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For 0 < / < /* _ 0.702 58, solutions to the random recurrence xn+l = xn ? /3x1_l 
decay exponentially as n -X oo with probability one, whereas for /3 > /*, they 
grow exponentially. By formulating the problem as a Markov chain involving ran- 
dom matrix products and computing its invariant measure-a fractal-the Lyapunov 
constant u(/p) = limn-oo Ixnll/n is determined numerically for a wide range of val- 
ues /, and its dependence on /3 is observed to be non-smooth. (The limit is defined 
in the almost sure sense.) This generalizes recent work of Viswanath, who proved 
o(1) = 1.13198824.... By a simple rescaling, these results also apply to the more 
general random recurrence Xn+1 = axn i /Xn1_ for fixed a and /. These random 
recurrence relations have links with many fields, including ergodic theory, dynamical 
systems, heavy-tailed statistics, spectral theory, continued fractions, and condensed 
matter physics. 

Keywords: Fibonacci sequence; Lyapunov constant; Markov chain; 
random matrix products; random recurrences; Viswanath's constant 

1. Introduction 

In a remarkable paper, Viswanath (1999) considers the large n behaviour of solutions 
to the 'random Fibonacci recurrence', 

Xn+1 = xn Zn-1, (1.1) 

where the signs are chosen independently and with equal probabilities, and xo 
x1 = 1. Computer experiments, as in figure 1, show exponential growth with n. 
The problem of large n behaviour of (1.1) has been mentioned at least since 1963, 
when Furstenberg (1963) established exponential growth with probability 1, but 
Viswanath's contribution represents an intriguing new development. By an ingenious 
application of a Stern-Brocot tree (Graham et al. 1994), he proves that solutions to 
(1.1) satisfy 

lim xllln/ - C a.s. (1.2) n-+oo 

with C = 1.13198824..., a number that we propose to call Viswanath's constant. 
(The abbreviation 'a.s.' stands for almost surely, which means that any individual 
sequence satisfies the property with probability 1.) This growth constant is 0.4% 
greater than the fourth root of the familiar constant (/5 + 1)/2 = 1.61803398... 
for the standard Fibonacci sequence. 
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Figure 1. Random Fibonacci sequences, 100 (a) and 5000 (b) iterations. The dashed line 
represents exponential growth at the rate given by Viswanath's constant, 

a(1) = 1.131988 24 .... 
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Figure 2. Solutions to the modified recurrence hu r ?ti 100 iterations and 5000 
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Figns ensure tions to the modified recurrence and = of (1.3)- _l, 100 iterations and 5000 
iterations The dashed line represent, and thus exponential decay at the rate (1/2) 0.929. 

Exponential growth of solutions to (1.) may seem unsurprising,cally. Sut a seemingly 
similar problem gives exponential decay. Figure 2is the analogue of figure 1 for the 
random recurrence, 

Xn+1 --~Xn 2 n_1 . (1.3) 

Now, we observe decay at a rate approximately 0.929n ! This decay occurs even 

1/2 withe variances of the random variables xn increase to numbers, with n: the random 
signs ensure that thae terms xn and of (1.nential3) ar e uncorrelated, even though 
they are not independent, and thus the expected values of the squares xn2grow 

an example of what is known in statistics as a heavy-tailed distribution. 
The decay of solutions to (1.3) can be explained heuristically. Suppose a solution 

{Xn} were of constant size, xn-l - Xn = 1. Then the new value xn,+ would be 3/2 or 
1/2 with equal probability. The geometric mean of these numbers, %/3/2 

- 
0.866..., 

is less than 1, and this suggests that exponential decay is to be expected after all. 
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Such an argument is not rigorous, of course, and it does not yield the actual constant 
C 0.929. 

Having realized that solutions to (1.1) grow while solutions to (1.3) decay, we 
asked, what about the general random recurrence 

xn+1= x ? xn iXn1? (1.4) 

How does the growth rate of solutions Ixnl, as defined by the limit (1.2), depend on 
/p? We call this almost sure limit a(p), the Lyapunov constant for (1.5): 

(13) = lim IXn l/n a.s. 
n--oo 

(The existence of cr(/) follows from results of Furstenberg & Kesten (1960); we shall 
not give details.) What value /mimn (0, 1) maximizes the decay rate? At what value 
3* C (1, 1) is the recurrence neutrally stable, so that there is neither exponential 
growth nor decay? 

To answer these questions, we actually study the recurrence, 

Zn+l =- Xn /3Xn-1, (1.5) 

which is more general than (1.4) in the sense that the sequences generated by (1.4) 
are obtained by randomizing the signs of the sequences generated by (1.5). Thus the 
symmetric probability distribution for (1.4) can be obtained from the non-symmetric 
distribution associated with (1.5). 

Suppose we modify the recurrence (1.5) to include two constant parameters rather 
than one, 

Xn+1 = Oan /3xn-1 (1.6) 

Despite appearances, (1.6) is no more general than (1.5), for if {xn} is a solution 
to (1.6), then the sequence defined by Yn = ac-nx is a solution to (1.5) with f3 
replaced by /3/l2. (We return to this matter in figure 6 below.) 

The subject of random recurrence relations has links with many fields, including 
ergodic theory, dynamical systems, spectral theory, continued fractions, and con- 
densed matter physics. It is also a special case of the larger subject of iterated ran- 
dom functions, recently surveyed by Diaconis & Freedman (1999). Our interest in the 
recurrence (1.1), and then in its generalizations (1.5) and (1.6), was prompted origi- 
nally by questions of spectra and pseudo-spectra for random matrices and operators 
(Trefethen 1997), which we shall address in a separate publication. 

2. Fractal dependence on / 

We computed answers to the questions raised in the introduction by two methods. 
One approach, the elementary one, is to do careful Monte Carlo experiments with 
long runs of the recurrence so as to measure growth rates directly (? 3). The other, 
following Viswanath and an extensive literature on the theory of random products of 
matrices, is to view the recurrence as a Markov chain on a certain one-dimensional 
state space and then approximate the associated invariant measure by discretization 
(? 4). Viswanath found that for 0 = 1, an exact solution can be obtained. For general 
/, we are unaware of an exact solution, so our results are numerical. We do not have 
a proof of their accuracy, but careful varying of parameters and comparison of our 
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Table 1. Lyapunov constants lim -,,o lxn1/n (a.s.) for solutions to Xn+l = xn i /3xn- for 
various 3 

(The numbers are numerically computed but are believed to be accurate to all the digits listed.) 

Lyapunov Lyapunov 
P3 constant a(/3) 3 constant a(3) 

0 1 1 1.131988 24 ... 

1/128 0.999 97 1.1 1.17710 
1/64 0.999 88 1.2 1.218 96 

1/32 0.999 51 1.3 1.258 52 

1/16 0.998 02 1.4 1.296 45 

1/8 0.99175 1.5 1.333 38 

1/4 0.95797 2 1.504 76 

1/2 0.928 71 4 2.060 82 
0.6 0.970 17 8 2.870 07 
0.7 0.999 08 16 4.028 98 
0.702 58 ... 1 32 5.67716 

0.8 1.04188 64 8.014 33 
0.9 1.08775 128 11.32382 

independent methods of calculation gives us high confidence that the results listed 
in table 1 are correct to the digits listed. 

Our best estimate (numerical, not mathematically proved) of the value 3* at which 
no exponential growth or decay occurs (Bougerol 1986) is 

,* E (0.702 582, 0.702 585). 

Figure 3 repeats the last two figures for xn+l = xn /3*xn_1. Here, in contrast to 
the other cases, performing the calculation a second time with new random numbers 
would yield a curve with an entirely different appearance. (Try it!) 

Our best estimate of the value at which maximal decay occurs is 

/min C (0.367470,0.367475), 

with corresponding Lyapunov constant 

(/mmin) C (0.895168,0.895174). 

A notable result of our computations is that the dependence of a(/3) on P is 
not smooth. Figure 4 summarizes this dependence, suggesting that the curve u(/3) 
is in fact a fractal. Figure 5 confirms this hypothesis by zooming in on the curve 
to successively finer scales. It is evident that to the limits of our computational 
resolution, the irregularity of the curve does not go away. 

Figure 6 portrays the results of figure 4 in the form of a stability region in param- 
eter space for the two-parameter recurrence (1.6). The boundary of the stability 
region is not smooth. 

In the past, very few numerical calculations for problems of this kind seem to 
have been performed. We are unaware of any numerical estimates of the asymptotic 
behaviour of (1.1), let alone (1.5) or (1.6), before Viswanath (1999). An example 
of Halperin (1967), however, shows that non-smooth dependence on parameters is 
sometimes to be expected. That c(/3) is at least Holder continuous is a consequence 
of theorem 1 in a paper by Le Page (1989). 
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Figure 3. Solutions to the neutrally stable recurrence Xn+1 = Xn ? -3*Xn_1 (P/* 0.702 58), 
100 iterations and 5000 iterations. For this special value of 3, no exponential growth or decay 
occurs. 
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Figure 4. Lyapunov constants for random Fibonacci sequences generated by xn+l = x,n 
/3xn-1. The curve is believed to be correct to plotting accuracy. See figure 5 for more detail. 

3. Monte Carlo calculations 

Of course, we began our investigations with Monte Carlo experimentation. The recur- 
rence (1.5) can be expressed in a few lines of any programming language. Indeed, we 
think the problem of estimating a(1) or /* on a computer might be appealing for 
secondary school students. 

To calculate a(/3) by this means to several significant figures, measures must be 
taken to avoid overflow and underflow. We begin the recurrence in the natural fash- 
ion. When the iterates pass an overflow or underflow threshold (we used IXnl > 10200 
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Figure 5. Repetition of figure 4 with P sampled at increasingly finer scales. Each successive plot 
represents one-quarter of the range of P3 of the previous one, as indicated by the dashed boxes. 
For each plot, growth rates for 500 values of 3 were calculated, and again, the data are believed 
to be correct to plotting accuracy. Approximately 1011 floating point operations went into the 
preparation of these four plots. 

and Ixn\ < 10-200), we take note of it and restart the recurrence with rescaled val- 
ues. The total growth at the end of a calculation can then be determined from the 
current value, Xn, and the number of times the overflow/underflow condition has 
occurred. This is only one of any number of methods that could be used to scale this 
computation. The iterates could be rescaled at every step, for example, at a slight 
extra cost, or at every tenth or hundredth step. 

Our rescaling procedure introduces no additional errors into the computation 
beyond the inevitable rounding errors introduced at every step. Since the machine 
precision is of the order of 10-16, however, whereas we never take more than 109 
steps in a run of the recurrence, it is safe to regard the effects of rounding errors 
as negligible, far smaller than the effect of changing a single sign in the random 
sequence. One might more justifiably worry about the possibility of biases in the 
random number generator, and this is one of the reasons why we consider a different 
computational approach in the next section. 

As is typical of such calculations, our Monte Carlo procedure works excellently 
for obtaining results to low accuracy, but is unsuitable for high accuracy. Experi- 
ments confirm that the accuracy of the constants a(/) computed by this method 
is O(N-1/2), where N is the length of the sequence. Thus the computational work 
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Figure 6. Stability region for the random recurrence Xnrl = aXn ? f3xn-. For values of a and 
3 in the shaded region, the Lyapunov constant a- is less than 1, i.e. Inl -+ 0 a.s. as n -+ oo. 

scales as the square of the number of digits obtained. Some data to this effect are 
summarized in figure 8, at the end of the next section. On a workstation, we get 
about four digits of accuracy in a minute of computing. 

4. Markov chain calculations and random matrix products 

To achieve higher accuracy and to confirm the validity of our Monte Carlo cal- 

culations, we turned to an entirely different and mathematically more revealing 
method modelled on the work of Viswanath (1999). This is to view the random 
recurrence (1.5) as a Markov chain whose state space consists of normalized vectors 

(xn, iXn )T, and to estimate the invariant measure for this Markov chain by dis- 
cretization. For general information on Markov chains, see Feller (1968), Meyn & 
Tweedie (1993) and Norris (1997). Existence and uniqueness of an invariant measure 
in this case is guaranteed by theorems presented by Bougerol (Bougerol & Lacroix 

1984). 
The non-stochastic recurrence xn+l = xn + /x,n- can be written in the vector 

form 

with solutions growing asymptotically at the rate given by the dominant eigenvalue 
of the matrix. For the stochastic recurrence (1.5), we can work with the same vectors, 
but the matrix applied at each step is now one of the two possibilities 

0 1 0 1 
A= ) B {- l " ii'ii'?i?i 

Proc. R. Soc. Lond. A (1999) 

2477 



M. Embree and L. N. Trefethen 

chosen at random. The recurrence becomes 

X 
=M,M-.-- ..M M xO 

Xn+l) X 

where each Mi is either A or B with equal probability. The growth rates are not 
governed by the eigenvalues of A and B, but rather by the asymptotic behaviour of 
the product MnMn-Mn_1 M1, a quantity which cannot be computed in an elementary 
fashion. Thus the random Fibonacci sequence is a problem in random matrix prod- 
ucts, a subject whose study was initiated by Bellman (1954). Other notable papers in 
the field of random matrix products include those by Furstenberg & Kesten (1960), 
Furstenberg & Kifer (1983), Guivarc'h & Raugi (1985), Le Page (1989), and an excel- 
lent introduction to this subject is the lengthy review by Bougerol that constitutes 
the first half of Bougerol & Lacroix (1984). 

To analyse this process as a Markov chain, we first reduce the two-dimensional 
state space to one dimension by normalizing, so that we are effectively dealing with 
the projective line. One way to normalize (xn, Xn+l)T is to consider the angle between 
successive iterates (x = (cos 0, sin )T, 0 E (-7r/2, 7r/2)). Another is to consider the 
slope (x = (1, m)T, m = tan0). The angles are the simplest conceptually, and the 
slopes are the simplest algebraically, so we find it convenient to keep both formula- 
tions in mind and pass between them as necessary, making no distinction between 
the two in notation. The essential question becomes, what fraction of the time does 
the random recurrence spend in the state corresponding to each angle 0 or slope m? 

This formulation suggests that we look for a probability density function p(0) or 

p(m) that is invariant with respect to the steps of the random recurrence. This is 
essentially the right idea, but we must be a little more careful, for such a p(0) or 

p(m), defined pointwise, does not exist. What does exist is an invariant measure 
v-not absolutely continuous-that would correspond to the integral of p. For any 
interval I = [01, 02] or [ml, m2], v(I) is equal to the proportion of the time, in the 
limit n -+ oo, that the Markov process spends in the corresponding interval. More 
generally, v is a Borel measure defined on Borel subsets of [-7r/2, r/2] or R. 

At any point in the Markov process, the current state x was reached by taking 
one step either from A-'x or from B-1x. The invariant measure v must accordingly 
have the property 

v(S) = v(A-'S) + 2(B-S). 

In terms of slopes, the two inverse maps are 

A-lm= -, B-lm= 
m-'1 1--m 

It follows that for slope intervals S= [ml, m2], the invariance condition is 

V([ml, m2]) = ( ml, m2] -+ (4.1) 2 
[[ml,m2]-1 

2 
-[ml,m2]' 

(This notation means that the measure of the interval [ml, m2] is the mean of the 
measures of the two sets {/3/(m-1): m [ml, m21} and {/3/(1-m): m E [ml, m2]}.) 
This simple equation, distantly analogous to what Strang calls a dilation equation 
in the study of wavelets (Strang 1989), is the heart of the analysis of our random 
recurrence. Our numerical problem is to compute approximations to the measure v 
that satisfies it. 
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Viswanath, working from the recurrence xn+1 = ? xn + Xn_1, makes the observa- 
tion that the inverse maps take intervals in a Stern-Brocot tree to other intervals in 
the same tree, from which he deduces an exact expression for v([ml, m2]). The pres- 
ence of /B z 1 in the numerators of (4.1) apparently precludes such a clean solution- 
in the general case. Instead, we numerically approximate z([ml, m2]) using piece- 
wise constant functions. Specifically, we subdivide [-7/2, 7r/2] into N equally spaced 
angular intervals, I1,..., IN. Converting the angular intervals into slope intervals, 
we apply the inverse maps, which are then converted back into angles. In terms of 
angular intervals, equation (4.1) takes the form 

~(I)- v 
tan-'( ) d-1y(tan-' 4/2))) V(ij) 2 

((tan 
1 

(I)1) )- -tan((Ij)))t (4.2) 

We approximate this equation on the discrete set of intervals I1,..., IN by the equa- 
tion 

N 
1 V 

Vj -= 2 CkVk) 
k=1 

where vj is our discrete approximation to v(Ij). Here each coefficient ck, a number 
between 0 and 2, represents the amount that Ik overlaps with each of the intervals 
on the right-hand side of (4.2). These N equations together form a linear system of 
rank N - 1, which can be made consistent by replacing the Nth equation by the 
conservation condition -EN j=1 = 1. 

The system of equations just described is sparse and non-symmetric. Direct sparse 
matrix techniques can be used to solve it, but our experiments with the built-in 
sparse solvers provided in MATLAB? indicate that such methods require O(N3) 
operations and O(N2) storage. This is a prohibitive amount of work, an order of 
magnitude greater than for the Monte Carlo method, and the memory requirements 
would preclude treatment of large values of N. On the other hand, we found that we 
could keep the storage under control and beat the Monte Carlo method in speed 
by applying a non-symmetric iterative solver, Bi-CGSTAB (Barrett et al. 1994; 
Greenbaum 1997; Van der Vorst 1992). As is typical of Krylov subspace methods, 
Bi-CGSTAB approximately solves the linear system using only matrix-vector mul- 
tiplications, inner products, and vector additions. The matrix-vector multiplication 
can be implemented using a sparse matrix data structure with a fixed number of 
non-zeros per row. Though our coefficient matrix is not normal, plots of pseudo- 
spectra (Trefethen 1997) for low-dimensional instances suggest that the degree of 
non-normality is limited. The eigenvalues are well clustered, and the condition num- 
ber grows linearly, K2 = O(N). Bi-CGSTAB solves the system quickly, even without 
preconditioning (though perhaps the convergence could be accelerated by a coarse- 
grid preconditioner), and the number of iterations does not grow very much as we 
refine the mesh, being 40 or 50 for typical calculations to six or seven digits of accu- 
racy. In the end, our Markov chain algorithm produces accurate estimates of the 
parameter a(/3) in an amount of time that grows approximately linearly with N. 

Figure 7 depicts invariant measures computed in this manner for four values of 3. 
The curves look like plots of p(0), the probability density function that does not exist. 
In actuality, they are histograms of values {Vk} based on a subdivision of [-7/2, 7/2] 
into N = 256 equal subintervals. These histograms are well defined, but they do not 
converge to continuous curves as the discretization is refined. For smaller values of 
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Figure 7. Discrete histogram approximations {lk} to the invariant measure v using N = 256 
intervals on [-7r/2, 7r/2], for four values of /. For small 0, most of the measure is concentrated 
in 0 > 0: sign changes in the recurrence are exponentially rare (see figure 9). 

/3, the fractal nature of the invariant measure is strikingly apparent in the figure. For 
larger 3, the measure is smoother. 

The histograms of figure 7 were obtained by solving linear systems of size N 256. 
From such approximations one can obtain Lyapunov constants accurate to about two 
digits. For the six-digit results reported in table 1, we increased N to 221. This could 
be done via a matrix of dimension 221, but instead, following Viswanath, we used 
a matrix of dimension 220 by taking advantage of a symmetry property. Since only 
the behaviour of Ixnl is being measured, one can make use of the recurrence (1.4) 
with two random signs, thereby attaining a probability distribution that is even with 
respect to 0, which is then computed only for values 0 > 0. In the end, the largest 
matrix we deal with is of dimension 220 = 1048 576, with approximately 107 non- 
zero entries, filling 100 megabytes of memory on our Sun Ultra 30 workstation. (The 
precise figures depend on /.) Each matrix-vector multiplication in the Bi-CGSTAB 
iteration takes about 1 s. 

This completes our explanation of how the invariant measure v is computed. It 
remains to describe how we get from v to the Lyapunov constant c(/3). The answer is 
that once v is known, o(/3) can be obtained by an integral due originally to Fursten- 
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Figure 8. Computation times for the Monte Carlo and Markov chain methods for determining the 
number r(1). The x-axis represents elapsed time on a Sun Ultra 30 workstation, and the errors 
represented on the y-axis were computed by taking advantage of Viswanath's eight-digit result 
o(1) = 1.13198824.... For higher-accuracy computations, the Monte Carlo method cannot 
compete. 

berg and sometimes known as Thouless's formula, 

log(a(/3)) = J amp(x) dv, 

where amp(x) denotes the amplification factor associated with the state x, 

amp(x) 1= log x22 2 1lBx122 l + /34 +4m4 amp (x) - - 
l2g I 

Xlo 2 4 
l 

(I +T)=-2)2 ,' 

By exploiting the monotonicity of this function in most subintervals, we calculate 
approximate upper and lower bounds for v(/3). As we refine the size of the mesh 
used to approximate v, experiments show that these upper and lower estimates 
converge linearly to values consistent with our Monte Carlo experiments. Even for 
relatively low accuracies, the Markov chain solution is faster. Figure 8 illustrates 
these convergence properties. 

5. Discussion and generalizations 

The complex behaviour of our simple recurrence suggests numerous problems for 
further investigation. We shall mention a few of them. 

A careful study of the fractal nature of the curve a(p) would be interesting. For 
example, what can be said about the fractal dimension (Falconer 1990)? Does the 
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irregularity in figure 4 diminish only gradually outside the region near 3 = 0.4, or 
does the curve become genuinely smooth for certain 3? 

Rigorous analysis of r(/3) would probably be feasible in the limits P -X 0 and 
/ -+ oo. Consideration of the geometric mean of 1 - P and 1 + 13 suggests the 

asymptotic behaviour a(/3) ~ - 132 as / - 0, convincingly matched by the results 
of table 1, and the next term in the series appears to be about -1.75/4. A similar 

argument suggests u(/3) /31/2 as /3 - oo, also confirmed by the data, and the next 
term in that series appears to be about 0.1143-1/2. 

Precise statements could be made about the statistical aspects of the random vari- 
ables xn, Ix l, Ixnl1/n, or n-1 log xn l. According to results developed over the years 
by Furstenberg, Tutubalin, Virtser, Le Page, Guivarc'h, Goldsheid, and others, the 
distributions of n-1 log Ixnl and Ilnl1/n converge to Gaussians of standard deviation 

0(n-1/2) as n -+ oo. (If one distribution converges to a Gaussian, so must the other, 
since the standard deviations are diminishing to zero.) This is a kind of 'central limit 
theorem for random matrix products' (see Bougerol & Lacroix (1984), Goldsheid & 
Guivarc'h (1996), Guivarc'h & Raugi (1986) and the references therein). 

Another question suggests itself that might be of physical interest in certain appli- 
cations. In figure 7 it is apparent that for large /, a considerable amount of measure is 
associated with values 0 < 0, corresponding to sign changes in the random sequence. 
For small /3, however, sign changes become very rare. Let us define the sign-flip fre- 
quency f(/3) to be the proportion of values xn with XnXn-1 < 1 in the limit n -+ oo. 
Figure 9 indicates the exponential decrease of the sign-flip frequency as /3 reduces 
to 1/4. Don Coppersmith of IBM T. J. Watson Research Centre pointed out the 
significance of the value 1/4 to us and provided the remarkably accurate estimate 

f(/3) 2 2-"/(2V -1/-4) (5.1) 

based on counting how many successive fortuitous sign choices are required to achieve 
a sign flip. Sign-flip frequencies for other related problems have been considered 
previously by Simon & Taylor (1985). 

The above remarks concern further investigations that might be made of our 
stochastic recurrence problem as formulated in (1.5). In addition, numerous ideas 
for modification of the problem suggest themselves. 

The coin might be weighted, so that + is chosen with probability p and - with 
probability 1-p. In the limit p -X 1 we recover the non-stochastic recurrence relation 

xn+1 
= xn + /3xn-. 

The coefficients {-1, 1} in the recurrence Xn+ = ?xn i 3xn_1 might be replaced 
by, for example, standard normally distributed random numbers or uniform random 
numbers in [-1, 1]. (For definiteness, we now choose the variant with two random 
coefficients rather than one.) In the former case, since the coefficients are what are 
known as stable random variables (Feller 1971), an analytic solution can probably 
be obtained by using the methods of Viswanath & Trefethen (1998); for / = 1 and 
3 = 1/2 our numerical experiments give growth rates of approximately 0.995 and 

0.797, respectively. In the latter case, perhaps no closed form solution is possible; 
numerical experiments suggest results for /3 = 1 and ( = 1/2 of approximately 0.7499 
and 0.5804. For problems like these involving a continuum of matrices governed by a 
probability density function rather than just a measure, theorem 2 of Le Page (1989) 
implies that the dependence of r(/3) on /3 is C??. 
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Figure 9. Sign-flip frequency as a function of/3. The frequency is 0 for/3 P< 1/4. The dashed 
line indicates the approximation (5.1) derived by Coppersmith. 

The length of the recurrence might be increased. In our eyes the most interesting 
such generalization is the triangular system of recurrences of growing length 

= ax0, 

xa - ax2 a2x1 ? a30, (52) 

where a is a parameter. For a = 1, we obtain the system of recurrences studied in 
Viswanath & Trefethen (1998), except with {-1, 1} rather than normally distributed 
coefficients; computations show that the growth rate is approximately 1.3272. Other 
values of a are mathematically equivalent, via a rescaling y = -x,, as in the 
remark following (1.6). In particular, for a = a* . 1/1.3272 0.7535, the sys- 
tem (5.2) is neutrally stable. A matrix version of this observation is that if A, is an 
n x n triangular matrix with 1 on the diagonal and random entries iaj on the jth 

x hr s no growth at all. 
subdiagonal, then IIA111 inceases exponentially as o o for a > a*, but only 

increases very slowly for a a1, we obtain there system of recurrences studied inall. 
One might take the distribution of coefficients to be complex. If {-/, /} in (1.5) 

is replaced by the complex circle {ei'pt with a uniform probability distribution, for 
example, then the dependence of a on / is as shown in figure 10; the Lyapunov 
constants forw t 1/2 and/3g = are approximately 1.02 and 1.19, respectively. Now 
there is no decay for any value of 3. A heuristic explanation for this is that as a 
consequence of Cauchy's theorem, the geometric mean of the complex numbers on 
the circle 1 + /3e' is equal to 1, not smaller. The curve o(/3) is smooth, a fact that 
again follows from theorem 2 of Le Page (1989). 
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Figure 10. Analogue of figure 4 for the complex recurrence n+1 = ,n + ei0/xn_l, 0 E [-7r, 7r], 
computed via Monte Carlo experiments. Now the curve is smooth, and there is no decay for 
small 3. 

Finally, of course, it would be interesting to pursue the implications of the behavi- 
our of our random recurrences in various fields of application, such as those mentioned 
in the abstract. 
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1/4 and provided the estimate (5.1). L.N.T. further acknowledges earlier discussions about the 
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