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1. Introduction

Welcome to a beautiful subject! — the constructive approximation of functions.
And welcome to a rather unusual book.

Approximation theory is a well-established field, and our aim is to teach you
some of its most important ideas and results. The style of this book, however,
is quite different from what you will find elsewhere. Everything is illustrated
computationally with the help of the chebfun software package in Matlab, from
Chebyshev interpolants to Lebesgue constants, from the Weierstrass Approxi-
mation Theorem to the Remez algorithm. Everything is practical and fast, so
we will routinely compute polynomial interpolants or Gauss quadrature nodes
and weights for tens of thousands of points. In fact, each chapter of this book
is a single Matlab M-file, and the book has been produced by executing these
files with Matlab’s “publish” facility. The chapters come from M-files called
chap1.m, chap2.m, . . . , and you can download them and use them as templates
to be modified for explorations of your own.
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Beginners are welcome, and so are experts, who will find familiar topics ap-
proached from new angles and familiar conclusions turned on their heads. In-
deed, the field of approximation theory came of age in an era of polynomials
of degrees perhaps O(10). Now that O(1000) is easy and O(1000000) is not
hard, different questions come to the fore. In particular we shall see that “best”
approximants are hardly better than “near-best,” though they are much harder
to compute.

This is a book about approximation, not about chebfun, and for the most part
we shall use chebfun tools without explaining them. A brief introduction to
chebfun is given in the Appendix, and for much more information, see the Guide
and the download page at

http://www.maths.ox.ac.uk/chebfun/

In the course of the book we shall use chebfun overloads of the following Matlab
functions, among others:

CUMSUM, DIFF, INTERP1, NORM, POLY, POLYFIT, SPLINE

as well as the additional chebfun commands

CF, CHEBPADE, CHEBPOLY, CHEBPOLYPLOT, CHEBPOLYVAL,

CHEBPTS, LEBESGUE, LEGPOLY, LEGPTS, RATINTERP, REMEZ.

There are quite a number of excellent books on approximation theory. Three
classics are [Cheney 1966], [Davis 1963], and [Meinardus 1967], and a more
recent computationally oriented classic is [Powell 1981].

A good deal of our emphasis will be on ideas related to Chebyshev points and
polynomials, whose roots go back a century or more to mathematicians in-
cluding Chebyshev (1821–1894), Zolotarev (1847–1878), de la Vallée Poussin
(1866–1962), Bernstein (1880–1968), and Dunham Jackson (1888–1946). In the
computer era, some of the early figures who developed “Chebyshev technol-
ogy,” in approximately chronological order, were Lanczos, Clenshaw, Specht,
Good, Fox, Elliott, Mason, and Orszag. Two books on Chebyshev polynomials
are [Rivlin 1990] and [Mason & Handscomb 2003]. One reason we emphasize
Chebyshev technology so much is that in practice, for working with functions on
intervals, these methods are unbeatable. For example, we shall see in Chapter
14 that the difference in approximation power between Chebyshev and “opti-
mal” interpolation points is utterly negligible. Another reason is that if you
know the Chebyshev material solidly, this is the best possible foundation for
work on other approximation ideas.

Our mathematical style is conversational, but that doesn’t mean the material is
elementary. The book aims to be more readable than most, and the numerical
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experiments help achieve this. At the same time, theorems are stated and proofs
are given, often rather terse, without all the details spelled out. It is assumed
that reader is comfortable with rigorous mathematical arguments and familiar
with ideas like continuous functions on compact sets, Lipschitz continuity, con-
tour integrals in the complex plane, and norms of matrices and operators. If you
are a student, I hope you are an advanced undergraduate or graduate who has
taken courses in numerical analysis and complex analysis. If you are a seasoned
mathematician, I hope you are also a Matlab user!

This book was produced using publish in LaTeX mode: thus this chapter, for
example, can be generated with the command publish(’chap1’,’latex’). To
achieve the desired layout we begin by setting a few default parameters:

set(0,’defaultfigureposition’,[380 320 540 200],...

’defaultaxeslinewidth’,0.9,’defaultaxesfontsize’,8,...

’defaultlinelinewidth’,1.1,’defaultpatchlinewidth’,1.1,...

’defaultlinemarkersize’,15), format compact, format long

chebfunpref(’factory’); clear all, x = chebfun(’x’,[-1 1]);

To make the chapters independently executable, it is necessary to include these
statements at the beginning of each. This would lead to a clutter of text, so
instead, at the beginning of each chapter we execute the command

ATAPformats

which calls an M-file containing the code above. This isn’t beautiful, but it
works. For convenience, ATAPformats is included in the standard distribution of
the chebfun package. (For the actual production of the printed book, publish
was executed not chapter-by-chapter but on a big file concatenating all the
chapters, and a few tweaks were made to the resulting LaTeX file.)

The Lagrange interpolation formula was discovered by Waring, the Gibbs phe-
nomenon was discovered by Wilbraham, and the Runge phenomenon was first
glimpsed, if perhaps not very clearly, by Meray. These are just some of the
instances of Stigler’s Law in approximation theory, and the reader will see my
interest in history in the references section, where original sources are usually
given and the entries stretch back several centuries, each with an editorial com-
ment attached. Often the originals are surprisingly readable and insightful, and
in any case, it seems especially important to pay heed to original sources in a
book like this that aims to reexamine material that has grown too standardized
in the textbooks. Another reason for looking at original sources is that in the
last few years, thanks to digitization of journals, it has become far easier to
track them down than it used to be, though there are always difficult special
cases like [Wilbraham 1848], which I finally found in an elegant leather-bound
volume in the Balliol College library.
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Perhaps I may add a further personal comment. As an undergraduate and
graduate student in the late 1970s and early 1980s, one of my main interests
was approximation theory. I regarded this subject as the foundation of my
wider field of numerical analysis — but as the years passed, it came to seem
dry and academic, and I moved into other areas. Now times have changed,
computers have changed, and my perceptions have changed. I now again regard
approximation theory as exceedingly close to computing, and this view has
been reinforced by new developments including wavelets, radial basis functions,
and compressed sensing. The topics discussed here are a bit more classical
than those: the foundations of univariate approximation theory. As I hope this
book will show, there is scarcely an idea in this area that can’t be illustrated
compellingly in a few lines of chebfun code, and as I first imagined around 1975,
anyone who wants to be expert at numerical computation really does need to
know this material.

Exercise 1.1. Chebfun download. Download the current version of the cheb-
fun package from www.maths.ox.ac.uk/chebfun/ and install it in your Matlab
path as instructed at the web site. Execute the command chebtest to make
sure things are working, and note the time taken. Execute chebtest again and
see how much speedup there is now that various files have been brought into
memory.

Exercise 1.2. The publish command. Execute help publish

and doc publish in Matlab to learn the basics of how the publish

command works. Then download chap1.m and chap2.m from
www.maths.ox.ac.uk/chebfun/ and publish them in HTML with a Mat-
lab command like open(publish(’cheb.1’)). Now publish them again with
publish(’chap2’,’latex’) followed by appropriate LaTeX commands. (You
will probably find that chap1.tex and chap2.tex appear in a subdirectory on
your computer labeled html.) If you are a student taking in a course for which
you are expected to turn in writeups of the exercises, then you could hardly do
better than to make it a habit of producing them with publish.

2. Chebyshev points and interpolants

As always we begin a chapter by setting the default formats:

ATAPformats

Any interval [a, b] can be scaled to [−1, 1], so most of the time, we shall just
talk about [−1, 1].

Let n be a positive integer:
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n = 16;

Consider n + 1 equally spaced angles {θj} from 0 to π:

tt = linspace(0,pi,n+1);

We can think of these as the arguments of n+1 points {zj} on the upper half of
the unit circle in the complex plane. These are the (2n)th roots of unity lying
in the closed upper half-plane:

zz = exp(1i*tt);

hold off, plot(zz,’.-k’), axis equal, ylim([0 1.1])

title(’Equispaced points on the unit circle’)
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Equispaced points on the unit circle

The Chebyshev points associated with the parameter n are the real parts of
these points,

xj = Re zj =
1

2
(zj + z−1

j ), 0 ≤ j ≤ n :

xx = real(zz);

Some authors use the terms Chebyshev-Lobatto points, Chebyshev ex-

treme points, or Chebyshev points of the second kind, but as these are
the points most often used in practical computation, we shall just say Chebyshev
points.

Another way to define the Chebyshev points is in terms of the original angles:

xj = cos(jπ/n), 0 ≤ j ≤ n,

xx = cos(tt);
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There is also an equivalent chebfun command chebpts:

xx = chebpts(n+1);

Actually this result isn’t exactly equivalent, as the ordering is left-to-right rather
than right-to-left.

Let us add the Chebyshev points to the plot:

hold on, plot(xx,0*xx,’.r’), title(’Chebyshev points’)
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Chebyshev points

They cluster near 1 and −1, with the average spacing as n → ∞ being given by
a density function with square root singularities at both ends (Exercise 2.2).

Let {fj}, 0 ≤ j ≤ n, be a set of numbers, which may or may not come from
sampling a function f(x) at the Chebyshev points. Then there exists a unique
polynomial p of degree n that interpolates these data, i.e., p(xj) = fj for each
j. When we say “of degree n,” we mean of degree less than or equal to n.
As we trust the reader already knows, the existence and uniqueness of poly-
nomial interpolants applies for any distinct set of interpolation points. In this
case of special interest involving Chebyshev points, we call the polynomial the
Chebyshev interpolant.

Polynomial interpolants through equally spaced points have terrible properties,
and we shall explore this effect in Chapters 11–13. Polynomial interpolants
through Chebyshev points, however, are excellent. It is the clustering near
the ends of the interval that makes the difference, and other sets of points
with similar clustering, like Legendre points (Chapter 15), have similarly good
behavior. The explanation of this fact has a lot to do with potential theory
[Ransford 1995, Smirnov & Lebedev 1968, Walsh 1969], but we shall not go into
that in this book.

The chebfun system is built on Chebyshev interpolants. For example, here is a
certain step function:
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x = chebfun(’x’);

f = sign(x) - x/2;

hold off, plot(f,’k’), ylim([-1.3 1.3])

title(’A step function’)
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A step function

By calling chebfun with a second explicit argument of 6, we can construct the
Chebyshev interpolant to f through 6 points, that is, of degree 5:

p = chebfun(f,6);

hold on, plot(p,’.-’), ylim([-1.3 1.3])

title(’Degree 5 Chebyshev interpolant’)
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Degree 5 Chebyshev interpolant

Similarly, here is the Chebyshev interpolant of degree 25:

hold off, plot(f,’k’)

p = chebfun(f,26);

hold on, plot(p,’.-’), ylim([-1.3 1.3])

title(’Degree 25 Chebyshev interpolant’)
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Degree 25 Chebyshev interpolant

Here’s a more complicated function and its Chebyshev interpolant of degree 100:

f = sin(6*x) + sign(sin(x+exp(2*x)));

hold off, plot(f,’k’)

p = chebfun(f,101);

hold on, plot(p), ylim([-2.4 2.4])

title(’Degree 100 Chebyshev interpolant’)
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Degree 100 Chebyshev interpolant

Another way to use the chebfun command is by giving it an explicit vector of
data rather than a function to sample, in which case it interprets the vector as
data for a Chebyshev interpolant of the appropriate order. Here for example is
the interpolant of degree 99 through 100 random data values in [−1, 1]:

p = chebfun(2*rand(100,1)-1);

hold off, plot(p,’-b’)

hold on, plot(p,’.k’)

ylim([-1.7 1.7]), grid on

title(’Chebyshev interpolant through random data’)
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Chebyshev interpolant through random data

This experiment illustrates how robust Chebyshev interpolation is. If we had
taken a million points instead of 100, the result would not have been much
different mathematically, but it would have been a mess to plot. We shall
return to this figure in Chapter 13.

For illustrations like these it is interesting to pick data with jumps or wiggles,
and Chapter 9 discusses such interpolants more systematically. In the applica-
tions where polynomial interpolants are actually useful, however, the data will
typically be smooth.

Exercise 2.1. Chebyshev interpolants through random data. Repeat
the experiment of interpolation through random data for 10, 100, 1000, and
10000 points. In each case use the command minandmax(p) to determine the
minimum and maximum values of the interpolant and measure the computer
time required for this computation (e.g. using tic and toc). In addition to
the four plots over [−1, 1], use plot(p,’interval’,[0.9999 1]) to produce
another plot of the interpolant through 10000 values in the interval [0.9999, 1].
How many of the 10000 grid points fall in this interval?

Exercise 2.2. Limiting density as n → ∞. (a) If −1 ≤ a < b ≤ 1, what
fraction of the n + 1 Chebyshev points fall in the interval [a, b] in the limit
n → ∞? (b) How does this result match the number found in [0.9999, 1] in
the last exercise for the case n = 9999? (c) Derive the following formula for
the density of the Chebyshev points near x ∈ (−1, 1) in the limit n → ∞:
ρ(x) = (π

√
1 − x2)−1/2.

Exercise 2.3. Rounding errors in computing Chebyshev points. On
a computer in floating point arithmetic, the formula xj = cos(jπ/n) for the
Chebyshev points is not so good because it lacks the expected symmetries. (a)
Write an elegant Matlab program that finds the smallest even value n ≥ 2 for
which, on your computer as computed by this formula, xn/2 6= 0. (b) Write
another program that finds the smallest n ≥ 1 for which the points {xj} do not
come out exactly symmetric about 0. Is it the same value of n as in (a)? (c)
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Derive a mathematically equivalent formula for xj based on the sine rather than
the cosine which achieves perfect symmetry for all n in floating point arithmetic.
(You may assume that your computer’s sine function and other operations are
perfectly symmetric about 0.)

Exercise 2.4. Chebyshev points of the first kind. The Chebyshev points
of the first kind, also known as Gauss-Chebyshev points, are obtained by
taking the real parts of points on the unit circle mid-way between those we
have considered, i.e. xj = cos((j + 1

2 )π/(n + 1)) for integers 0 ≤ j ≤ n. Call
help chebpts and help legpts to find out how to generate these points in
chebfun and how to generate Legendre points for comparison (these are roots
of Legendre polynomials). For n + 1 = 100, what is the maximum difference
between a Chebyshev point of the first kind and the corresponding Legendre
point? Draw a plot to illustrate how close these two sets of points are.

Exercise 2.5. Convergence of Chebyshev interpolants. (a) Use chebfun
to produce a plot on a log scale of ‖f − pn‖ as a function of n with f(x) = ex

on [−1, 1], where pn is the degree n Chebyshev interpolant. Take ‖ · ‖ to be
the supremum norm, which can be computed by norm(f-p,inf). How large
must n be for accuracy at the level of machine precision? What happens if n
is increased beyond this point? (b) Same questions for f(x) = 1/(1 + 25x2).
Convergence rates like these will be analyzed in Chapters 7 and 8.

3. Chebyshev polynomials and series

ATAPformats

One good way to specify a polynomial of degree n on [−1, 1], as we saw in the last
chapter, is by its values at n+1 Chebyshev points. Another equally good way is
by its coefficients in a Chebyshev expansion, that is, a linear combination of
the Chebyshev polynomials T0, . . . , Tn. Depending on the application, one or the
other of these two representations may be most useful, and one can go back and
forth between them rapidly and accurately with an algorithm based on the Fast
Fourier Transform (FFT). This duality is exactly analogous to the perhaps more
familiar relationship between “space” and “Fourier space” in discrete Fourier
analysis.

In Chapter 2 we defined Chebyshev points as the real parts of equally spaced
points on the unit circle. Similarly, the k th Chebyshev polynomial is the
real part of the function zk on the unit circle:

x = Re(z) = 1
2 (z + z−1) = cos θ, θ = cos−1 x,

Tk(x) = Re(zk) = 1
2 (zk + z−k) = cos(kθ).

Chebyshev polynomials were introduced by Chebyshev in the 1850s, though
without the connection to z and θ [Chebyshev 1854 & 1859]. The reason they

10



are labelled by the letter T is probably that Chebyshev, de la Vallée Poussin,
Bernstein, and other early experts in the subject published in French, and the
French transliteration of the Russian name is Tschebyscheff.

It follows immediately from the definition above that Tk satisfies −1 ≤ Tk(x) ≤ 1
for x ∈ [−1, 1] and takes alternating values ±1 at the k + 1 Chebyshev points.
What is not so obvious is that Tk is a polynomial. We can verify this property
by induction. For example, we can calculate T2(x) like this:

T2(x) = 1
2 (z2 + z−2) = 1

2 (z + z−1)2 − 1 = 2x2 − 1.

Similarly we calculate

T3(x) = 1
2 (z3 + z−3) = 1

2 (z + z−1)(z2 + z−2) − 1
2 (z1 + z−1) = 2xT2(x) − T1(x),

so T3(x) = 4x3 − 3x. In general we have

Tk+1(x) = 2xTk(x) − Tk−1(x),

implying that for each k ≥ 1, Tk is a polynomial of degree exactly k with leading
coefficient 2k−1.

The chebfun command chebpoly(n) returns the chebfun corresponding to Tn.
Here for example are T1, . . . , T6:

for n = 1:6

T{n} = chebpoly(n);

subplot(3,2,n)

plot(T{n}), axis([-1 1 -1 1])

end
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Here are their coefficients with respect to the monomial basis 1, x, x2, . . . . As
usual, Matlab orders coefficients from highest degree down to zero.

for n = 1:6

poly(T{n})

end
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ans =

1 0

ans =

2 0 -1

ans =

4 0 -3 0

ans =

8 0 -8 0 1

ans =

16 0 -20 0 5 0

ans =

32 0 -48 0 18 0 -1

So, for example,
T5(x) = 16x5 − 20x3 + 5x.

The monomial basis is familiar and comfortable, but you should never use it for
numerical work with functions on an interval. Use the Chebyshev basis instead.
(If the domain is [a, b] rather than [−1, 1], the Chebyshev polynomials must be
scaled accordingly, and chebfun does this automatically when one works in other
intervals.) For example, x5 has the Chebyshev expansion

x5 =
5

80
T5(x) +

5

16
T3(x) +

5

8
T1(x).

We can calculate such expansion coefficients by using the command
chebpoly(p), where p is the chebfun whose coefficients we want to know:

format short

chebpoly(x.^5)

ans =

0.0625 0 0.3125 0 0.6250 0

Any polynomial p can be written uniquely like this as a finite Chebyshev series:
the functions T0(x), T1(x), . . . , Tn(x) form a basis for the space of polynomials
of degree ≤n. Since p is determined by its values at Chebyshev points, it follows
that there is a one-to-one linear mapping between values at Chebyshev points
and Chebyshev expansion coefficients. As mentioned at the beginning of this
chapter, this mapping can be applied in O(n log n) operations with the aid of
the Fast Fourier Transform (FFT) or the Fast Cosine Transform, an observation
perhaps first made by Ahmed and Fisher and Orzsag around 1970 [Ahmed &
Fisher 1970, Orszag 1971a and 1971b, Gentleman 1972]. That is what the
chebfun system does when you type chebpoly. We shall not give details of the
FFT here.
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Just as a polynomial p has a finite Chebyshev series, a more general function
f has an infinite Chebyshev series. Exactly what kind of “more general func-
tion” can we allow? For an example like f(x) = ex, everything will turn out to
be straightforward, but what if f is merely differentiable rather than analytic?
Or what if it is continuous but not differentiable? Analysts have studied such
cases carefully, identifying exactly what degrees of smoothness correspond to
what kinds of convergence of Chebyshev series. We shall not concern ourselves
with trying to state the sharpest possible result but will just make a particular
assumption that covers almost every application. We shall assume that f is
Lipschitz continuous on [−1, 1]. Recall that this means that there is a con-
stant C such that |f(x) − f(y)| ≤ C|x − y| for all x, y ∈ [−1, 1]. Recall also
that a series is absolutely convergent if it remains convergent if each term
is replaced by its absolute value, and that this implies that one can reorder the
terms arbitrarily without changing the result.

Here is our basic theorem about Chebyshev series and their coefficients.

Theorem 3.1: Chebyshev series. If f is Lipschitz continuous on [−1, 1], it

has a unique representation as an absolutely and uniformly convergent series

f(x) =

∞
∑

k=0

akTk(x),

and the coefficients are given by the formula

ak =
2

π

∫ 1

−1

f(x)Tk(x)√
1 − x2

dx,

with the special case that for k = 0, the factor 2/π changes to 1/π.

Proof. Throughout this book, our approach to all kinds of results involving
Chebyshev polynomials will always be the same: transplant them to the unit
circle in the complex plane, where they become results involving powers of z.
Integrals over [−1, 1] transplant to integrals over the unit circle, where one can
generally get the results one wants from the Cauchy integral formula. This
method of dealing with Chebyshev mathematics has the advantage that one
never has to remember any trigonometric identities!

Here is how it goes for Chebyshev series and their coefficients. We are given a
function f(x) on [−1, 1]. We transplant f by defining a function F on the unit
circle whose value at a point z on the circle is the same as the value of f at the
corresponding point x ∈ [−1, 1]. In other words, F (z) = F (z−1) = f(x), where
x = Re z = (z + z−1)/2. Notice that each value x ∈ (−1, 1) corresponds to two
different values z on the unit circle, one on the upper semicircle and the other
on the lower semicircle.

To convert between integrals in x and z, we have to convert between dx and dz.
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We can do this by differentiating the formula for x to get

dx = 1
2 (1 − z−2) dz = 1

2z−1(z − z−1) dz.

Since
1
2 (z − z−1) = i Im z = ±i

√
1 − x2,

this implies

dx = ±i z−1
√

1 − x2 dz.

In these equations the plus sign applies for Im z ≥ 0 and the minus sign for
Im z ≤ 0.

These formulas have implications for smoothness. Since
√

1 − x2 ≤ 1 for all
x ∈ [−1, 1], they imply that if f(x) is Lipschitz continuous, then so is F (z).
By a standard result in complex variables, this implies that F has a unique
representation as an absolutely and uniformly convergent Laurent series on the
unit circle,

F (z) =
1

2

∞
∑

k=0

ak(zk + z−k) =
∞
∑

k=0

akTk(x).

Recall that a Laurent series is an infinite series in both positive and negative
powers of z, and that such series in general converge in the interior of an annulus.
A good treatment of Laurent series can be found in [Markushevich 1985]. Or one
can derive results about F by converting them to results about Fourier series,
for the Laurent series for F is equivalent to a Fourier series in the variable θ if
z = eiθ.

The kth Laurent coefficient of an analytic function G(z) =
∑∞

k=−∞ bkzk on the
unit circle can be computed by the Cauchy integral formula,

bk =
1

2πi

∫

|z|=1

z−1+kG(z) dz.

The notation |z| = 1 indicates that the contour consists of the unit circle tra-
versed once in the positive (counterclockwise) direction. Here we have a function
F with the special symmetry property F (z) = F (z−1), and we also have intro-
duced a factor 1/2 in front of the series. Accordingly in the case of F we can
compute the coefficients ak from either of two contour integrals,

ak =
1

πi

∫

|z|=1

z−1+kF (z) dz =
1

πi

∫

|z|=1

z−1−kF (z) dz,

with πi replaced by 2πi for k = 0.

In particular, we can get a formula for ak that is symmetric in k and −k by
combining the two integrals like this:

ak =
1

2πi

∫

|z|=1

(z−1+k + z−1−k)F (z) dz =
1

πi

∫

|z|=1

z−1 Tk(x)F (z) dz,
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with πi replaced by 2πi for k = 0. Replacing F (z) by f(x) and z−1dz by
−i dx/(±

√
1 − x2) gives

ak = − 1

π

∫

|z|=1

f(x)Tk(x)

±
√

1 − x2
dx,

with π replaced by 2π for k = 0. We have now almost entirely converted to
the x variable, except that the contour of integration is still the circle |z| = 1.
When z traverses the unit circle all the way around in the positive direction,
x decreases from 1 to −1 and then increases back to 1 again. At the turning
point z = x = −1, the ± sign attached to the square root switches from + to
−. Thus instead of cancelling, the two traverses of x ∈ [−1, 1] contribute equal
halves to ak. Converting to a single integration from −1 to 1 in the x variable
multiplies the integral by −1/2, hence multiplies the formula for ak by −2:

ak =
2

π

∫

|z|=1

f(x)Tk(x)√
1 − x2

dx.

This is the result stated in the theorem.

The chebfun system represents functions by their values at Chebyshev points.
How does it know the right value of n? Given a set of n+1 samples, it converts
the data to a Chebyshev expansion of degree n and examines the resulting
Chebyshev coefficients. If these fall below a relative level of approximately
10−15, then the grid is judged to be fine enough. For example, here are the
Chebyshev coefficients of the chebfun corresponding to ex:

f = exp(x);

a = chebpoly(f);

format long

a(end:-1:1)’

ans =

1.266065877752008

1.130318207984970

0.271495339534077

0.044336849848664

0.005474240442094

0.000542926311914

0.000044977322954

0.000003198436463

0.000000199212481

0.000000011036772

0.000000000550590

0.000000000024980

0.000000000001039

15

0.000000000000040

0.000000000000001

Notice that the last coefficient is about at the level of machine precision.

For complicated functions it is often more informative to plot the coefficients
than to list them. For example, here is a function with a number of wiggles:

f = sin(6*x) + sin(60*exp(x));

clf, plot(f), title(’A function with wiggles’)
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A function with wiggles

If we plot the absolute values of the Chebyshev coefficients, here is what we
find:

a = chebpoly(f);

semilogy(abs(a(end:-1:1)),’m’)

grid on, title(’Absolute values of Chebyshev coefficients’)
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Absolute values of Chebyshev coefficients

One can explain this plot as follows. Up to degree about k = 80, a Chebyshev
series cannot resolve f accurately, for the oscillations occur on too short wave-
lengths. After that the series begins to converge rapidly. By the time we reach
k = 150, the accuracy is about 15 digits, and the computed Chebyshev series is
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truncated there. We can find out exactly where the truncation took place with
the command length(f):

length(f)

ans =

151

This tells us that the chebfun is a polynomial interpolant through 151 points,
that is, of degree 150.

Without giving all the engineering details, here is a fuller description of how
the chebfun system constructs its approximation. First it calculates the poly-
nomial interpolant through the function sampled at 9 Chebyshev points, i.e., a
polynomial of degree 8, and checks whether the Chebyshev coefficients appear
to be small enough. For the example just given the answer is no. Then it tries
17 points, then 33, then 65, and so on. In this case the system judges at 257
points that the Chebyshev coefficients have finally fallen to the level of round-
ing error. At this point it truncates the tail of terms deemed to be negligible,
leaving a series of 151 terms. The corresponding degree 150 polynomial is then
evaluated at 151 Chebyshev points via FFT, and these 151 numbers become the
data defining this particular chebfun.

Here is another example, a function with two spikes:

f = 1./(1+1000*(x+.5).^2) + 1./sqrt(1+1000*(x-.5).^2);

clf, plot(f), title(’A function with spikes’)
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A function with spikes

Here are the Chebyshev coefficients of the chebfun. This time instead of
chebpoly and semilogy we execute the special command chebpolyplot, which
does the same thing.

chebpolyplot(f,’m’), grid on

title(’Absolute values of Chebyshev coefficients’)
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Note that although it is far less wiggly, this function needs six times as many
points to resolve as the previous one.

People often ask, is there anything special about Chebyshev points and Cheby-
shev polynomials? Could we equally well interpolate in other points and expand
in other sets of polynomials? From an approximation point of view, the answer
is yes, and in particular, Legendre points and Legendre polynomials have much
the same power for representing a general function f , as we shall see in Chapters
15 and 16. Legendre points and polynomials are neither better than Chebyshev
for approximating functions, nor worse; they are essentially the same. One can
improve both Legendre and Chebyshev—by a factor of up to π/2—but to do so
one must leave the class of polynomials. See Chapter 19.

Nevertheless, there is a big advantage of Chebyshev over Legendre points, and
that is that one can use the FFT to go from point values to coefficients and
back again. There are fast Legendre transforms that make such computations
practicable, but Chebyshev remains much faster and more convenient.

[To be added: (1) Original references for Chebyshev polynomials and Theorem
3.1. (2) In particular, pin down where the notation Tk comes from.]

Exercise 3.1. An expansion coefficient. Determine numerically the coeffi-
cient of T5 in the Chebyshev expansion of tan−1(x) on [−1, 1].

Exercise 3.2. Chebyshev coefficients and “rat”. (a) Use chebfun to
determine numerically the coefficients of the Chebyshev series for 1 + x3 + x4.
By inspection, identify these rational numbers. Use the Matlab command [n,d]

= rat(c) to confirm this. (b) Use chebfun and rat to make good guesses as to
the Chebyshev coefficients of x7/7 + x9/9.

Exercise 3.3. Dependence on wave number. (a) Calculate the length Lk of
the chebfun corresponding to f(x) = sin(kx) on [−1, 1] for k = 1, 2, 4, 8, . . . , 210.
Make a loglog plot of Lk as a function of k and comment on the result. (b) Do
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the same for g(x) = 1/(1 + (kx)2).

Exercise 3.4. Chebyshev series of a complicated function. (a) Make
chebfuns of the three functions f(x) = tanh(x), g(x) = 10−5 tanh(10x), h(x) =
10−10 tanh(100x) on [−1, 1], and call chebpolyplot to show their Chebyshev
coefficients. Comment on the results. (b) Now define s = f +g+h and comment
on the result of chebpolyplot applied to s. Chebfun does not automatically
chop the tail of a Chebyshev series, but applying the simplify command will
do this. What happens with chebpolyplot(simplify(s))? (c) Repeat (b) but
with the function t = f + 10−5g + 10−10h. What does chebpolyplot reveal
about the difference between simplify(t) and simplify(s)?

Exercise 3.5. Orthogonality, least-squares.

Exercise 3.6. The Wiener class.

4. Interpolants, truncations, and aliasing

ATAPformats

Suppose f(x) is a Lipschitz continuous function on [−1, 1] with Chebyshev ex-
pansion coefficients {ak} as in Theorem 3.1:

f(x) =

∞
∑

k=0

akTk(x).

One degree n approximation to f is the polynomial obtained by interpolation

in Chebyshev points:

pn(x) =

n
∑

k=0

ckTk(x).

Another is the polynomial obtained by truncation of the series at term n,
whose coefficients through degree n are the same as those of f itself:

fn(x) =

n
∑

k=0

akTk(x).

The relationship of the Chebyshev coefficients of fn to those of f is obvious,
and in a moment we shall that the Chebyshev coefficients of pn have simple
expressions too. In computational work generally, and in particular in the cheb-
fun system, the polynomials {pn} are generally nearly as good approximations
to f as {fn} and easier to work with, since one does not need to evaluate the
integral of Theorem 3.1. The polynomials {fn}, on the other hand, are also
interesting and have received a great deal of mathematical attention over the
years. In this book, most of our computations will make use of {pn}, but many
of our theorems will treat both cases. A typical example is Theorem 8.2, which
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asserts that if f is analytic on [−1, 1], then both ‖f −fn‖ and ‖f −pn‖ decrease
geometrically as n → ∞.

The key to understanding {ck} is the phenomenon of aliasing, a term which
originated among radio engineers early in the 20th century. On the (n + 1)
-point Chebyshev grid, it is obvious that any function f is indistinguishable
from a polynomial of degree n. But something more is true: any Chebyshev
polynomial TN , no matter how big N is, is indistinguishable on the grid from a
single Chebyshev polynomial Tk for some k with 0 ≤ k ≤ n. We state this as a
theorem.

Theorem 4.1: Aliasing of Chebyshev polynomials. For any n ≥ 1 and

0 ≤ k ≤ n, the following Chebyshev polynomials take the same values on the

(n + 1)-point Chebyshev grid:

Tk, T2n−k, T2n+k, T4n−k, T4n+k, T6n−k, . . . .

Proof. Recall from the last chapter that Chebyshev polynomials on [−1, 1] are
related to monomials on the unit circle by Tk(x) = (zk +z−k)/2 and Chebyshev
points are related to 2nth roots of unity by xk = (zk + z−1

k )/2. It follows that
the assertion of the theorem is equivalent to the statement that the following
functions take the same values at the 2nth roots of unity:

zk + z−k, z2n−k + zk−2n, z2n+k + z−2n−k, . . . .

Inspection of the exponents shows that in every case, modulo 2n, we have one
exponent equal to +k and the other to −k. The conclusion now follows from
the elementary phenomenon of aliasing of monomials on the unit circle: at the
2nth roots of unity, z2νn = 1 for any integer ν.

Here is a numerical illustration of Theorem 4.1. Taking n = 4, let X be the
Chebyshev grid with n+1 points and let T {1}, . . . , T{10} be the first 10 Cheby-
shev polynomials:

n = 4; X = chebpts(n+1);

for k = 1:10

T{k} = chebpoly(k);

end

Then T3 and T5 are the same on the grid:

disp([T{3}(X) T{5}(X)])

-1.000000000000000 -1.000000000000000

0.707106781186548 0.707106781186547

0 0
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-0.707106781186548 -0.707106781186547

1.000000000000000 1.000000000000000

So are T1, T7, and T9:

disp([T{1}(X) T{7}(X) T{9}(X)])

-1.000000000000000 -1.000000000000000 -1.000000000000000

-0.707106781186547 -0.707106781186548 -0.707106781186547

0 0 0

0.707106781186547 0.707106781186548 0.707106781186547

1.000000000000000 1.000000000000000 1.000000000000000

As a corollary of Theorem 4.1, we can now derive the connection between {ak}
and {ck}. The following result can be found in [Tadmor 1986], though that is
probably not the earliest reference.

Theorem 4.2: Aliasing formula for Chebyshev coefficients. Let f be

Lipschitz continuous on [−1, 1] and let pn be its Chebyshev interpolant of degree

n with n ≥ 1. Let {ak} and {ck} be the Chebyshev coefficients of f and pn,

respectively. Then

c0 = a0 + a2n + a4n + · · · ,
cn = an + a3n + a5n + · · · ,

and for 1 ≤ k ≤ n − 1,

ck = ak + (ak+2n + ak+4n + · · ·) + (a−k+2n + a−k+4n + · · ·).

Proof. By Theorem 3.1, f has a unique Chebyshev series and it converges
absolutely. Thus we can rearrange the terms of the series without affecting con-
vergence, and in particular, each of the three series expansions written above
converges, so these formulas do indeed define certain numbers c0, . . . , cn. Tak-
ing these numbers as coefficients multiplied by the corresponding Chebyshev
polynomials T0, . . . , Tn gives us a polynomial of degree n. By Theorem 4.1, this
polynomial takes the same values as f at each point of the Chebyshev grid.
Thus it is the unique interpolant pn.

We can summarize Theorem 4.2 as follows. On the n+1 point grid, any function
f is indistinguishable from a polynomial of degree n. In particular, the Cheby-
shev series of the polynomial interpolant to f is obtained by reassigning all the
Chebyshev coefficients in the infinite series for f to their aliases of degrees 0
through n.

To illustrate Theorem 4.2, here is a function and its degree 4 Chebyshev inter-
polant (dashed):
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f = tanh(4*x-1);

n = 4; pn = chebfun(f,n+1);

hold off, plot(f), hold on, plot(pn,’.--r’)

title(’A function and its degree 4 interpolant’)
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A function and its degree 4 interpolant

The first 5 Chebyshev coefficients of f ,

a = chebpoly(f); a = a(end:-1:1)’; a(1:n+1)

ans =

-0.166584582703135

1.193005991160944

0.278438064117869

-0.239362401056012

-0.176961398392888

are different from the Chebyshev coefficients of pn,

c = chebpoly(pn); c = c(end:-1:1)’

c =

-0.203351068209675

1.187719968517890

0.379583465333916

-0.190237989543227

-0.178659622412173

As stated in the theorem, the coefficients c0 and cn are given by sums of coeffi-
cients ak with a stride of 2n:

c0 = sum(a(1:2*n:end))
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c0 =

-0.203351068209675

cn = sum(a(n+1:2*n:end))

cn =

-0.178659622412174

The coefficients c1 through cn−1 are given by formulas involving two such sums:

for k = 1:n-1

ck = sum(a(1+k:2*n:end)) + sum(a(1-k+2*n:2*n:end))

end

ck =

1.187719968517890

ck =

0.379583465333916

ck =

-0.190237989543227

For comparison with the last figure, how does the truncated series fn compare
with the interpolant pn as an approximation to f? In the chebfun system we can
obtain fn by computing a full set of Chebyshev coefficients down to machine
precision, truncating at degree n, and constructing a corresponding chebfun
using the chebpolyval command. Here fn is added to the plot as a dot-dash
line:

a = chebpoly(f);

fn = chebfun(chebpolyval(a(end-n:end)));

plot(fn,’-.m’)

title(’Function, interpolant, truncated approximant’)
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Function, interpolant, truncated approximant
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Here are the the two errors f − fn and f − pn:

hold off

subplot(1,2,1), plot(f-fn,’m’), ylim(.35*[-1 1])

title(’deg 4 truncated series’)

subplot(1,2,2), plot(f-pn,’r’), ylim(.35*[-1 1])

title(’deg 4 interpolant’)
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Here is the analogous plot with n = 4 increased to 24:

n = 24; pn = chebfun(f,n+1);

fn = chebfun(chebpolyval(a(end-n:end)));

subplot(1,2,1), plot(f-fn,’m’), ylim(.0005*[-1 1])

title(’deg 24 truncated series’)

subplot(1,2,2), plot(f-pn,’r’), ylim(.0005*[-1 1])

title(’deg 24 interpolant’)
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On the basis of plots like these, one might speculate that fn may often be a
better approximation than pn, but that the difference is small. This is indeed
the case, as we shall confirm with theorems in Chapters 7 and 8.

Let us summarize where we stand. We have considered Chebyshev interpolants
(Chapter 2) and Chebyshev expansions (Chapter 3) for a function f(x) on
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[−1, 1]. Mathematically speaking, each coefficient of a Chebyshev expansion
is equal to the value of the integral given in Theorem 3.1. This formula, how-
ever, is not needed for effective polynomial approximation, since Chebyshev
interpolants are as accurate as truncations. The chebfun system only computes
Chebyshev coefficients of polynomial interpolants, and this is done not by the
integral but by taking the FFT of the sample values in Chebyshev points. If
the degree of the interpolant is high enough that the polynomial matches f to
machine precision, then the Chebyshev coefficients will match too.

Exercise 4.1. Aliasing. (a) On the (n+1)-point Chebyshev grid with n = 20,
which Chebyshev polynomials Tk take the same values as T5? (b) Use chebfun
to draw plots illustrating some of these intersections.

Exercise 4.2. Fooling the chebfun constructor. (a) Construct the anony-
mous function f = @(M) chebfun(@(x) 1+exp(-(M*(x-0.4)).^4)) and plot
f(10) and f(100). This function has a narrow spike of width proportional
to 1/M . Confirm this by comparing sum(f(10)) and sum(f(100)). (b) Plot
length(f(M)) as a function of M for M = 1, 2, 3, . . . , going into the region
where the length becomes 1. What do you think is happening? (c) Let Mmax be
the largest value of M for which the constructor behaves normally and execute
semilogy(f(Mmax)-1,’interval’,[.37 .43]). Discuss this plot and relate it
to the results from chebpts(3), chebpts(9), chebpts(17).

Exercise 4.3. Relative precision. Try Exercise 4.2 again, but now without
the “1+” in the definition of f. The value of Mmax will be different, and the
reason has to do with chebfun’s aim of constructing each function to about 15
digits of relative precision, not absolute. Can you figure out what is happening?

5. Barycentric interpolation formula

ATAPformats

How does one evaluate a Chebyshev interpolant? One approach, involving
O(n log n) work for a single point evaluation, would be to compute Chebyshev
coefficients and use the Chebyshev series. However, there is a direct method
requiring just O(n) work, not based on the series expansion, that is both el-
egant and numerically stable. It also has the virtue of generalizing to sets of
points other than Chebyshev. It is called the barycentric formula, and it was
introduced by Salzer in 1972 [Salzer 1972, Berrut & Trefethen 2004]. We first
state the formula, then illustrate its use, then give the proof.

Theorem 5.1: Barycentric interpolation in Chebyshev points. The
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polynomial interpolant through data {fj} in Chebyshev points {xj} is given by

p(x) =

n
∑

j=0

′ (−1)jfj

x − xj

/

n
∑

j=0

′ (−1)j

x − xj
,

with the special case p(x) = fj if x = xj for some j. The primes on the

summation symbols signify that the terms j = 0 and j = n are multiplied by

1/2.

If you look at the barycentric formula, it is obvious that the function it defines
interpolates the data. As x approaches one of the values xj , one term in the
numerator blows up and so does one term in the denominator. Their ratio is
fj, so this is clearly the value approached as x approaches xj . On the other
hand note that if x is equal to xj , we can’t use the formula: that would be a
division of ∞ by ∞. That’s why the theorem is stated with the qualification
for the special case x = xj .

What is not obvious is that the function defined by this formula is a polynomial,
let alone a polynomial of degree n. In fact it is, as we shall prove below, but
the proof takes a little work. For polynomial interpolation in points other than
Chebyshev, there are other barycentric interpolation formulas with coefficients
different from (−1)j, going back to [Taylor 1945] and [Dupuy 1948]. The various
cases are reviewed in [Berrut & Trefethen 2004], and the general formula is
implemented in the chebfun overload of Matlab’s interp1 command, which we
shall use in Chapters 12 and 13.

It is also not obvious that the barycentric formula is numerically stable. One
might especially wonder, won’t cancellation errors on a computer cause trouble
if x is close to some xj but not equal to it? In fact they do not, and the formula
has been proved stable in floating point arithmetic for all x ∈ [−1, 1] [Rack &
Reimer 1982, Higham 2004]. This is in marked contrast to the more familiar
algorithm for polynomial interpolation via solution of a Vandermonde linear
system of equations, which is exponentially unstable (Exercise 5.1).

Here is an illustration of the speed and accuracy of the barycentric formula
even when n is large. Let p be the Chebyshev interpolant of degree 106 to the
function sin(105x) on [−1, 1]:

ff = @(x) sin(1e5*x);

p = chebfun(ff,1000001);

How long does it take to evaluate this interpolant in 100 points?

xx = linspace(0,0.0001);

tic, pp = p(xx); toc
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Elapsed time is 2.203393 seconds.

Not bad for a million-degree polynomial! The result looks fine,

clf, plot(xx,pp,’.’), axis([0 0.0001 -1 1])

title(’A polynomial of degree 10^6 evaluated at 100 points’)
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A polynomial of degree 106 evaluated at 100 points

and it matches the target function closely.

format long

for j = 1:5

r = rand;

disp([ff(r) p(r) ff(r)-p(r)])

end

-0.038787951022018 -0.038787951020191 -0.000000000001827

0.997459577166873 0.997459577165562 0.000000000001311

-0.864212757304804 -0.864212757300479 -0.000000000004326

-0.105230083868529 -0.105230083879794 0.000000000011265

0.911653660186257 0.911653660185483 0.000000000000774

The apparent loss of 4 or 5 digits of accuracy is to be expected since the deriva-
tive of this function is of order 105.

Now, using transplantation to the unit circle as in the proofs of Theorems 3.1
and 4.1, we derive Salzer’s barycentric formula.

Proof of Theorem 5.1. We start with the observation that the function zn−z−n

has simple roots at the (2n)th roots of unity. Multiplying by z2 − 1 gives a
function zn+2−zn−z2−n +z−n with simple roots at these roots of unity except
double roots at ±1. Now for zj equal to any of the roots of unity, let us divide
by (z − zj)(z − z̄j) to get

rj,n(z) =
zn+2 − zn − z2−n + z−n

(z − zj)(z − z̄j)
.
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If zj = ±1, the division cancels the double root and we are left with a function
equal to zero at all the others. If zj is one of the roots of unity other than ±1,
the division cancels a conjugate pair of roots and again we have a function that
is zero at all the other roots of unity. In fact, rj,n(z) = 2n(−1)n+j+1 if z is equal
to zj or z̄j and these are 6= ±1, rj,n(z) = 4n(−1)n+j+1 if z = zj = z̄j = ±1, and
rj,n(z) = 0 if z is one of the roots of unity other than zj and z̄j (Exercise 5.2).

Let us now define the weights

wj = (2n)−1(−1)n+j+1

for zj = ±1 and half this value for zj = ±1. This choice implies that the
function

wj
zn+2 − zn − z2−n + z−n

(z − zj)(z − z̄j)

equals 1 if z is zj or z̄j and 0 if it is one of the other roots of unity. By taking
a linear combination of these functions for j from 0 to n with coefficients {fj},
we get an interpolant through data {fj} satisfying the symmetry condition
fj = f−j ,

n
∑

j=0

wjfj
zn+2 − zn − z2−n + z−n

(z − zj)(z − z̄j)
.

This interpolant takes the value fj at both the points zj and z̄j, which is just
what we need for transplantation to Chebyshev points in the unit interval. In
fact, since Tk(x) = 1

2 (zk + z−k), this sum is the same as

pn(x) =

n
∑

j=0

wjfj
Tn+2(x) − Tn(x)

x − xj
.

This equation is a representation in Lagrange form of the unique polynomial of
degree ≤n that interpolates the data {fj} in the Chebyshev points {xj}.

A final observation completes the proof. Let the expression just given be divided
by the constant function 1 expressed in the same form. This will not change its
value, and the interpolant becomes

pn(x) =

n
∑

j=0

wjfj
Tn+2(x) − Tn(x)

x − xj

/

n
∑

j=0

wj
Tn+2(x) − Tn(x)

x − xj
.

Cancelling the common factor Tn+2(x) − Tn(x) gives
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pn(x) =

n
∑

j=0

wjfj

x − xj

/

n
∑

j=0

wj

x − xj
.

A common factor (2n)−1(−1)n+1 still remains in the weights wj . If this is
cancelled, the summation turns into a summation with a prime because the
points j = 0 and n have half weights, and we are left with the formula stated
in the theorem.

Polynomial interpolation is an old subject, going back at least to Newton, who
devised an interpolation formula based on divided differences. The barycentric
formula is an example of a Lagrange interpolation formula, in which the inter-
polant is written as a linear combination of cardinal functions that are zero at
all the interpolation points except one. Lagrange considered such interpolations
in 1795, but the same idea had been treated by Waring in 1779 and Euler in
1783 [Waring 1779].

[To be added: (1) Barycentric formula for general points.]

Exercise 5.1. Instability of Vandermonde interpolation. The best-
known algorithm for polynomial interpolation, unlike the barycentric formula,
is unstable. This is the method implemented in Matlab’s polyfit command,
in which one forms a Vandermonde matrix of sampled powers of x and solves a
corresponding linear system of equations. (In [Trefethen 2000], for example, this
unstable method is used repeatedly, forcing the values of n employed to be kept
not too large.) (a) Explore this instability by comparing a chebfun evaluation
of p(0) with the result of polyval(polyfit(xx,f(xx),n),0) where f = @(x)

cos(k*x) for k = 0, 10, 20, . . . , 100 and n is the degree of the corresponding
chebfun. (b) Examining Matlab’s polyfit code as appropriate, construct the
Vandermonde matrices V for each of these 11 problems and compute their con-
dition numbers. By contrast, the underlying Chebyshev interpolation problem
is well-conditioned.

Exercise 5.2. Confirmation of values in proof of Theorem 5.1. In the
proof of Theorem 5.1, values were stated for the function rj,n at the (2n)th roots
of unity. (a) Show that rj,n(z) = 0 if z is one of the roots of unity other than
zj and z̄j . (b) Use L’Hopital’s rule and the fact that zn

j = (−1)j to show that

rj,n(z) = 2n(−1)n+j+1 if z is equal to zj or z̄j and these are 6= ±1. (c) Show
that rj,n(z) = 4n(−1)n+j+1 if z = zj = z̄j = ±1.

Exercise 5.3. Interpolating the sign function. Use x =

chebfun(’x’), f = sign(x) to construct the sign function on [−1, 1] and p

= chebfun(’sign(x)’,10000) to construct its interpolant in 10000 Chebyshev
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points. Explore the difference in the interesting region by defining d = f-p, d =

d{-0.002,0.002}. What is the maximum value of d? In what subset of [−1, 1]
is it smaller than 0.5 in absolute value?

6. The Weierstrass Approximation Theorem

ATAPformats

Every continuous function on a bounded interval can be approximated to arbi-
trary accuracy by polynomials. This is the famous Weierstrass Approximation
Theorem, proved by Karl Weierstrass when he was 70 years old [Weierstrass
1885]. The theorem was independently discovered at about the same time,
nearly, by Carl Runge: as pointed out by Phragmén and Mittag-Leffler, it can
be derived as a consequence of results Runge published in a pair of papers in
1885 and 1886 [Runge 1885 & 1885/1886].

Here and throughout this book, except where indicated otherwise, ‖ · ‖ denotes
the supremum norm on [−1, 1].

Theorem 6.1: Weierstrass Approximation Theorem. Let f be a continu-

ous function on [−1, 1] and let ε > 0 be arbitrary. Then there exists a polynomial

p such that

‖f − p‖ < ε.

Proof. We shall not give a proof in detail. However, here is an outline of
the beautiful proof from Weierstrass’s original paper. First, extend f(x) to
a continuous function f̃ with compact support on the whole real line. Now,
take f̃ as initial data at t = 0 for the diffusion equation ∂u/∂t = ∂2u/∂x2

on the real line. It is known that by convolving f̃ with the Gaussian kernel
φ(x) = e−x2/4t/

√
4πt, we get a solution to this partial differential equation that

converges uniformly to f as t → 0, and thus can be made arbitrarily close to f
on [−1, 1] by taking t small enough. On the other hand, since f̃ has compact
support, for each t > 0 this solution is an integral over a bounded interval of
entire functions and thus itself an entire function, that is, analytic throughout
the complex plane. Therefore it has a convergent Taylor series on [−1, 1], which
can be truncated to give polynomial approximations of arbitrary accuracy.

For a fuller presentation of the argument just given as “one of the most amus-
ing applications of the Gaussian kernel,” where the result is stated for the more
general case of a function of several variables approximated by multivariate poly-
nomials, see Chapter 4 of [Folland 1995]. Many other proofs are also known, in-
cluding early ones due to Picard (1891), Lerch (1892), Volterra (1897), Lebesgue
(1898), Mittag-Leffler (1900), Landau (1908), Jackson (1911), Bernstein (1912),
and Montel (1918). This long list gives an idea of the great amount of mathe-
matics stimulated by Weierstrass’s theorem and the significant role it played in
the development of analysis in the early 20th century.
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Weierstrass’s theorem establishes that even extremely non-smooth functions
can be approximated by polynomials, functions like x sin(x−1) or even
sin(x−1) sin(1/ sin(x−1)). The latter function has an infinite number of points
near which it oscillates infinitely often, as we begin to see from this plot over
the range [0.07, 0.4]. In this calculation the chebfun system is called with a
user-prescribed number of interpolation points, 30000, since the usual adaptive
procedure has no chance of resolving the function to machine precision with a
practicable number of points.

f = chebfun(@(x) sin(1./x).*sin(1./sin(1./x)),[.07 .4],3e4);

plot(f), xlim([.07 .4])

title(’A continuous function that is far from smooth’)
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A continuous function that is far from smooth

We can illustrate the idea of Weierstrass’s proof by showing the convolution
of this complicated function with a Gaussian. Here is the same function f
recomputed over a subinterval extending from one of its zeros to another:

r = roots(f{.27,.37});

a = min(r); b = max(r);

f2 = chebfun(@(x) sin(1./x).*sin(1./sin(1./x)),[a,b],2e3);

plot(f), xlim([a b]), title(’Close-up’)
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Close−up
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Here is a narrow Gaussian.

t = 1e-7;

phi = chebfun(@(x) exp(-x.^2/(4*t))/sqrt(4*pi*t),[-.003,.003]);

plot(phi), xlim([-.035 .035])

title(’A narrow Gaussian kernel’)
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A narrow Gaussian kernel

Convolving the two gives a smoothed version of f .

f3 = conv(f2,phi);

plot(f3), xlim([a-.003,b+.003])

title(’Convolution of the two’)
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Convolution of the two

This is an entire function, readily approximated by polynomials.

For all its beauty, power, and importance, Weierstrass’s theorem has in some
respects served as an unfortunate distraction. Since we know that even trouble-
some functions can be approximated by polynomials, it is hard to resist asking,
how can we do it? A famous result of Faber in 1914 asserts that there is no set
of interpolation points, Chebyshev or otherwise, that achieves convergence as
n → ∞ for all f [Faber 1914]. So it becomes tempting to look at approximation
methods that go beyond interpolation, and to warn people that interpolation
is not enough, and to try to characterize exactly what minimal properties of f
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suffice to ensure that interpolation will work after all. A great deal is known
about these subjects. The trouble with this line of research is, for almost all the
functions encountered in practice, Chebyshev interpolation works beautifully!
Weierstrass’s theorem has encouraged mathematicians over the years to pay too
much attention to pathological functions at the edge of discontinuity, leading to
the bizarre and unfortunate situation where many books on numerical analysis
caution their readers that interpolation may fail without mentioning that for
functions with a bit of smoothness, it succeeds outstandingly. For a discussion
of the history of such misrepresentations and misconceptions, see Chapter 12.

[To be added: (1) Can we speed up conv?]

Exercise 6.1. A pathological function of Weierstrass. Weierstrass was
one of the first to give an example of a function continuous but nowhere differ-
entiable on [−1, 1], and it is one of the early examples of a fractal [Weierstrass
1872]:

w(x) =

∞
∑

k=0

2−k cos(3kx).

(a) Construct a chebfun w7 corresponding to this series truncated at k = 7. Plot
w7, its derivative (use diff), and its indefinite integral (cumsum). What is the
degree of the polynomial defining this chebfun? (b) Prove that w is continuous.
(You can use the Weierstrass M-test. In this and the next part, you are free to
look up literature for help.) (c) Prove that w is nondifferentiable at every point
x ∈ [−1, 1].

7. Convergence for differentiable functions

ATAPformats

The principle mentioned at the end of the last chapter might be regarded as the
fundamental fact of approximation theory: the smoother a function, the faster
its approximants converge as n → ∞. Connections of this kind were considered
in the early years of the 20th century by three of the founders of approximation
theory: Charles de la Vallée Poussin (1866–1962), a mathematician at Lou-
vain in Belgium, Serge Bernstein (1880–1968), a Ukrainian mathematician who
had studied with Hilbert in Göttingen, and Dunham Jackson (1888–1946), an
American student of Landau’s also at Göttingen. (Henri Lebesgue in France
(1875–1941) also proved some of the early results. For comments on the history
see [Goncharov 2000, Steffens 2006].) Bernstein made the following comment
concerning best approximation errors in his summary article for the Interna-
tional Congress of Mathematicians in 1912 [Bernstein 1912a].

Le fait général qui se dégage de cette étude est l’existence d’une liaison des plus
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intimes entre les propriétés différentielles de la fonction f(x) et la loi asympto-

tique de la decroissance des nombres positifs En[f(x)].

[The general fact which emerges from this study is the existence of a very inti-

mate connection between the differential properties of the function f(x) and the

asymptotic rate of decrease of the positive numbers En[f(x)]. ]

In this and the next chapter our aim is to make the smoothness–approximability
link precise in the context of Chebyshev truncations and interpolants. Every-
thing here is analogous to results for Fourier analysis of periodic functions,
and indeed, the whole theory of Chebyshev interpolation can be regarded as
a transplant to nonperiodic functions on [−1, 1] of the theory of trigonometric
interpolation of periodic functions on [−π, π].

Suppose a function f is k times differentiable on [−1, 1], possibly with jumps in
the kth derivative, and you look at the convergence of its Chebyshev interpolants
as n approaches ∞, measuring error in the ∞-norm. You will typically see
convergence at the rate O(n−k). We can explore this effect readily in the chebfun
system. For example, the function f(x) = |x| is once differentiable with a jump
in the derivative at x = 0, and the convergence curve nicely matches n−1 (shown
as a straight line). Actually the match is more than just “nice” in this case—it
is exact, with pn taking its maximal error at the value p(0) = 1/n for odd n.
(For even n the error is somewhat smaller.)

f = abs(x);

nn = 2*round(2.^(0:.3:7))-1;

ee = 0*nn;

for j = 1:length(nn)

n = nn(j); fn = chebfun(f,n+1); ee(j) = norm(f-fn,inf);

end

hold off, loglog(nn,1./nn,’r’)

grid on, axis([1 300 1e-3 2])

hold on, loglog(nn,ee,’.’)

title(’Linear convergence for a differentiable function’)
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Linear convergence for a differentiable function
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Similarly, we get cubic convergence for the function f(x) = | sin(5x)|3, which
is three times differentiable with jumps in the third derivative at x = 0 and
x = ±π/5.

f = abs(sin(5*x)).^3;

for j = 1:length(nn)

n = nn(j); fn = chebfun(f,n+1); ee(j) = norm(f-fn,inf);

end

hold off, loglog(nn,nn.^-3,’r’)

grid on, axis([1 300 2e-6 10])

hold on, loglog(nn,ee,’.’)

title(’Cubic convergence for a 3-times differentiable function’)
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Cubic convergence for a 3−times differentiable function

Encouraged by such experiments, you might look in a book to try to find theo-
rems about O(n−k). If you do, you’ll run into two difficulties. First, it’s hard to
find theorems about Chebyshev interpolants, for most of the literature is about
other approximations such as best approximations (see Chapters 10 and 14) or
interpolants in Chebyshev polynomial roots rather than extrema. Second, you
will probably fall one power of n short! In particular, the most commonly quoted
of the Jackson theorems asserts that if f is k times continuously differentiable
on [−1, 1], then its best polynomial approximations converge at the rate O(n−k)
[Jackson 1911; Cheney 1966, sec. 4.6]. But the first and third derivatives of the
functions we just looked at, respectively, are not continuous. Thus we must
settle for the zeroth and second derivatives, respectively, if we insist on conti-
nuity, so the theorem would ensure only O(n0) and O(n−2) convergence, not
the O(n−1) and O(n−3) that are actually observed. And it would apply to best
approximations, not Chebyshev interpolants.

We can get the result we want by recognizing that most functions encountered in
applications have a property that is not assumed in most theorems: bounded

variation. A function, whether continuous or not, has bounded variation if its
total variation is finite. The total variation is the 1-norm of the derivative
(as defined if necessary in the distributional sense; see [Ziemer 1989, chap. 5] or
[Evans & Gariepy 1991, sec. 5.10]). We can compute this number conveniently
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with chebfuns by writing an anonymous function:

tv = @(f) norm(diff(f),1);

Here are two examples:

tv(x)

ans =

2

tv(sin(10*pi*x))

ans =

39.999999999999986

Here is the total variation of the derivative of |x|:

tv(diff(abs(x)))

ans =

2

Here is the total variation of the third derivative of the function f from the plot
above.

tv(diff(f,3))

ans =

1.652783663421985e+004

It is the finiteness of this number that allowed the Chebyshev interpolants to
this function f to converge at least as fast as O(n−3).

To get to a precise theorem we begin with a bound on Chebyshev coefficients,
an improvement (in the definition of V ) of a similar result in [Trefethen 2008].
The condition of absolute continuity is a standard one which we shall not make
detailed use of, so we will not discuss. An absolutely continuous function is
equal to the integral of its derivative, which exists almost everywhere and is
Lebesgue integrable.

Theorem 7.1: Chebyshev coefficients of differentiable functions. For

any integer ν ≥ 0, let f, f ′, . . . , f (ν−1) be absolutely continuous on [−1, 1] with
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f (ν) of bounded variation V . Then for k ≥ ν + 1, the Chebyshev coefficients of

f satisfy

|ak| ≤
2V

πk(k − 1) · · · (k − ν)
≤ 2V

π(k − ν)ν+1
.

Proof. As in the proof of Theorem 3.1, setting x = 1
2 (z + z−1) with z on the

unit circle gives

ak =
1

πi

∫

|z|=1

f(1
2 (z + z−1)) zk−1 dz,

and integrating by parts with respect to z converts this to

ak =
−1

πi

∫

|z|=1

f ′(1
2 (z + z−1))

zk

k

dx

dz
dz ;

the factor dx/dz appears since f ′ denotes the derivative with respect to x rather
than z. Suppose now ν = 0, so that all we are assuming about f is that it is
of bounded varation V = ‖f ′‖1. Then we note that this integral over the upper
half of the unit circle is equivalent to an integral in x ; the integral over the lower
half gives another such integral. Combining the two gives

ak =
1

πi

∫ 1

−1

f ′(x)
zk − z̄k

k
dx =

2

π

∫ 1

−1

f ′(x) Im
zk

k
dx,

and since |zk/k| ≤ 1/k for x ∈ [−1, 1] and V = ‖f ′‖1, this implies ak ≤ 2V/πk,
as claimed.

If ν > 0, we replace dx/dz by 1
2 (1 − z−2) in the second formula for ak above,

obtaining

ak = − 1

πi

∫

|z|=1

f ′(1
2 (z + z−1))

[

zk

2k
− zk−2

2k

]

dz.

Integrating by parts again with respect to z converts this to

ak =
1

πi

∫

|z|=1

f ′′(1
2 (z + z−1))

[

zk+1

2k(k + 1)
− zk−1

2k(k − 1)

]

dx

dz
dz.

Suppose now ν = 1 so that we are assuming f ′ has bounded variation V =
‖f ′′‖1. Then again this integral is equivalent to an integral in x,

ak =
−2

π

∫ 1

−1

f ′′(x) Im

[

zk+1

2k(k + 1)
− zk−1

2k(k − 1)

]

dx.

Since the term in square brackets is bounded by 1/k(k − 1) for x ∈ [−1, 1] and
V = ‖f ′′‖1, this implies ak ≤ 2V/πk(k − 1), as claimed.

If ν > 1, we continue in this fashion with a total of ν + 1 integrations by parts
with respect to z, in each case first replacing dx/dz by 1

2 (1− z−2). At the next
step the term that appears in square brackets is

[

zk+2

4k(k + 1)(k + 2)
− zk

4k2(k + 1)
− zk

4k2(k − 1)
+

zk−2

4k(k − 1)(k − 2)

]

,
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which is bounded by 1/k(k − 1)(k − 2) for x ∈ [−1, 1]. And so on.

From Theorems 3.1 and 7.1 we can derive consequences about the accuracy of
Chebyshev truncations and interpolants. The second statement of the follow-
ing theorem can be found as Corollary 2 in [Mastroianni & Szabados 1995],
though with a bound of the form O(n−νV ) rather than an explicit constant,
whose appearance here so far as we know is new. The analogous result for
best approximations as opposed to Chebyshev interpolants or truncations was
announced in [Bernstein 1911] and proved in [Bernstein 1912c].

Theorem 7.2: Convergence for differentiable functions. If f satisfies the

conditions of Theorem 7.1, with V again denoting the total variation of f (ν),

then for any n > ν its Chebyshev truncations satisfy

‖f − fn‖ ≤ 2V

πν(n − ν)ν

and its Chebyshev interpolants satisfy

‖f − pn‖ ≤ 4V

πν(n − ν)ν
.

Proof. For the first estimate, Theorem 7.1 gives us

‖f − fn‖ ≤
∞
∑

k=n+1

|ak| ≤
2V

π

∞
∑

k=n+1

(k − ν)−ν−1

and this sum can in turn be bounded by

∫ ∞

n

(s − ν)−ν−1ds =
1

ν(n − ν)ν
.

For the second estimate, we note that by Theorem 4.2, the Chebyshev inter-
polants satisfy the same bound except with coefficients 2|ak| rather than |ak|.

Here is a way to remember the O(n−ν) message of Theorem 7.2. Suppose we
try to approximate the step function sign(x) by polynomials. There is no hope
of convergence, since polynomials are continuous and sign(x) is not, so all we
can achieve is accuracy O(1) as n → ∞. That’s the case ν = 0. But now, each
time we make the function “one derivative smoother,” ν increases by 1 and so
does the order of convergence.

How sharp is Theorem 7.2 for our example functions? In the case of f(x) = |x|,
with ν = 1 and V = 2, it predicts ‖f − fn‖ ≤ 4/π(n − 1) and ‖f − pn‖ ≤
8/π(n−1) ≈ 2.55/(n−1). As mentioned above, the actual value for Chebyshev
interpolation is ‖f − pn‖ = 1/n for odd n. The minimal possible error in poly-
nomial approximation, with pn replaced by the best approximation p∗n (Chapter
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10), is ‖f − p∗n‖ ∼ 0.280169 . . .n−1 as n → ∞ [Varga & Carpenter 1985]. So we
see that the range from best approximant, to Chebyshev interpolant, to bound
on Chebyshev interpolant is less than a factor of 10. The approximation of |x|
was a central problem studied by de la Vallée Poussin, Bernstein, and Jackson
in the 1910s.

The results are similar for the other example, f(x) = | sin(5x)|3, whose third
derivative, we saw, has variation V ≈ 16528. Theorem 7.2 implies that the
Chebyshev interpolants satisfy ‖f − pn‖ < 7020/(n − 1)3, whereas in fact, we
have ‖f − pn‖ ≈ 309/n3 for large odd n and ‖f − p∗n‖ ≈ 80/n3.

We close with a comment about Theorem 7.2. We have assumed in this theorem
that f (ν) is of bounded variation. A similar but weaker condition would be
that f (ν−1) is Lipschitz continuous (Exercise 7.2). This weaker assumption is
enough to ensure ‖f − p∗n‖ = O(n−ν) for the best approximations {p∗n}; this
is one of the Jackson theorems. On the other hand it is not enough to ensure
O(n−ν) convergence of Chebyshev truncations and interpolants. The reason we
emphasize the stronger condition with the stronger conclusion is that in practice
one rarely deals with a function that is Lipschitz continuous while lacking a
derivative of bounded variation, whereas one constantly deals with truncations
and interpolants rather than best approximations.

Incidentally it was de la Vallée Poussin in 1908 who first showed that the strong
hypothesis is enough to reach the weak conclusion: if f (ν) is of bounded vari-
ation, then ‖f − p∗n‖ = O(n−ν) for the best approximation p∗n [de la Vallée
Poussin 1908]. Three years later Jackson sharpened the result by weakening the
hypothesis [Jackson 1911].

[To be added: (1) Converse of Thm 7.2. (2) Jackson and other literature?]

Exercise 7.1. Total variation. Determine numerically the total variation of
f(x) = sin(100x)/(1 + x2) on [−1, 1].

Exercise 7.2. Lipschitz continuous vs. derivative of bounded variation.

(a) Show that if the derivative f ′ of a function f has bounded variation, then f
is Lipschitz continuous. (b) Show that the converse does not hold.

Exercise 7.3. Convergence for Weierstrass’s function. Exercise 6.1 con-
sidered a “pathological function of Weierstrass” w(x) which is continuous but
nowhere differentiable on [−1, 1]. Use chebfun to produce plots of ‖f − fn‖ and
‖f − pn‖ accurate enough and for high enough values of n to confirm visually
that convergence appears to take place as n → ∞. Thus w is not one of the
functions for which interpolants fail to converge, a fact we shall prove in Chapter
13 while also showing how such troublesome functions can be constructed.
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8. Convergence for analytic functions

ATAPformats

Suppose f is not just k times differentiable but infinitely differentiable and in
fact analytic on [−1, 1]. (Recall that this means that for any s ∈ [−1, 1], f has a
Taylor series about s that converges to f in a neighborhood of s.) Then without
any further assumptions we may conclude that the Chebyshev truncations and
interpolants converge geometrically, that is, at the rate O(C−n) for some
constant C > 1. This means the errors will look like straight lines (or better)
on a semilog scale rather than a loglog scale. This kind of connection was first
announced by Bernstein in 1911, who showed that the best approximations to
a function f on [−1, 1] converge geometrically as n → ∞ if and only if f is
analytic [Bernstein 1911 & 1912c].

For example, for Chebyshev interpolants of the function (1 + 25x2)−1, often
known as the Runge function, we get steady geometric convergence down to
the level of rounding errors:

f = 1./(1+25*x.^2);

nn = 0:10:200;

ee = 0*nn;

for j = 1:length(nn)

n = nn(j); fn = chebfun(f,n+1); ee(j) = norm(f-fn,inf);

end

hold off, semilogy(nn,ee,’.’), grid on, axis([0 200 1e-17 10])

title([’Geometric convergence of Chebyshev ’ ...

’ interpolants -- analytic function’])
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Geometric convergence of Chebyshev  interpolants −− analytic function

If f is analytic not just on [−1, 1] but in the whole complex plane—such a func-
tion is said to be entire—then the convergence is even faster than geometric.
Here, for the function cos(20x), the dots are not approaching a fixed straight
line but a curve that gets steeper as n increases, until rounding error cuts off
the progress.
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f = cos(20*x);

nn = 0:2:60;

ee = 0*nn;

for j = 1:length(nn)

n = nn(j); fn = chebfun(f,n+1); ee(j) = norm(f-fn,inf);

end

semilogy(nn,ee,’.’), grid on, axis([0 60 1e-16 100])

title(’Convergence of Chebyshev interpolants -- entire function’)
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Convergence of Chebyshev interpolants −− entire function

There are elegant theorems that explain these effects. If f is analytic on [−1, 1],
then it can be analytically continued to a neighborhood of [−1, 1] in the complex
plane. The bigger the neighborhood, the faster the convergence. In particular,
for polynomial approximations, the neighborhoods that matter are the regions
in the complex plane bounded by ellipses with foci at −1 and 1. We call these
Bernstein ellipses, for they were introduced into approximation theory by
Bernstein in 1912 [Bernstein 1912b & 1914]. It is easy to plot Bernstein ellipses:
pick a number ρ > 1 and plot the image in the complex z-plane of the circle
of radius ρ in the z-plane under the Joukowsky map x = (z + z−1)/2. We let
Er denote the open region bounded by this ellipse. Here for example are the
Bernstein ellipses corresponding to ρ = 1.1, 1.2, . . . , 2:

z = exp(2i*pi*x);

for rho = 1.1:0.1:2

e = (rho*z+(rho*z).^(-1))/2;

plot(e), hold on

end

ylim([-.9 .9]), axis equal

title(’Bernstein ellipses for \rho = 1.1, 1.2, ..., 2’)
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Bernstein ellipses for ρ = 1.1, 1.2, ..., 2

It is not hard to verify that the length of the semimajor axis of Eρ plus the
length of the semiminor axis is equal to ρ.

Here is the basic bound on Chebyshev coefficients of analytic functions from
which many other things follow. It first appeared in Section 61 of [Bernstein
1912c].

Theorem 8.1: Chebyshev coefficients of analytic functions. Let a

function f analytic in [−1, 1] be analytically continuable to the open ρ-ellipse
$E\rho$, where it satisfies |f(z)| ≤ M for some M . Then its Chebyshev coeffi-
cients satisfy

|ak| ≤ 2Mρ−k,

with |a0| ≤ M in the case k = 0.

Proof. As in the proofs of Theorems 3.1, 4.1, and 5.1, we make use of the
transplantation from f(x) and Tk(x) on [−1, 1] in the x-plane to F (z) and
(zk + z−k)/2 on the unit circle in the z-plane, with x = (z + z−1)/2 and F (z) =
F (z−1) = f(x). The ellipse Eρ in the x-plane corresponds under this formula in
a 1-to-2 fashion to the annulus ρ−1 < |z| < ρ in the z-plane. By this we mean
that for each x in Eρ\[−1, 1] there are two corresponding values of z which are
inverses of one another, and both the circles |z| = ρ and |z| = ρ−1 map onto
the ellipse itself. (We can no longer use the formula x = Re z, which is valid
only for |z| = 1.) The first thing to note is that if f is analytic in the ellipse,
then F is analytic in the annulus since it is the composition of the two analytic
functions z 7→ (z + z−1)/2 and x 7→ f(x). Now we make use of the contour
integral formula from the proof of Theorem 3.1,

ak =
1

πi

∫

|z|=1

z−1−kF (z) dz,

with πi replaced by 2πi for k = 0. Suppose for a moment that F is analytic not
just in the annulus but in its closure ρ−1 ≤ |z| ≤ ρ. Then we can expand the
contour to |z| = r without changing the value of the integral, giving

ak =
1

πi

∫

|z|=ρ

z−1−kF (z) dz,
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again with πi replaced by 2πi for k = 0. Since the circumference is 2πρ and
|F (z)| ≤ M , the required bound now follows from an elementary estimate. If F
is analytic only in the open annulus, we can move the contour to |z| = s for any
s < ρ, leading to the same bound for any s < ρ and hence also for s = ρ.

Here are two of the consequences of Theorem 8.1. The first bound first appeared
in Section 61 of [Bernstein 1912c]. I do not know where the second may have
appeared.

Theorem 8.2: Convergence for analytic functions. If f has the properties

of Theorem 8.1, then for each n ≥ 0 its Chebyshev truncations satisfy

‖f − fn‖ ≤ 2Mρ−n

ρ − 1

and its Chebyshev interpolants satisfy

‖f − pn‖ ≤ 4Mρ−n

ρ − 1
.

Proof. The first bound follows by estimating the sum of the coefficients
an+1, an+2, . . . using Theorem 8.1. The second bound follows in the same way
using also Theorem 4.2, which implies that in Chebyshev interpolation, each
coefficient an+1, an+2, . . . contributes to f − pn not once but twice.

We can apply Theorem 8.2 directly if f is analytic and bounded in Eρ. If it is
analytic but unbounded in Eρ, then it will be analytic and bounded in Es for
any s < ρ, so we still get convergence at the rate O(s−n) for any s < ρ.

For example, the function (1 + 25x2)−1 considered above has poles at ±i/5.
The corresponding value of ρ is (1 +

√
26)/5 ≈ 1.220. The errors in Chebyshev

interpolation match this rate beautifully:

f = 1./(1+25*x.^2);

nn = 0:10:200; ee = 0*nn;

for j = 1:length(nn)

n = nn(j); fn = chebfun(f,n+1);

ee(j) = norm(f-fn,inf);

end

rho = (1+sqrt(26))/5;

hold off, semilogy(nn,rho.^(-nn),’-r’)

hold on, semilogy(nn,ee,’.’)

grid on, axis([0 200 1e-17 10])

title(’Geometric convergence for the Runge function’)
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Here is a more extreme but entirely analogous example: tanh(50πx), with poles
at ±0.01i. These poles are so close to [−1, 1] that the convergence is much
slower, but it is still robust. The only difference in this code segment is that
norm(f-fn,inf), a relatively slow chebfun operation that depends on find-
ing zeros of the derivative of f-fn, has been replaced by the default 2-norm
norm(f-fn), which is quick. The exponential decay rates are the same.

f = tanh(50*pi*x);

nn = 0:200:4000; ee = 0*nn;

for j = 1:length(nn)

n = nn(j); fn = chebfun(f,n+1); ee(j) = norm(f-fn);

end

rho = (1+sqrt(10001))/100;

hold off, semilogy(nn,rho.^(-nn),’-r’)

hold on, semilogy(nn,ee,’.’)

grid on, axis([0 4000 1e-16 10])

title([’Geometric convergence for a function ’ ...

’that is analytic in a narrow region’])
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Geometric convergence for a function that is analytic in a narrow region

For another example, the function
√

2 − x has a branch point at x = 2, corre-
sponding to ρ = 2 +

√
3. Again we see a good match, with the curve gradually

bending over to the expected slope as n → ∞.
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f = sqrt(2-x);

nn = 0:30; ee = 0*nn;

for j = 1:length(nn)

n = nn(j); fn = chebfun(f,n+1); ee(j) = norm(f-fn,inf);

end

rho = 2+sqrt(3);

hold off, semilogy(nn,rho.^(-nn),’-r’)

hold on, semilogy(nn,ee,’.’)

grid on, axis([0 30 1e-17 10])

title([’Geometric Convergence for an analytic ’ ...

’function with a branch point’])
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Geometric Convergence for an analytic function with a branch point

We conclude this section by stating a converse of Theorem 8.2, also due to Bern-
stein [Bernstein 1912c, Section 9]. The converse is not quite exact: Theorem 8.2
assumes analyticity and boundedness in Er, whereas the conclusion of Theorem
8.3 is analyticity in Er but not necessarily boundedness.

Theorem 8.3: Converse of Theorem 8.2. Suppose f is a function on [−1, 1]
for which there exist polynomial approximations {qn} satisfying

‖f − qn‖ ≤ Cρ−n, n ≥ 0

for some constants ρ > 1 and C > 0. Then f can be analytically continued to

an analytic function in the open ρ-ellipse Eρ.

Proof. The assumption implies that the polynomials {qn} satisfy ‖qn− qn−1‖ ≤
2 C ρ1−n on [−1, 1]. Since qn−qn−1 is a polynomial of degree n, it can be shown
that this implies ‖qn − qn−1‖Es

≤ 2 Csnρ1−n for any s > 1, where ‖ · ‖Es
is

the supremum norm on the s-ellipse Es (this estimate is one of Bernstein’s

inequalities, from Section 9 of [Bernstein 1912c]). For s < ρ, this gives us a
representation for f in Es as a series of analytic functions,

f = q0 + (q1 − q0) + (q2 − q1) + · · · ,

which according to the Weierstrass M test is uniformly convergent. According
to another well-known theorem of Weierstrass, this implies that the limit is a
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bounded analytic function [Ahlfors 1953, Markushevich 1985]. Since this is true
for any s < ρ, the analyticity applies throughout Eρ.

[To be added: (1) Reference for Thm 8.2(b). (2) Hermite integral formula as an
alternative proof.]

Exercise 8.1. A Chebyshev series. With x = chebfun(’x’), execute
chebpolyplot(sin(100*(x-.1))+.01*tanh(20*x)). Explain the various fea-
tures of the resulting plot as quantitatively as you can.

Exercise 8.2. Interpolation of an entire function. The function f(x) =
exp(−x2) is analytic throughout the complex x-plane, so Theorem 8.2 can be
applied for any value of the parameter ρ > 1. Produce a semilog plot of ‖f−pn‖
as a function of n together with lines corresponding to the upper bound of the
theorem for r = 1.1, 1.2, 1.3, . . . , 5. How well do your data fit the bounds?

Exercise 8.3. Convergence rates for different functions. Based on the
theorems of this section, what can you say about the convergence as n → ∞ of
the Chebyshev interpolants to (a) log((x + 3)/4)/(x − 1), (b)

∫ x

0 cos(t2)dt, (c)
tan(tan(x)), (d) (1 + x) log(1 + x) ?

9. The Gibbs phenomenon

ATAPformats

Polynomial interpolants and truncations oscillate and overshoot near disconti-
nuities. We have observed this Gibbs phenomenon already in Chapter 2, and
now we shall look at it more carefully. We shall see that the Gibbs effect for in-
terpolants can be regarded as a consequence of the oscillating inverse-linear tails
of cardinal polynomials, i.e., interpolants of Kronecker delta functions. Chapter
13 will show that these same tails, combined together in a different manner,
are also the origin of Lebesgue constants of size O(log n), with implications
throughout approximation theory.

To start with let us consider the function sign(x), which we interpolate in
n + 1 = 10 or 20 Chebyshev points. We take n to be odd to avoid including a
value 0 at the middle of the step.

f = sign(x);

subplot(1,2,1), hold off, plot(f,’k’), hold on, grid on

f9 = chebfun(f,10); plot(f9,’.-’), title(’n = 9’)

subplot(1,2,2), hold off, plot(f,’k’), hold on, grid on

f19 = chebfun(f,20); plot(f19,’.-’), title(’n = 19’);
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