
2. Laplace equation in 2DIn two dimensions the Laplace equation takes the formuxx + uyy = 0; (1)and any solution in a region 
 of the x-y plane is a harmonic function in 
. All the generalproperties outlined in our discussion of the Laplace equation (! ref ) still hold, including themaximum principle, the mean value principle, and the equivalence with minimisation of a Dirichletintegral. One thing that changes is that the fundamental solution, instead of being a power of theradius r = (x2 + y2)1=2, now takes the form log r. That is to say, u(x; y) = log r is a harmonicfunction in the x-y plane except for the singularity at the origin.However, something very special happens in the two-dimensional case. Suppose we view the x-yplane as the complex plane C by introducing the complex variable z = x+iy. Then a function u(x; y)is a function u(z), and here is the remarkable result: if u(z) is harmonic, it is the real part of ananalytic function f(z). (This statement will be quali�ed below (2).) If we write f(z) = u(z)+iv(z),then v(z) is harmonic too, and is known as the conjugate harmonic function of u. Thus potentialtheory in the plane becomes part of the magni�cent subject of complex analysis, and to �ndexamples of harmonic functions in the plane, we need look no further than the real (or imaginary)parts of analytic functions such as ez, sin z, or z + 3z4. To analyse such functions, powerful toolssuch as power series, contour integrals, and conformal mapping can be brought to bear.For example, Figure 1 shows the solution to Laplace's equation on a strip-like domain with boundaryconditions u = 0 on the left, u = 1 on the right, and @u=@n = 0 (Neumann condition) along thetop and bottom. The curves plotted represent lines of constant values u = 1=8; 2=8; : : : ; 7=8. Theseresults were obtained by mapping the strip to a rectangle numerically by a Schwarz{Christo�eltransformation, then plotting pre-images of straight lines in the rectangle. The justi�cation for thisprocedure is as follows. Suppose f(z) is a conformal map from the given domain to a rectanglewhose left and right sides have real parts 0 and 1, respectively. Then f(z) is an analytic function,so <f(z) is harmonic, and it is evident that it satis�es the prescribed boundary conditions. Figure2 shows the solution to a similar problem posed in an annulus with spikes, with u = 0 on the innerboundary and u = 1 on the outer boundary.The relationship between harmonic and analytic functions can be derived as follows. If f(z) =u(z) + iv(z) is analytic, then u and v satisfy the Cauchy{Riemann equations (! ref ),ux = vy; uy = �vx: (2)Conversely, given a harmonic function u(z), integration of the Cauchy{Riemann equations deter-mines a conjugate harmonic function v(z). We see immediately that v(z) is not uniquely de�ned,as it can be modi�ed by an arbitrary additive constant. A more profound complication is that if thedomain 
 is not simply connected, then v may have to be multivalued . For example, the functionu(z) = log r = log jzj is well de�ned and harmonic throughout the punctured complex plane Cnf0g.Its conjugate harmonic function arg z, however, is multivalued, increasing by 2� every time onetraverses a closed curve around the origin. Complex analysts are well familiar with such behaviour,and indeed, it is the starting point of the �eld of Riemann surfaces.Perhaps the most basic boundary value problem associated with the Laplace equation in 2D is theDirichlet Problem on the unit disk: �nd a harmonic function u in fz : jzj < 1g with prescribed28 February 2001: Nick Trefethen

harmonic functions from analytic functions

PSfrag replacements
u=0 u=1

Fig. 1: Solution of the Laplace equation in aregion conformally equivalent to a rectanglePSfrag replacementsu = 0u = 1Fig. 2: Solution in a region conformally equiv-alent to an annulusboundary data u(z) = f(z) on the unit circle fz : jzj = 1g. According to the mean value principlefor harmonic functions, the value of u for z = 0 is the mean of f(z) over the unit circle. For generalpoints z = z0 in the unit disk, one can apply a conformal map w = w(z) of the unit disk to itself(a M�obius transformation) that takes z0 to 0; u(z0) is then the mean of the transformed boundarydata f(w(z)). This is one way to derive the explicit result known as Poisson's formula,u(z0) = 12� Zjzj=1 1� jz0j2jz � z0j2 f(z) jdzj: (3)Note that this formula expresses u(z0) as a weighted mean of the values f(z) on the unit circle.Poisson's formula also solves the Dirichlet problem in other simply connected regions 
 of the plane,at least in principle. All one must do is reduce 
 to the unit disk by a conformal map, which isalways possible according to the Riemann mapping theorem, although this is not always an e�cientsolution method in practice.ReferencesL. Ahlfors, Complex analysis, 3rd ed., McGraw-Hill, 1979.R. Courant, Dirichlet's principle, conformal mapping, and minimal surfaces, Interscience, 1950.T. A. Driscoll and L. N. Trefethen, Schwarz{Christo�el mapping, Cambridge University Press, to appear.P. Henrici, Applied and computational complex analysis, v. 1{3, Wiley, 1974, 1977, 1986.T. Needham, Visual complex analysis, Clarendon Press, 1997.G. Springer, Introduction to Riemann surfaces, Chelsea, 1981.M. Tsuji, Potential theory in modern function theory, Dover, 1959. c
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