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Figure 1. Degree  AAA rational approximation to 

in 1,000 points in a square in the complex plane (black dots) with adaptively

determined poles. This image is a phase portrait [5], with color marking the

complex argument.
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Real analysis, complex analysis, and numerical analysis all start from polynomials. Since Newton at
least, polynomials and their limits as Taylor series have captured the local behavior of functions, and
the approximations become global with numerical methods such as data fitting, quadrature formulas,
spectral methods, “proxy” rootfinding, and Chebfun. For smooth functions on bounded domains, this
is often all you need — with the footnote that if a function is periodic, it is advantageous to switch
from polynomials to Fourier series.

A rational function is a quotient  of polynomials. We say that  is of degree  if it
can be written in this way, where  and  are of degree at most . Clearly  may have  zeros and 

 poles, real or complex, and a polynomial is nothing more than a rational function whose poles are
constrained to all lie at . But  is often not the best representation conceptually or
numerically. A better start for many purposes is to write  in partial fractions:

This generic representation cannot treat poles of order higher than  exactly—or poles at infinity—
but it can approximate them arbitrarily closely.

Formula  highlights the fact that
a rational function can have its poles

 anywhere. In particular, if 
 approximates a function  with a

singularity at , it may achieve
great accuracy by clustering its
poles near . This effect hit the
headlines with Donald Newman’s
1964 paper about the approximation
of  on , or
equivalently, the approximation (with
half the degree) of  on 

. Newman showed that by
clustering their poles and zeros
exponentially near the singularity,
rational functions can achieve root-
exponential convergence: errors of
order  for some 

. For six-digit accuracy in this
example, a rational function of
degree  is enough, whereas
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a polynomial would need . 

All of this is well established and extensively studied by rational approximation theorists. But can one
apply these ideas to solve computational problems? Tradition regards rational functions as a
computational minefield because of complications like “Froissart doublets” (pole-zero pairs), both
theoretical and numerical. For example, in their work during the 1980s and 1990s, Richard Varga,
Arden Ruttan, and Amos Carpenter used up to 200-digit precision. But in the past four years and in
collaboration with Yuji Nakatsukasa, Abinand Gopal, and others, I have been part of some
developments that appear to be changing this picture — all in ordinary floating-point arithmetic.

First came the AAA algorithm (adaptive Antoulas-Anderson), a method of unprecedented speed and
robustness that finds near-best rational approximations [4]. The magic of AAA comes from its
barycentric representation of rational functions in a third fashion, as a quotient of two partial
fractions:

The numbers  are not the poles of , but rather a set of arbitrary support points that are chosen
to enable numerical stability, even when the poles and zeros are exponentially clustered. For
example, suppose that we execute the following commands in Chebfun:

    Z = rand(1000,1) + 1i*rand(1000,1); 

    F = sqrt(Z-Z.^2)./(Z-2);

    [r,poles] = aaa(F,Z);

    plot(Z,’.k’), hold on

    phaseplot(r,[-0.5 2.5 -1.5 1.5])

In  seconds (s) on my laptop, AAA computes a degree-20 rational approximation that matches 
 to 14 digits at the 1,000 random data points. Figure 1 shows how the poles and zeros of  simulate

a circular branch cut that connects the branch points  and . There is also a pole at 
, whose six-digit agreement with the pole of  demonstrates the power of rational

functions for extrapolation and analytic continuation. In fact, most existing methods for estimation of
poles and acceleration of convergence (Padé, Aitken, eta, epsilon, etc.) are based on rational
functions.

Next came lightning approximation [2]. AAA has free poles that are adaptively determined, and there
is no guarantee that they will not fall in a region where one wants analyticity. Moreover, we do not
know how to use AAA to approximate harmonic functions, i.e., real parts of analytic functions, which
is what one needs to solve Laplace problems via function approximation. The new idea is to
leverage our understanding of exponential clustering at singularities by prescribing the poles  a
priori — simply placing them in a configuration with exponential clustering at the corners, which are
likely to be branch points of the solution. A polynomial term to handle “the smooth part of the
problem” is included as well. Now one has the linear problem of finding good coefficients  for an
approximation  with known points , which is readily solved by least-squares fitting. If you
want to fit the real part to solve a Laplace boundary value problem, this makes no significant
difference to the calculation. Figure 2 depicts the solution to a Laplace problem on an octagon
computed by this method. In  s on a laptop, the code laplace.m has computed a solution with 

 poles that is accurate to six digits, all the way up to the corner singularities. Being just the real
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Figure 2. Lightning solution to a Laplace problem in an octagon by least-

squares fitting of boundary data by the real part of a rational function with

prescribed, exponentially clustered poles (red dots). The name “lightning”

alludes to the exploitation of the same mathematics that leads lightning

to strike at sharp points.

part of a rational function, the solution
can be evaluated in   per point.
For 10-digit accuracy, these figures
change to  s,  poles, and  .
Similar computations are possible for
biharmonic problems, which are
reducible to harmonic functions, and
Helmholtz problems, where the poles
of a rational function become center
points of shifted Hankel functions [1].

I want to finish with a third
development that turned up
unexpectedly just a few months ago
[3]. What about the use of functions
other than rationals, with singularities
other than the poles of ? In a new
development, we have found that
reciprocal-log or log-lightning
approximations of the form

can speed up convergence from root-exponential to exponential or exponential-minus-log, i.e., 
. The approximations take advantage of analyticity on a Riemann surface and

can be used for analytic continuation to other Riemann sheets beyond the branch cuts. Figure 3
shows an approximation to the function  of this kind with , , and 

,  , . 
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Figure 3. Phase portraits of a degree  reciprocal-log approximation of , based on least-squares

fitting in 1,000 exponentially clustered points on the circle  (black dots). 3a. On the first Riemann

sheet, the maximum error in the region is . 3b. On the second sheet, the error is .

It seems that a new era of numerical computation with rational functions and other functions with
singularities is arriving. This short essay is confined to scalar problems, but there are also exciting
ongoing developments that involve rational functions in large-scale linear algebra. Some key names
are Athanasios Antoulas, Christopher Beattie, Bernhard Beckermann, Peter Benner, Vladimir Druskin,
Serkan Güğercin, Stefan Güttel, Leonid Knizhnerman, Eric Polizzi, Valeria Simoncini, Alex Townsend,
Heather Wilber, and Karen Willcox.

This article is based on Nick Trefethen’s John von Neumann Prize Lecture at the 2020 SIAM Annual
Meeting, which took place virtually this July. Trefethen’s presentation is available on SIAM’s YouTube
Channel. 

The figures in this article were provided by the author.
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