scienti�c computing. Its attemptto extrapolate to the future summarises some of the thoughts I have expressed in thisessay.When I looked at this collection of predictions, I was startled to see that a themeemerges from them. Some are what one might call purely technical. The others, however,those marked by asterisks, suggest a trend:Human beings will be removed from the loop. (�)I �nd I have envisioned an unsettling future, a future in which humans, though stillthe taskmasters of computers, are no longer much involved in the details of getting thetasks done. Fifty years from now, it is hard to imagine that our machines will still bedim enough to bene�t much from our assistance. Sketch your needs to the machine, andthen|well, you might as well go have a cup of co�ee.That's my report from 2000, down here on the exponential.7



Table 1. Some past and future developments in scienti�c computing. The asterisks markitems summarised by (�).Before 1940Newton's methodGaussian eliminationGauss quadratureleast-squares �ttingAdams and Runge{Kutta formulasRichardson extrapolation1940{1970oating point arithmeticFortran�nite di�erences�nite elementssimplex algorithmMonte Carloorthogonal linear algebrasplinesFFT1970{2000quasi-Newton iterationsadaptivitysti� ODE solverssoftware librariesMatlabmultigridsparse and iterative linear algebraspectral methodsinterior point methodswavelets2000{2048linear algebra in O(N2+� ) opsmultipole methodsbreakthroughs in preconditioners, spectral methods, time stepping for PDE* speech and graphics everywhere* fully intelligent, adaptive numerics* loss of determinism* seamless interoperability* massively parallel computing made possible by ideas related to the human brain* new programming methods made possible by ideas related to natural selection8


