
Structural approximation and quantum
mechanics

B.Zilber

June 19, 2023

Abstract

We develop a notion of approximation and a model of finite quan-
tum mechanics. In particular, we calculate the Feynman propagator
for quantum harmonic oscillator via the path integral method, where
according to our model the space of paths is (pseudo)finite.
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1 Introduction

1.1 The paper develops ideas, notions and techniques suggested and indi-
cated in [1], [5] and [6].

Section 2 of the paper is mostly model theory. We revise and develop
further the general notion of structural approximation introduced in [1].

We give a few examples of finitely approximated structures over which the
new notions are well-defined. Then we concentrate on our main example, the
approximation of the compactified real line R̄ by finite structures of the form
Z/N. This example comes from [6] but there its formalism was not determined
and studied properly. We note that the language of the structures on R̄ and
respectively on Z/N can not be the full ring language. The relation x1 ·x2 = y
on R has to be replaced by the relation x1 ·x2 ≡ y1 ·y2 mod Z (a weak ring).

In section 4-5 we study in detail weak rings of degree 2 and the respective
approximation of R̄.

Sections 6-8 largely recast the quantum mechanical formalism sketchily
presented in [6], in a rigorous way. Section 9 is completely new. We calculate
the Feynman propagator for quantum harmonic oscillator via the path inte-
gral method, where according to our model the space of paths is pseudo-finite.
This calculation leads to an expected result but unlike the conventional cal-
culation we get the result right without the usual renormalisation or a special
summation method, see e.g. [9], 7.7.4 for the latter.

Our further plans are to extend the approach to higher order oscillating
integrals and into the setting of quantum field theory.

In the rest of the introduction we present a more logic perspective on the
study.

2 Structural approximation

This section mainly presents basic notions of postivie model theory in the
form close to one in [1]. The theory together with continuous model theory
at present is a quite developed part of general model theory. Our aim here is
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not in developing the theory but rather to understand in its context a very
special example, which comes from quantum mechanics.

2.1 Definitions. Given a topological2 language C and a C-structure M
Very often we use the language C(M) in place of C, the extension by

names of elements of a C-structure M.

Let {Ri : i ∈ I} be a family of C-structures. We associate to it the family
{R]

j : j ∈ I]} of all expansions of the Ri to the language C(M).

M] will always stand for the natural expansion of M to C(M).

Given a C-structure M and C- structures {Ri : i ∈ I} we say that M is
syntactically approximated by {Ri : i ∈ I} if

for every h-universal C(M) sentence ϕ such that M] � ϕ there is R]
j in

the family of C(M)-expansions of the Ri such that R]
j � ϕ.

We say that M is semantically approximated3 by {Ri : i ∈ I} if there
is an ultrafilter D on I such that for some R �

∏
i Ri/D there is a surjective

homomorphism
lim : R→M.

2.2 In accordance with [1] we say that M is quasi-compact if any filter of
subsets of Mn defined by existential positive C(M)-formulas has a non-empty
intersection.

2.3 Lemma. Suppose R1 and R2 are C(M) structures and L : R1 → R2 is a
total homomorphism (with domain equal to N1). Then for every h-universal
formula σ

R2 � σ ⇒ R1 � σ.

Proof. By definitions. �

2.4 Lemma Suppose M is a quasi-compact topological C-structure, M] its
natural expansion to C(M) and N is a C(M)-structure such that for every
h-universal sentence σ

M] � σ ⇒ R � σ.
2In the sense of [1]. That is all positive quantifier-free formulas define subsets which

are closed by definition.
3The same as just “approximated” in the terminology of [1].
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Then there is a surjective homomorphism lim : N→M.
Proof. Given A ⊆ N, a partial strong homomorphism limA : A →M is

a map defined on A such that for every a ∈ Ak, â := limA a and S(x, y) ∈ C
such that N � ∃yS(a, y), we have M � ∃y S(â, y).

When A = ∅ the map is assumed empty but the condition still holds, for
any sentence of the form ∃y S(y). So it follows from our assumptions that
lim∅ does exist.

Now for a proof by induction suppose for some A ⊆ N there is a partial
strong homomorphism limA : A→M, and b ∈ N. Then limA can be extended
to a partial strong homomorphism limAb : Ab→M.

Indeed, let N � ∃z S(a, b, z), for S(x, y, z) a positive formula and a a
tuple in N. Then N � ∃yz S(a, y, z)) and hence M � ∃yzS(â, y, z)).

We claim that the family of closed sets in M of the form

{c ∈M : M � ∃z S(â, c, z) and R � ∃z S(a, b, z)}

is a filter, for otherwise for some S1, . . . , Sk we have

M � ¬∃y
k∧
i=1

∃ziSi(â, y, zi) and R � ∃z1 . . . zk

k∧
i=1

Si(a, b, zi)

Since
∧k
i=1 Si(a, b, zi) is equivalent to an atomic formula, we get a contradic-

tion with our assumtion.
By quasi-compactness of M and the claim there is a point, say b̂ in the

intersection of the filter. Clearly, letting limAb : b→ b̂, we preserve formulas
of the form ∃z S(x, y, z).

Thus we have proved that lim can be extended to the whole of N.
Since the element of R named by a constant symbol c must go to the

element of M named by a constant symbol c the image of lim is M. �

2.5 Theorem. Suppose M is a quasi-compact topological C-structure. Then
the following are equivalent:

(i) M is semantically approximated by {Ri : i ∈ I} along an ultrafilter D;
(ii) {Ri : i ∈ I} syntactically approximates M.
Proof. Suppose M is semantically approximated. Then we have R �∏

i∈I Ri/D and lim : R →M, the surjective homomorphism. By choosing a
section

s : M → N, lim ◦s = id
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we can name respective elements in s(M) ⊂ N by elements of M and so
consider R as a C(M)-structure.

Using the fact that a homomorphism preserves positive formulas we can
claim that for every h-universal formula σ

M] � σ ⇒ R � σ (1)

Consider the family {R]
j : j ∈ J} of all the C(M)-structures obtained by

expanding structures Ri, i ∈ I by constants.
It follows from (1) that for each h-universal formula σ such that M] � σ,

Sσ := {j ∈ J : R]
j � σ} 6= ∅.

Since the conjunction of any two h-universal formulas is equivalent to a
h-universal formula, the family of subsets of J,

D′ := {Sσ : M] � σ}

is closed under intersections and so is contained in an ultrafilter, call it D′.
This proves (i)⇒(ii).

To prove the opposite we may start with a family {R]
j : j ∈ J} and an

ultrafilter D′ as in (ii). Consider the family {Rj : j ∈ J} of C-reducts of

structures R]
j, j ∈ J. The ultraproduct R :=

∏
j∈J Rj/D′ is by definitions a

C-reduct of R] :=
∏

j∈J R]
j/D′. By 2.4 there is a surjective homomorphism

lim : R→M. �

2.6 Lemma. Let M be a C-structure, M] its natural expansion to C(M)
and N is a C(M)-structure such that for every h-universal formula σ

M] � σ ⇒ R � σ.

Then, for any |M |- saturated extension M∗ � M] there is a totally defined
homomorphism lim : N→M∗. such that lim(N) ⊇M.

Proof. Just follow the proof of 2.4, replacing M by M∗ to construct a
totally defined homomorphism. Since the image of constants in R are respec-
tive constants in M∗, the image of lim contains M. �
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2.7 Theorem. Suppose {Ri : i ∈ I} is a family of C-structures. Then the
following are equivalent:

(i) For some ultrafilter D on I, some R �
∏

i∈I Ri/D and some M∗ �M
there is a totally defined homomorphism

lim : R→M∗

such that lim(N) ⊇M.
(ii) {Ri : i ∈ I} syntactically approximates M.

Proof. We use the same argument as in the proof of 2.5.
Assume (i). By choosing a section

s : M → N

we can name respective elements in s(M) ⊂ N by elements of M and so
consider R as a C(M)-structure.

Using the fact that a homomorphism preserves positive formulas we can
claim that for every h-universal formula σ

M] � σ ⇒ R � σ (2)

Consider the family {R]
j : j ∈ J} of all the C(M)-structures obtained by

expanding structures Ri, i ∈ I by constants.
It follows from (2) that for each h-universal formula σ such that M] � σ,

Sσ := {j ∈ J : R]
j � σ} 6= ∅.

Since the conjunction of any two h-universal formulas is equivalent to a
h-universal formula, the family of subsets of J,

D′ := {Sσ : M] � σ}

is closed under intersections and so is contained in an ultrafilter, call it D′.
This proves (i)⇒(ii).

To prove the opposite we may start with a family {R]
j : j ∈ J} and

an ultrafilter D′ as in (ii). Consider the family {Rj : j ∈ J} of C-reducts of

structures R]
j, j ∈ J. The ultraproduct R :=

∏
j∈J Rj/D′ is by definitions a C-

reduct of R] :=
∏

j∈J R]
j/D′. By 2.6 there is a totally defined homomorphism

lim : R→M, lim(N) ⊇M.
�
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A structure K is positively ∃-definable (interpretable) in M if the domain
N (the set U and the equivalence relation E such that N = U/E) and the
basic predicates P ⊂ Nk of K are defined by positive ∃-formulas.

2.8 Proposition. Let M be quasi-compact and K is positively ∃-interpretable
in M. Then K is quasi-compact.

Proof. By definition any positive ∃-formula on K can be reinterpreted
as a positive ∃-formula on M, and a filter of positive ∃-definable subsets of
Nm can be interpreted as a filter of positive ∃-definable subsets of Mkm for
some k.

Thus such a filter on K has a non-empty intersection. �

2.9 Proposition. Suppose M is syntactically approximated by
{Ri : i ∈ I} and suppose there is a uniform positive ∃-interpretation DefK(Ri)
of Ki in Ri. Then {Ki : i ∈ I} syntactically approximates K := DefK(M).

Proof. Pick a string c of elements in K and an h-universal formula
¬∃yS(c, y) which holds in K. The quantifier-free positive formula S in N
can be rewritten as a positive ∃-formula S̃ in M. Hence K � ¬∃yS(c, y) iff
M � ¬∃y y ∈ U&S̃(c, y), the latter formula being an h-formula. It follows
that Ki approximate K. �

2.10 Corollary. Suppose a quasi-compact M is semantically approximated
by {Ri : i ∈ I} and suppose there is a uniform positive ∃-interpretation
DefK(Ri) of Ki in Ri. Then {Ki : i ∈ I} semantically approximates K :=
DefK(M).

This follows from the above, 2.5 and 2.8.

2.11 Amalgamation. We consider the following properties that N may
have (all R in N ) :

(jcp) joint cover property : for any Rm and Rl there is Rn and surjective
homomorphisms

fn:m : Rn � Rm and fn:l : Rn � Rl

(acp) amalgamating cover property: given surjective homomorphisms

fm:k : Rm � Rk and fl:k : Rl � Rk
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there is Rn and surjective homomorphisms

fn:m : Rn � Rm and fn:l : Rn � Rl

such that
fn:mfm:k = fn:lfl:k.

(pub) projective upper bounds: given a set I ⊂ N of finite structures linearly
order by the surjective homomorphisms gij : Ri � Rj, for i ≥ j, there
is an R ∈ N and surjections fi : R � Ri, for each i ∈ I, such that
figij = fj.

We call a L-structure K a projective object for finite N -structures
(a projective Fraisse limit) if

(a) given a finite R ∈ N there is a surjective homomorphism f : K� R

(b) given finite R ∈ N and surjective homomorphisms f1 : K � R and
f2 : K� R, there is an automorphism φ : K→ K such that f2 = f1φ;

Remark. This is essentially the definition 2.2 of [11], properties (L1)
and (L3). The property (L2) is automatic in our case.

Note that K is not assumed to be in N .

2.12 We say that R∗ ∈ N is weakly projective object in N if there
exists K, a projective object for finite N -structures, and a surjective homo-
morphism

ψ : R∗ � K.

2.13 Lemma ([11], Lemma 2.3). Suppose K is a projective object for finite
N -structures. Then, given finite R,R′ ∈ N and surjective homomorphisms
f : K� R and g : R′ � R, there is a surjective homomorphisms h : K� R′

such that f = hg.

2.14 Lemma. The property (pub) is satisfied in any elementary class N
with properties (jcp) and (acp).

Proof. In the language of set theory we can write down the theory TI
describing a multisorted structure with sorts isomorphic to Ri, i ∈ I and
homomorphisms gij between the sorts, plus a sort R hosting an L-structure
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which belongs to N , together with surjective homomorphism fi : R → Ri

such that figij = fj.
Such a theory is consistent since any finite collection of its sentences which

mention Ri, gij, fi i, j ∈ {1, . . . ,m}, only, has a model in which R := Rm, the
maximal among the Ri, and fi := gmi.

By compactness there is a model of TI . The L-structure as required. �

The following is essentially a corollary of Lemma 2.14 and the theorem
of Irwin and Solecki, [11], Theorem 2.4.

2.15 Theorem. Assume there are only countably many, up to isomor-
phism, finite structures in N and assume also jcp and acp for N . Then

(i) There are projective objects K for finite structures of N .
(ii) Any two projective objects are isomorphic
(iii) There exist weakly projective objects R∗ in N
(iv) The positive theory of any weakly projective object in N coincides

with the positive theory of projective objects K for finite structures of N .
That is given any positive sentence σ we have

K � σ iff R∗ � σ

(v) For a positive sentence σ

K � σ iff N � σ

Proof. (i) and (ii) are from [11], Theorem 2.4.

(iii). By construction,
K = lim

←
Ri

is a projective limit of linearly ordered by surjections gij : Ri → Rj sequence
{Ri} of finite structures. By Lemma 2.14 there is R∗ ∈ N and surjective ho-
momorphisms fi : R∗ → Ri commuting with gij. We choose such an R∗ with
extra assumption of ℵ1-saturatedness. Now we can construct a surjective
homomorphism ψ : R∗ → K as follows:

for any a ∈ R∗ set
ψ(a) = {fi(a) : i ∈ I}
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where on the right we have a string, an element of
∏

i∈I Ri, belonging to the
inverse limit of the system. In other words this defines a homomorphism into
K. This homomorphism is surjective because by saturatedness for any string
α ∈ K we can realise in R∗ the type {fi(x) = α(i) : i ∈ I}.

(iv) Since there exists surjective homomorphism R∗ � K every positive
sentence σ which holds in R∗ also holds in K. For the converse suppose
R∗ � ¬σ for some positive σ. Since R∗ is pseudo-finite, there is a finite
R ∈ N satisfying ¬σ. By definition R is a surjective image of K, and since
positive sentences are preserved by surjective homomorphisms K � ¬σ. As
required.

(v) If σ holds in K then it holds in all finite structures from N and hence
in all structures from N .

If, on the other hand, all finite structures satisfy σ then N � σ and hence
R∗ � σ, consequently K � σ. �

We denote

ThNeg(R) = {¬σ : R � ¬σ, σ positive sentence}.

2.16 Corollary. Under the assumptions of the theorem the positive theory
of R∗ is equal to the positive theory of K and to the positive theory of N :

ThPos(R∗) = ThPos(K) = ThPos(N )

and the class of weakly projective structures of N is axiomatisable by the set
of sentences

Tproj(N ) := ThPos(K) ∪ ThNeg(K) ∪ Th(N ).

2.17 Theorem. Under assumptions of 2.15 the class of weakly projective
structures in N is positively model complete, that is for any weakly
projective R1,R2 and an embedding R1 ↪→ R2, for any positive formula
ψ(x1, . . . , xn) and a1, . . . , an ∈ R1,

R1 � ψ(a1, . . . , an) iff R2 � ψ(a1, . . . , an).

Proof. To do.
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2.18 A stronger version. Under assumptions of 2.15 the class of weakly
projective structures in N is inverse model complete, that is for any
weakly projective R∗1,R

∗
2 and a surjective homomorphism f : R∗2 � R∗1 there

is a section f † : R∗1 ↪→ R∗2 such that for any positive formula ψ(x1, . . . , xn)
and a1, . . . , an ∈ R∗1,

R∗1 � ψ(a1, . . . , an) iff R∗2 � ψ(f †(a1), . . . , f †(an)).

Proof. Suppose first

R∗1 =
∏
I/D

Rk,

ultraproduct of finite structures for some Freché ultrafilter. So, each element
of R∗1 can be represented as an α : I →

⋃
Rk, α(k) ∈ Rk, and for gkm : Rk →

Rm it holds gkm : α(k) 7→ α(m).
Extend the language L to L(R∗1) which has names for all elements α of R∗1.

The diagram of R∗1 in language L(R∗1) has a realisation in a large saturated
model R∗3 of Tproj(N )...

2.19 Examples. (i) The theory Tproj for the class of residue rings

Nµ = {Z/mZ : m ∈ Z>0}

is decidable. This follows from the statement in section 17 of [12] (answering
a question of J.Ax) that Th(Nµ), the elementary theory of N is decidable.

(ii) Moreover, Tproj for the class of residue rings of the form

Nµ2 = {Z/m2Z : m ∈ Z>0}

is decidable.
This follows from the same result by noting that one can axiomatise Nµ2

inside Nµ by the sentence

∃m m2 = 0 & ∀x (mx = 0→ ∃y x = my)

3 Weak residue rings

3.1 We define a structure of a weak ring on Z/n by using the addition of
the residue ring on Z/n and defining, for α1, β1, α2, β2 ∈ Z/n,

P 4(α1, β1, α2, β2) :≡ α1β1 − α2β2 = 0.
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Each element α of Z/n can be uniquely represented in the form α = ā,
for a ∈ [−1

2
n, 1

2
n) (an interval in Z).

As for R̄w we can re-interpret the structure by introducing a second sort

Cn := {e2πi z
n : z = {0, 1, . . . , n− 1}

and define the structure Rn as consisting of two sorts (Z/n,+, 0, ≤̄) and
(Cn, ·, 1) and the map between the sorts:

e : Z/n× Z/n→ Cn, e(z1z2) = e2πi
z1z2
n .

Clearly,
P 4(α1, β1, α2, β2) ≡ e(α1β1) = e(α2β2)

so the weak ring structure on Z/n is definable in Rn.
Conversely, one can interpret (Cn, ·, 1) in the weak residue ring as a quo-

tient Z/n× Z/n by the equivalence relation E4 defined as:

〈α1, β1〉E4〈α2, β2〉 ≡ P 4(α1, β1, α2, β2).

The additive group structure on Z/n × Z/n induces respectively the multi-
plicative group structure on the quotient. The canonical quotient-map be-
comes e : Z/n× Z/n→ Cn.

3.2 The classe N .
The finite structures Rn are two-sorted structures with sorts:

Z/n, , the main sort,

and
Cn, the evaluating sort.

On Z/n there is an additive group structure (+, 0), constants named µ and
ν, and a collection of binary relations {y = s · x)s∈Q. The interpretation of
y = s · x, for s = l

k
is defined for x, y ∈ Z/n as:

Z/n � y =
l

k
x iff ky = lx.

Note that since h is a rational number, y = h · x is one of the binary
predicates of the structure.
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The structure on the evaluating sort is that of a multiplicative group
(Cn; ·, 1) of complex roots of unity of order 1.

Finally, the two sorts are connected by a map

e : Z/n× Z/n→ Cn, e(z1z2) = e2πi
z1,z2
n

where z1, z2 ∈ Z are treated also as representing elements of Z/n.
Define the positive rational number

h =
ν

µ
(3)

We define N to be the axiomatic closure of the class of all finite Rn such
that

e(µ, ν) = 1 (4)

3.3 Any Rn satisfies the following positive sentences:

(Rn,+, 0) is an abelian group (5)

∀x1, x2, y e(x1 + x2, y) = e(y, x1 + x2) = e(x1, y) + e(x2, y), (6)

symmetric bi-linearity, and

∃z1∀x ∈ Cn∃z2 ∈ Z/n e(z1, z2) = x (7)

stating that e is surjective.
Also, the group structure of Rn, for each positive integer m, satisfies the

sentence

∀y1, . . . ym∃x
m−1∨
i=0

m−1∨
k=0

yi ≡ kx mod m (8)

The sentence implies for an abelian group A that A/mA is cyclic (including
the case A = mA). In particular, for finite A of order n, and m co-prime
with n, the sentence implies that the group is cyclic of order n.

Call Σ the system of axioms (4)-(8), and Σµν(h) its extension by (3).

3.4 Lemma. Any finite model Mn of Σ of size n is isomorphic to an Rn

such that
µν|n.
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Proof. As noted above, (Mn,+) is a cyclic group. Let p be a generator
of Mn. Since e is a surjective bilinear map, Cn is a cyclic group of some order
k dividing n. and

e
2πi
n = e(1, 1).

This determines the bilinear map e uniquely as the one defined in 3.2. Thus
the choice of the generator 1 determines unique isomorphism type of models
of Σ of size n.

Any other generator of the additive group is of the form p ·1 and choosing
this generator we get an isomorphism z 7→ pz, et 7→ ep

2t.
�

3.5 Lemma. A finite M is a model of Σµν(h) if and only if M is a homo-
morphic image of Rmn as a ring, for some positive integers m,n such that
n = h ·m, and the images of m, n interpret µ, ν respectively.

Proof. It is clear that Rmn with the interpretation of µ, ν is a model
of (3)-(4). Since the axioms have a positive form this is preserved by any
homomorphic image.

Conversely, let RK be a model of Σµν(h) and m,n ∈ Z ∩ (0, K] interpret
µ, ν in the structure. Then axioms (3)-(4) are equivalent to

m · n ≡ 0 modK and kn ≡ lmmodK, for
k

l
= h, (k, l) = 1.

We may assume (m,n) = 1 otherwise just dividing m,n and K by (m,n).
Then K = m′ · n′, for some m′|m, n′|n. Since m′n′|(kn− lm) we have

3.6 Proposition. Class N satisfies properties jcp, acp and pub.
Proof. Follows from the above. �

4 A structure on the real line and its approx-

imation

4.1 Compactification of the field of reals. Define R̄field to be a P1(R),
the projective real line in the Zariski language:

the universe of R̄ is R ∪ {∞}, the addition:

S(x, y, z) ≡ x+y = z∨(x =∞&z =∞)∨(y =∞&z =∞)∨(x =∞&y =∞),
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the multiplication:

P (x, y, z) ≡ x·y = z∨(x =∞&z =∞)∨(y =∞&z =∞)∨(x =∞&y = 0)∨(x = 0&y =∞).

The following is an unpublished result by M.Lau. A weaker version, non-
approximability by finite fields is proved in [1].

4.2 Theorem. R̄field is not approximable by the class of finite rings.

4.3 Let Rw(h), h ∈ R+, be the reals with the weak ring structure defined
in [6], 7.5: C consists of all positive quantifier-free formulas generated by the
ternary relation S3(x, y, z) meaning x+ y = z and 4-ary relation

P 4(x1, y1, x2, z2) ≡ e2πi
x1y1

h = e2πi
x2y2

h

Equivalently, the right-hand side says

x1y1 ≡ x2y2 mod hZ.

The compactified weak ring structure R̄w on the compactified reals
R̄ = R ∪ {∞} is given by S(x, y, z) above and the extension of P 4 to R̄
defined by the condition

∞ ∈ {x1, y1, x2, y2} ⇒ R̄w � P
4(x1, y1, x2, y2).

4.4 Proposition. For any choice of h ∈ R+, the compactified weak ring
R̄w(h) is approximable by finite weak residue rings.

Proof. It is enough to construct a C-homomorphism lim from a pseudo-
finite weak ring of the form ∗Z/η, ∗Z the non-standard integers, η a non-
standard positive integer, into the non-standard reals ∗R such that the image
contains R. We follow [6] and choose η of the form η = µν, where µ and ν
are infinite non-standard integer related by a special (non-standard rational)
parameter h satisfying

ν

µ
= h =

κh
ρh
, 0 ≤ κh << µ, 0 ≤ ρh << µ. (9)

Later we will also use the real parameter

~ := st(
h

2π
)
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Here, the notation are chosen so that h will eventually be read as (approxi-
mately) the Planck constant, and ~ as the (exact) reduced Planck constant.

Denote
Rµν := ∗Z/µν, R≤µν := ∗Z ∩ [−µν

2
,
µν

2
).

Note that for a ∈ R≤µν ,
a
µ

are elements of ∗Q.
st be the standard part map

st : ∗Q→ R̄.

Set
limµ : ā 7→ st(

a

µ
). (10)

Now we prove an intermediate statement.

4.5 Lemma.

(i) limµ preserves S3 :

α + β = γ ⇒ S3(limµα, limµβ, limµγ).

(ii) assuming limµ(a1), limµ(b1), limµ(a2) and limµ(b2) are finite,

limµa1 · limµb1− limµa2 · limµb2 = st(
a1b1

µ2
)− st(

a1b1

µ2
) = st(

a1b1 − a2b2

µ2
)

(iii) assuming limµ(a1), limµ(b1), limµ(a2) and limµ(b2) are finite,

ā1b̄1 = ā2b̄2 ⇒ (limµa1 · limµb1 − limµa2 · limµb2) ∈ h−1Z

(iv) assuming µ is highly divisible (divisible by all positive κ << µ), for
any x1, y1, x2, y2 ∈ R satisfying x1y1 − x2y2 = kh−1, k ∈ Z there are
a1, b1, a2, b2 ∈ ∗Z such that

limµ(a1) = x1, limµ(b1) = y1, limµ(a2) = x2, limµ(b2) = y2

and
ā1b̄1 = ā2b̄2
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Proof. (i) The cases limµ(α), limµ(β) ∈ R or limµ(α) =∞ = limµ(β) are
straightforward.

The remaining case can be quickly reduced to the case α = ā, β = b̄,

µ2

2
> a > µZ, 0 < b < mµ, m ∈ Z,

in which case,
limµα =∞, limµβ ∈ R.

But now either µ2

2
> a+ b > µZ and so limµ(α+ β) =∞, as required, or

µ2

2
≤ a+ b ≡ −µ

2

2
+ (a+ b− µ2

2
)modµ2.

Here

0 ≤ a+ b− µ2

2
= b− (

µ2

2
− a) ≤ b,

which proves that

−µ
2

2
≥ −µ

2

2
+ (a+ b− µ2

2
) > µZ

and so
limµ(α + β) =∞

as required.

(ii). Just note that the products on left-hand side can be written as

st(
ai
µ

) · st(bi
µ

)

and the standard part map is a ring homomorphism on finite non-standard
rationals.

(iii). ā1b̄1 = ā2b̄2 is equivalent, under the assumptions, to a1b1 − a2b2 =
kµν = kµ2 ν

µ
for some k ∈ Z. This is equivalent to

a1b1

µ2
− a2b2

µ2
= k

ν

µ
.

By (i) and (iii) we then have

limµa1 · limµb1 − limµa2 · limµb2 = kh−1.
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(iv). We may assume that x1, y1, x2, y2 are non-negative. Choose κ1, ρ1, κ2, λ ∈
∗Z+ so that 0 < κ1, ρ1, κ2, λ << µ (which also means the numbers divide µ)
and

st(
κ1

λ
) = x1, st(

ρ1

λ
) = y1, st(

κ2

λ
) = x2 (11)

Now we look for a non-standard rational number q := ρ2
λ′

for ρ2, λ
′ ∈ ∗Z

so that
κ1ρ1

λ2
− κ2

λ
q = kh−1, that is

κ1ρ1

λ2
− κ2ρ2

λλ′
= kh−1,

q =
λ

κ2

(
κ1ρ1

λ2
− kh−1)

and |ρ2|, |λ′| << µ. 4

Applying st to the latter by (11) we have

x1y1 − x2 st(q) = k.

Hence st(q) = y2.
Define

st(
κ1

λ
) = x1, st(

ρ1

λ
) = y1, st(

κ2

λ
) = x2, st(

ρ2

λ′
) = y2.

Set
a1 := µ

κ1

λ
, b1 := µ

ρ1

λ
, a2 := µ

κ2

λ
, b2 := µ

ρ2

λ′
.

By divisibility and the construction, these are elements of ∗Z that satisfy the
required. �

4.6 It is useful also to consider Rµν and R̄ with respect to a stronger lan-
guage with the constant symbols m

n
, ,m, n ∈ Z+, which we interpret as the

reals m
n

in R̄ and as µ · m
n

in Rµν . It is clear that limµ is still a homomorphism
with respect to this language.

4Here we use the assumptions (definition) that the set of

µ−Small := {κ ∈ ∗Z : κ << µ}

is closed under arithmetic operations. This can be achieved by choosing µ-Small to be a
submodel Z′ ≺ ∗Z and µ ∈ ∗Z \ Z′.
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5 Linear structure on rings of highly divisible

type

5.1 A pseudo-finite weak ring Rµν = ∗Z/µν of 4.3 will be said to be of
highly divisible type if there is a non-standard submodel of arithmetic
Z′ ≺ ∗Z such that both µ and ν are divisible by any non-zero λ ∈ Z′.

Note that by the compactness theorem there is ∗Z and elements µ, ν ∈ ∗Z
such that Rµν is of highly divisible type.

5.2 Let R be an additive group. A linear partial transformation F of
R is given by

• subgroups I0, I1, I2 of R, I0 = I1 ∩ I2;

• a pair of surjective homomorphisms

f1 : I1 → I0, f2 : I2 → I0;

• the binary relation F ⊂ R×R is defined as:

〈x, y〉 ∈ F ⇔ x ∈ I1 & y ∈ I2 & f1(x) = f2(y).

Note that the restriction of F to I1 × I2 is a subgroup.

We will also consider R with a collection of linear partial transfor-
mations.

5.3 The group (R,+) has pseudo-transformations of the form

F (x, y) ≡ y = sx,

for s ∈ R+. I1 = I2 = R.
This extends uniquely to s : R̄ → R̄, s · ∞ = ∞, which will be our

definition of a linear pseudo-transformation s on R̄ .

5.4 Proposition. The ordered semigroup R̄ with a linear transformation
x 7→ s x is finitely approximable by finite groups with linear partial transfor-
mations, more precisely on any pseudo-finite weak ring R of highly divisible
type there is partial linear relation F such that

〈a, b〉 ∈ F ⇒ limµ(b) = s limµ(a).
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Moreover, the homomorphism limµ maps F surjectively on the relation
y = s · x, that is given u, v ∈ R̄ satisfying v = s · u, there are 〈a, b〉 ∈ F such
that

u = limµ(a) and v = limµ(b).

Proof. Choose positive co-prime (non-standard) integers κ and ρ such
that κρ << µ, κρ divides both µ and ν and

st(
κ

ρ
) = s.

Take for R the residue ring ∗Z/µν and

I1 = ρ ∗Z/µν, I2 = κ ∗Z/µν, I0 = κρ ∗Z/µν.

Note that I0, I1, I2 are actually subrings.
Define natural homomorphisms

f1 : I1 � I0, f2 : I2 � I0

f1 : a 7→ aκ, f2 : b 7→ bρ.

Claim. Given a ∈ I1 and b ∈ I2, we have a = αρ and b = βκ for unique
α ∈ [−µν

2ρ
, µν

2ρ
) and β ∈ [−µν

2κ
, µν

2κ
). And

f1(a) = f2(b) iff ∃γ ∈ [− µν

2κρ
,
µν

2κρ
) α = γκ & β = γρ iff b =

κ

ρ
a

Indeed, the left-hand side is equivalent to

αρ ≡ βκ mod
µν

κρ

equivalently, α = γ1κ+ σ1, β = γ2ρ+ σ2, 0 ≤ σ1 < κ, 0 ≤ σ2 < ρ and

σ1ρ− σ2κ ≡ 0 mod
µν

κρ
.

Since µν is divisible by (κρ)2, we have σ1 = σ2 = 0 and γ1 = γ2 = γ. Claim
proved.

Let b ∈ I2. Then
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limµ(b) = st(
b

µ
) = st(

κ

ρ
) · st(a

µ
) = s limµ(a).

Hence for all a, b ∈ R

〈a, b〉 ∈ F ⇒ limµ(b) = s limµ(a).

Conversely, assume u, v ∈ R̄ and v = s · u.
Since limµ is a surjection there is a ∈ Rµν such that u = limµ(a).
Dividing a by κρ find γ and ε in ∗Z

a = γκρ+ ε, 0 ≤ ε < κρ.

Then a′ := γκρ ∈ I1 and limµ(a′) = limµ(a) = u, so we may assume a =
γκρ ∈ I1.

Set b = κ
ρ
a. Then b ∈ I2 and

limµ(b) = s limµ(a) = s · u and v = limµ(b).

�

5.5 Remarks. (1) One sees from the construction that the approximation
in 5.4 is consistent with the approximation of weak ring structure.

(2) The pseudo-transformation F is the graph of a multivalued map f :
R → R. However, the differences between the values f(x) in “finite” points
x are “infinitesimal”, that is disappear after the application of lim .

(3) The restriction of the multivalued map f to the smaller subgroup

I0 = {γκρ : γ ∈ [− µν

2κ2ρ2
,
µν

2κ2ρ2
)}, f : γκρ 7→ γκ2

is a well-defined injective map. It is essential that I0 is also big enough, we
say dense in the nonstandard group ∗Z/µν :

limµ(I0) = R̄.

In this circumstances we say that f is well-defined on a dense sub-
group and extended from it by continuity.
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5.6 Proposition. The linear structure on the compactified ordered group
with linear transformations

R̄lin = (R̄; +,≤, s· )s∈R×+

is strongly approximable by respective linear finite structures on Z/N.
Proof.The elementary theory of densely ordered abelian groups (without

linear transformations) is well understood, see [8].
Consider a finite part of the quantifier-free diagram of the structure. It

is easy to see that such a finite diagram will coincide with a finite diagram
of a such group with all the finitely many s involved in it being rationals.
But then such a diagram can be replaced by an equivalent diagram of an
ordered group without linear transformations. Then, the finite diagram can
be realised in any cyclically ordered group which contains a densely ordered
abelian group, that is realised in ∗Z/η with highly divisible η. This is enough
to prove the existence of colim. �

6 A line bundle with connection.

6.1 Recall the notation N = µν, q = exp 2πi
N
.

We also set the value of the special parameter h of 4.3 and (9) so that

st(h) =
~
2π

(12)

where ~ is the Planck constant of physics expressed in some units.
An algebraic Hilbert space with unitary operators U and V sat-

isfying UV = qV U is an N -dimensional vector space over the field k of
characteristic 0with finite family of canonical orthonormal bases. More pre-
cisely it is given by axioms in the following language.

• k = Q[q] is with usual +, · and 1 and also with extra symbol q for a
root of unity of order N. Thus any element of k is named. We also
have an involution, “complex conjugation”, x 7→ x∗ defined as follows
element-wise:

f(q)∗ := f(q−1)

for any polynomial f over Q.
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• The universe of the structure is V, which has a structure of an N -
dimensional k-vector space.

• U and V are linear operators on V satisfying the above commutation
relation.

U and V haveN distinct eigenvectors with distinct eigenvalues 1, q, . . . qN−1.

• There is a unary predicate EU,V satisfying following properties:

EU,V (V) has N2 distinct elements.

u ∈ EU,V ⇒ Uu, V u ∈ EU,V .

• A canonical U -base (with respect to V ) is an N -element sequence
{u(1),u(q), . . . ,u(qN−1)} ⊂ EU,V satisfying

Uu(qk) = qk u(qk), V u(qk) = u(qk+1).

• We define an inner product by assuming that each element of EU,V is
of norm 1 (that is 〈u, u〉 = 1) and that eigenvectors u1,u2 with distinct
eigenvalues are orthogonal (that is 〈u1, u2〉 = 0). Hence a canonical
basis is an orthonormal basis and for arbitrary

x1 :=
N−1∑
i=0

ki1u(qi), x2 :=
N−1∑
i=0

ki2u(qi)

we have
〈x1,x2〉 =

∑
ki1k

∗
i2.

6.2 We define

Reals(k) = {a ∈ k : a∗ = a}, Ims(k) = {a ∈ k : a∗ = −a}

Reals(k) is a subfield of k which consists of a of the form

a = f(q) + f(q−1), f ∈ Q[X]

and Ims(k) consists of
b = f(q)− f(q−1).

Clearly,
k = Reals(k) + Ims(k).
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6.3 Lemma. The field R is approximable by the field Reals(k).
Proof. Clearly k ⊂ C and Reals(k) ⊂ R.
Since k is dense in C and Reals(k) dense in R for the standard part map

st : ∗C→ C ∪ {∞} = C̄

we have st(k) = C̄ and st(Reals(k)) = R̄. �

Clearly, st is also an approximation in the language with norm topology,
defining the unary predicates |x| ≥ r (or ≤ r) for each rational r. In this
language st : ∗k → C̄ is a strong approximation, since st(β) = ∞ iff |β| ≥ r
for all rational r.

6.4 A trivial line bundle with connection over R̄. A trivial C-line
bundle E is isomorphic to C× R̄. Let Γ(E) be the space of smooth sections
ϕ : R→ E, (which is isomorphic to the space of smooth functions f : R→ C)

A connection
P : Γ(E)→ Γ(E)⊗ T ∗R

is a map satisfying Leibnitz rule: for any ϕ ∈ Γ(E), any smooth f : R→ C

P (fϕ) = fP (ϕ) + df ⊗ ϕ.

We will also consider the case when there is an action of a cyclic group
generated by Q acting on the bundle E. We will require that

QP − PQ = i~I

(I the identity operator on E).

We similarly define a k-line bundle over the finite ring R = ∗Z/µν, where
k = Q(q), q = exp 2πi

µν
.

We set the fibre over a ∈ ∗Z/µν to be the vector space k u(qa) with the
action of operators U and V as described in 6.1.

Ket-notation. Choose a canonical basis u(qa) in V and a section
x 7→ |x〉 of the line bundle over R̄ such that |x〉 is an eigenvector of Q
with eigenvalue x.

Similarly, |p〉 will stand for a section p 7→ |p〉 p ∈ R̄, |p〉 = v(qb) such that
|p〉 is an eigenvector of P with eigenvalue p.
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6.5 Proposition. A trivial line bundle with connection over R̄ is approx-
imable by k-line bundle over finite weak rings R with action of operators U
and V.

Proof. For simplicity of calculations below we introduce more convenient
notation:

ε := 1
µ
, δ := 1

ν
.

On the line bundle over R define a linear operator Q on the fibres and on
V as

Q =
U − 1

iδ
; thus Q : u(qa) 7→ qa − 1

iδ
u(qa).

Define P as an operator on V

P =
V − 1

iδ
; thus P : u(qa) 7→ 1

iδ

(
u(qa−1)− u(qa)

)
.

We define the limit on the line bundle:

limµ : u(qa) 7→ |limµa〉 = |st(a
µ

)〉,

that is
limµ(a) = x ∈ R⇔ limµu(qa) = |x〉. (13)

In other words
Q|x〉 = x|x〉. (14)

By definitions we will have on the bundle over R :

QP : u(qa) 7→ qa−1
δ2

u(qa)− qa−1−1
δ2

u(qa−1)

PQ : u(qa) 7→ 1−qa
δ2

(u(qa−1)− u(qa))

Hence

QP − PQ : u(qa) 7→ qa−1 q − 1

δ2
u(qa−1) (15)

Now recall that

q = exp
2πi

µν
= exp{2πiδ2µ

ν
}, qa−1 = exp{2πi(a− 1)δ2µ

ν
}

so, when limµ(a) = x ∈ R, then aδ is finite and so

st
(
(a− 1)δ2

)
= 0, st(qa−1) = 1.
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For the other factor in (15),

st(
q − 1

δ2
) = 2πi · st(µ

ν
) = 2πih =: i~.

Hence we have proved that

QP − PQ : |x〉 7→ i~|x〉. (16)

Finally, to prove that P defines a connection on the bundle, note that
(14) can be easily generalised to the action of an operator f(Q) = c0I +
c1Q+ c2Q

2 + . . . where f is a smooth function

f(Q) : |x〉 7→ f(x)|x〉.

It is well known that in this setting P satisfies the Leibnitz rule,

Pf(x)|x〉 = f(x)P |x〉+ f ′|x〉,

that is P is a connection. �

6.6 Remark. Without effecting the outcome (but somewhat complicating
the calculation) Q an P can be defined as self-adjoint operators on the Hilbert
space V as follows:

Q =
U ε − U−ε

2iδ
, P =

V δ − V −δ

2iδ
.

6.7 Now we are going to work out how to associate a line bundle with a
connection to a more general k-Hilbert space with actions of two unitary
operators S and T.

We will assume that

S = qsU εκ11V δκ12 , T = qoU εκ21V δκ22 ,

κij ∈ ∗Z, κij << µ

We denote
d = d(κ) := det(κij).

It is easy to calculate that
ST = qdTS. (17)

Since S, T are definable in terms of U ε, V δ, these are operators on the
k-Hilbert space V.
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6.8 In particular, in case d = 1,
U ε and V δ are in the algebra 〈S, T 〉 generated by S and T, moreover

〈S, T 〉 = 〈U ε, V δ〉,

the k-Hilbert space with action of S, T is bi-definable with the k-Hilbert space
defined in 6.1.

In this case we similarly define ES,T and canonical S-bases {s(qa) : a ∈ R}

S : s(qa) 7→ qas(qa)
T : s(qa) 7→ s(qa−1)

(18)

and consider such a base as a line bundle over R with actions of S and T.
We will also assume in this case, for reasons which should become obvious

later, that all the κij are in Z, that is are finite.

We consider now the pair of operators on V which we call κ11Q + κ12P
and κ21Q+ κ22P which we define as

κ11Q+ κ12P := S−1
iδ

;

κ21Q+ κ22P := T−1
iδ

Applying respective definition and carrying out the same calculations as
in 6.5 we will get in the limit the line bundle

limµ(a) = s ∈ R⇔ limµs(qa) = |s〉 (19)

for the section s 7→ |s〉,

(κ11Q+ κ12P )|s〉 = s|s〉. (20)

While κ21Q + κ22P acts on the bundle as a connection, by the same
calculation as in 6.5. More precisely, we will of course have

(κ11Q+ κ12P )(κ21Q+ κ22P )− (κ21Q+ κ22P )(κ11Q+ κ12P ) = i~I.

We will call the line bundle of 6.5 the U ε-bundle (or just U -bundle) and
the one here the S-bundle.
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6.9 Continuation of case d = 1. Now we wish to establish a relation
between the U -bundle and the S-bundle. This will be given in approximation
by the inner product

〈u(qa)|s(qb)〉 = r(a, b)

in the sense of the k-Hilbert space V.
Then we will apply limµ to give a meaning to this for the line bundles

over R. This would require a certain renormalisation to the naive meaning
of r(a, b).

7 Linear transformation on algebraic Hilbert

spaces

7.1 Consider a linear transformation L given in terms of the U -basis, de-
pending on parameters a, b, c, g, e, κ, κ′.

We assume 2a, b, 2c, e, κ, κ′, gκ ∈ ∗Q are µ-small.
The domain HL of L is the subspace spanned by {u[n] : n ∈ κ′R}. Here

and below
u[n] := u(qn).

A linear transformation given as

L : u[n] 7→ cL

N
|e|−1∑
m=0

qf(n,m)u[gn+ em] (21)

will be called quadratic, if f(n,m) = an2 + bnm+ cm2.
We will require later that some more condition, in particular that L is

unitary. The latter implies that the modulus of Lu(qn) is equal to 1 and so

|cL| =
√
|e|
N

(22)

(here and above e ∈ ∗Z is a parameter, not to be confused with e defined
along with µ and ν).

We say L in (21) is regular if for some α, β, α′, β′, µ-small such that
αα′ − ββ′ = κκ′

(a)
q
γ
2UαV β : qf(n,m)u[gn+ em] 7→ qf(n,m+1)+κnu[gn+ e(m+ 1)]
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(b)

q
γ′
2 Uβ′V α′ : qf(n,m)u[gn+ em] 7→ qf(n−κ′,m)u[g(n− κ′) + em]

7.2 Remark. (a) tells us that Lu[n], (n ∈ κ′∗Z) is an eigenvector s[κn] of
q
γ
2UαV β with eigenvalue qκn,

(b) tells that operator q
γ′
2 Uβ′V α′ shifts s[κn] to s[κn−κκ′] the eigenvector

with eigenvalue qκn−κκ
′
.

7.3 Example from [6]. Free particle.

u[n] 7→ c
∑
m

q−αβ
m2

2 u[−βm+ n]

−β
α

= t. γ = αβ, k = α, κ′ = 1.
α′ = 1, β′ = 0. f(n,m) = m2.
g = 1, e = −β.

q
αβ
2 UαV β : q−αβ

m2

2 u[−βm+ n] 7→ q−αβ
m2

2
−αβm−αβ

2
+nαu[−β(m+ 1) + n] =

= qαnq−αβ
(m+1)2

2 u[−β(m+ 1) + n]

7.4 Proposition. For any µ-small α, α′, β, β′ ∈ ∗Z, such that κκ′ = αα′ −
ββ′ for some κ, κ′ ∈ ∗Z, there are unique a, b, c, γ, γ′, g, e (a) and (b) of (21)
hold and 2a, b, 2c, γ, γ′, gκ, e ∈ ∗Z µ-small.

In other words, given α, α′, β, β′ ∈ ∗Z, a choice of integer κ such that
Lu(n) of (7.1) is an eigenvector of q

γ
2UαV β with eigenvalue qκn for all n ∈

κ′ ∗Z determines L uniquely up to the constant cL.

Proof.
Calculate using (a): By definition

q
γ
2UαV β : qf(n,m)u(qgn+em) 7→ q

γ
2

+f(n,m)+α(gn+em)−αβu(qgn+em−β)

hence we need for (a):

γ

2
+ f(n,m) + α(gn+ em)− αβ = f(n,m+ 1) + κn (23)

and
gn+ em− β = gn+ e(m+ 1) (24)
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Hence, from (24),
e = −β. (25)

From (23):
γ

2
= αβ + c = −αe+ c, (26)

and for any n and m

n(b+ κ− αg) +m(2c− αe) = 0,

hence
b+ κ− αg = 0 (27)

and
2c− αe = 0.

So, using (25)

c = −αβ
2
, γ = αβ (28)

Now we calculate the requirement (b).
By definition

q
γ′
2 Uβ′V α′ : qf(n,m)u(qgn+em) 7→ qf(n,m)+ γ′

2
+β′(gn+em−α′)u(qgn+em−α′).

Hence we need for (b):

gn+ em− α′ = g(n− κ′) + em (29)

and

f(n,m) +
γ′

2
+ β′(gn+ em− α′) = f(n− κ′,m). (30)

Hence, from (29)

g =
α′

κ′
, (31)

From (30), comparing the terms with n, m and the terms free of n,m we
get

γ′

2
− α′β′ = aκ′2, (32)

β′g = −2aκ′ (33)
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β′e = −bκ′ (34)

The last equation combined with (25) gives

b =
β′β

κ′
. (35)

And, using all the previous, (33) gives us

a = −α
′β′

2κ′2
(36)

Now we have found the values of a, b, c, g, e, γ and γ′ in terms of α, β, α′, β′

in (36), (35), (28), (31), (26) and ( 32).
Note that equation (27) is a consequence of the rest of the equations and

the definition of k. Indeed, substituting in (27) the values of a, b and g from
(36), (35) and (31) respectively, we get

αα′ − ββ′ − κκ′ = 0

which is a valid equality by our assumptions. �

7.5 Summary

a = −α′β′

2κ′2

b = β′β
κ′

c = −αβ
2

g = α′

κ′
,

e = −β

7.6 Corollary. The range of Lα,β,α′,β′ is a subspace of the k-space generated
by

{u(ql) : l ∈ gcd(α′, β) ·R}.
Proof. By the definition of Lα,β,α′,β′ it is enough to have all l of the form

l = gn+ em, n ∈ κ′R,m ∈ R.

(Recall that R = ∗Z/N.)
By the above gn = α′ n

κ′
∈ α′R and em runs through all elements of βR.

�
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7.7 Let n ∈ κ′∗Z. Then gn ∈ ∗Z.
Let l ∈ gn+ e∗Z, that is

m :=
l − gn
e
∈ ∗Z.

By definition we get then

〈u(ql)|Lu(qn)〉 = cLq
f(n,m) = cL exp 2πi

an2 + bnm+ cm2

µ2h
. (37)

Substituting the value l−gn
e

for m we get

an2 + bnm+ cm2 =
(ae2 − beg + cg2)n2 + (be− 2cg)ln+ cl2

e2

and so

〈u(ql)|Lu(qn)〉 = exp 2πih
(ae2 − beg + cg2)n2 + (be− 2cg)ln+ cl2

e2µ2
.

Now note that by 7.5

ae2 − beg + cg2

e2
= − α′κ

2βκ′
,

be− 2cg

e2
=
κ

β
,

c

e2
= − α

2β

Set

A :=
α′κ

βκ′
, B := −κ

β
, C :=

α

β
. (38)

7.8 Thus we have proved
For any n ∈ κ′∗Z and l ∈ gn+ e∗Z

〈u(ql)|Lu(qn)〉 = cL exp−2πi

h
{A(

n

µ
)2 + 2B

n

µ

l

µ
+ C(

l

µ
)2}.

7.9 Matrix representation. We can equivalently represent L as a op-
erator on the whole N -dimensional vector space with N × N matrix given
by

L(l, n) =

{
cL exp−i2pi

N
{An2 + 2Bnl + Cl2}, if κ′|n & e|(l − gn)

0, otherwise.
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Equivalently,

L(l, n) = cL · δ(l, n) · q−
An2+2Bnl+Cl2

2 (39)

where

δ(l, n) =

{
1 if κ′|n & e|(l − gn)
0, otherwise.

L : u(qn) 7→

{
cL
∑

l∈gn+eR q
−An

2+2Bnl+Cl2

2 u(ql), if κ′|n
0, otherwise.

Note that the support of L (as a map from the canonical U -basis EU) is
dense in EU . This is analogous to the linear transformation of R of section 5.

7.10 Proposition. Given A,B,C ∈ ∗Qfin with µ-small denominators and
numerators, there are α, β, κ, α′, β′, κ′ ∈ ∗Z which satisfy 7.4 and (38).

Every transformation representable in the form (39) is also representable
in the form (21).

Proof. The rational numbers B and C can be represented in the form

B = −κ
β
, C =

α

β

where α, β, κ ∈ ∗Z, β > 0. The rational number A
B

can be represented as

A

B
=
α′

κ′
, for some α′, κ′ ∈ ∗Z.

Now we have the relations (38) satisfied. Moreover, we may assume that
αα′ − κκ′ is divisible by β, multiplying, if necessary, both α′ and κ′ by a
divisor of β. Thus we get

β′ =
αα′ − κκ′

β
∈ ∗Z

and this satisfies the requirements of 7.4. �

7.11 Open Problem. Determine the eigenvalues and eigenvectors of L.
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7.12 Continuous limit. Now denote

x := st(
n

µ
) = limµ(n), y = st(

l

µ
) = limµ(l) (40)

and assuming that A,B,C ∈ ∗Qfin (that is are finite non-standard rationals)

A := st(A), B := st(B), and C := st(C).

Then applying limit to the last equality we get for the expression in 7.8 :

lim exp−i2π
h
{A(

n

µ
)2 + 2B

n

µ

l

µ
+ C(

l

µ
)2} = exp−iAx

2 + 2Bxy + Cy2

~
.

7.13 Equivalent transformations. Call Lα1,β1,α′1,β
′
1

strongly equiva-
lent to Lα2,β2,α′2,β

′
2

if corresponding coefficients are equal:

A1 = A2, B1 = B2, C1 = C2.

In the case
A1 = A2, B1 = B2, C1 = C2

we say the transformations are equivalent.
Clearly, strong equivalence implies equivalence.

Lemma. Let ρ, σ ∈ ∗Z be µ-small. Then equivalence is preserved under
the change

α, β, κ, α′, β′, κ′ 7→ ρα, ρβ, ρκ, σα′, σβ′, σκ′.

Proof. Immediate by definitions. �

7.14 Rescaling to density and the relative value of cL. By 7.1 we
determine the absolute value of

cL = 〈u[l]|Lu[n]〉 = 〈u[l]|s[n]〉

uniquely.
However, when considering the numerical limit, i.e. the values of the

calculated parameters in R̄w, we see that the natural limit value of cL is 0.
This is because |cL| is in fact a number for “the probability that the particle in
position u(qn) under the action of L gets into position u(ql)”. We will replace
this by a Dirac-rescaled value cDir(L), in essense, the “probability density”
which we define in the current work axiomatically in terms of parameters of
L given in 7.1.
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7.15 According to 7.2 one should treat L as an isomorphism between two
k-linear subspaces,

L : Hu → Hs

where Hu ⊆ HL and Hs = L(Hu).

Hs is a module under the operators q
γ
2UαV β and q

γ′
2 Uβ′V α′ . A minimal

such subspace has a canonical basis of the form

{s[κκ′l] : l = 0, 1, . . .
N

κκ′
− 1}.

Respectively, Hu is a module under the operators Uκ, V κ′ spanned over
a canonical basis

{uκ[κκ′l] : l = 0, 1, . . .
N

κκ′
− 1}

of Uκ-eigenvectors. (Note that u[n], an eigenevector of U with eigenvalue
qn, is an eigenvector of Uκ with eigenvalue qκn but this is just one form of
Uκ-eigenvectors.)

We continue the analysis following [6], section 3.
In order for Hu to be of the required dimension N

κκ′
(and to make L

injective) it is necessary and sufficient, by 3.47 of [6], that the eigenvectors
uκ are of the form

uκ[κn] :=
1√
|κ|

|κ|−1∑
p=0

qpd
N
κ u[n+ p

N

κ
], (41)

for some µ-small integer 0 ≤ d < |κ| which determines the choice of Hu.
In accordance with above

Luκ[κn] =: s[κn] = cL

N
|e|−1∑
m=0

qf(n,m)u[gn+ em], (42)

the vector on the right hand side of (21).
Calculating the inner product in the ambient space we get, using the

orthonormality of the basis u,

〈uκ[κl]|s[κn]〉 = cL
1√
|κ|

|κ|−1∑
p=0

∑
m= l−gn

e
+p N

κe

〈qpd
N
κ u[l+ p

N

κ
]|qf(n,m)u[gn+ em]〉 =
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= cL
1√
|κ|
qan

2

|κ|−1∑
p=0

qbn(ml+p
N
κe

)+c(ml+p
N
κe

)2−pdN
κ

where ml := l−gn
e

is an integer.
Note that (N

κe
)2 = N · N

κ2e2
is an integer divisible by N. Hence, the above

is equal to

= cL
1√
|κ|
qan

2+bnml+m
2
l

|κ|−1∑
p=0

qpD
N
κ

where D = bn
e

+ 2 cml
e
− d. Using 7.5 and the fact that n

κ′
is an integer, one

deduces that D is an integer. Thus we calculate the sum of roots of unity,

|κ|−1∑
p=0

qpD
N
κ =

{
|κ|, if D ≡ 0 mod κ
0 otherwise

Thus we conclude that in order for the Hu and Hs to be non-orthogonal
we must choose d so that D ≡ 0 mod κ and as a consequence we get

|〈uκ[κl]|s[κn]〉| = |cL|
√
|κ|. (43)

Now we determine ∆m according to the density of m in (21)

∆m =
|β|
µ

= |β|
√

1

hN
and ∆x := ~∆m = |β|

√
2π~
N

. (44)

Thus we normalise the value of cL (in fact switching to Dirac’s bra-ket
inner product instead of the product (37)) which we call cDir(L).

|cDir(L)| = |〈u
κ[κl]|s[κn]〉

∆x
| = |

cL
√
|κ|

∆x
| =

√
| κ

2π~β
| =

√
|B|
2π~

.

The angular value of cDir(L) can not be determined by our method at
this point and we determine it here axiomatically as:

cDir(L) :=
cL
√
|κ|

∆x
= e−

πi
4

√
|B|
2π~

(45)

However, we will see later in 8.8 that this value of angle is the only one
compatible with the composition of linear transformations.
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7.16 Remark. The definition of cDir(L) is invariant under equivalence.

The limit value is accordingly

lim cDir(L) = st(cDir(L)) = e−
πi
4

√
|B|
2π~

.

7.17 Example. Quantum Harmonic oscillator. The Hamiltonian is of
the form

Hω =
P2 + ω2Q2

2

and

L = Kt = exp{−iHω

~
t}

Assume ω
2π

=: w ∈ ∗Z. We may always choose t so that sinωt and cosωt
are rational.

Now we can present the rational numbers

A =
ω

2π

cosωt

sinωt
, B = − ω

2π sinωt
, C =

ω

2π

cosωt

sinωt

and set

〈x|L|y〉 = cDir(L) · exp iω
(x2 + y2) cosωt− 2xy

2~ sinωt

Accordingly,

cDir(L) = e−i
π
4

√
ω

2π~| sinωt|

7.18 The general form of quadratic transformations. We will also
have to consider at some later point linear quadratic transformations with
L(l, n) of the form

L(l, n) = cL · δ(l, n) · exp
2πi

η

An2 + 2Bnl + Cl2 +Dn+ El

2
(46)

where D,E ∈ ∗Q are bounded by a µ-small constant and may depend on
l, n.

In this case, when passing to continuous limit as determined in 7.12, we
will have

Dn 
Dh

µ

n

µ
and El 

Eh

µ

l

µ
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and so these term vanish in the limit.
This proves the following.

Lemma. The generalised quadratic transformation (46) is equivalent to
a quadratic of the form

L(l, n) = cL · δ(l, n) · exp−2πi
An2 + 2Bnl + Cl2

2η

7.19 Lemma. Given Lα1,β1,α′1,β
′
1

and Lα2,β2,α′2,β
′
2

with commutation pa-
rameters κ1, κ

′
1 and κ2, κ

′
2 respectively, suppose the greatest common divisor

(α′2, β2) is divisible by κ′1. Then

RangeLα2,β2,α′2,β
′
2
⊆ DomLα1,β1,α′1,β

′
1
.

In particular, for every Lα1,β1,α′1,β
′
1

and Lα2,β2,α′2,β
′
2

with commutation pa-
rameters κ1, κ

′
1 and κ2, κ

′
2 respectively we have that

RangeLκ′1α2,κ′1β2,κ
′
1α
′
2,κ
′
1β
′
2
⊆ DomLα1,β1,α′1,β

′
1
.

Proof. Indeed, DomLα1,β1,α′1,β
′
1

is the subspace generated by {u(qn) : n ∈
κ′1R}. And by 7.6 RangeLα2,β2,α′2,β

′
2

is a subspace of the subspace generated
by {u(ql) : l ∈ (α′2, β2) ·R}. �

8 Composition of quadratic transformations

8.1 We will consider the composition L = L1◦L2 of two quadratic k-regular
unitary quadratic transformations. The definition of composition is standard,
for linear transformations in finite-dimensional k-spaces. In particular, we
consider L1, L2 in matrix form and aim to calculate the product.

We have

L1(l, n) = c1 · δ(l, n) · q
A1n

2+2B1nl+C1l
2

2

L2(n,m) = c2 · δ(n,m) · q
A2m

2+2B2mn+C2n
2

2

where δ1(l, n) and δ2(n,m), are in terms of α1, β1, . . . and α2, β2, . . . respec-
tively.
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8.2 By above

L(l,m) =
∑
n∈κ′R

L1(l, n) · L2(n,m) =

= c1c2

∑
n∈κ′R

δ1(l, n)δ2(n,m)q[
1

2
(A1n

2+2B1nl+C1l
2+A2m

2+2B2mn+C2n
2)] =

= c1c2q[
1

2
(C1l

2+A2m
2)]
∑
n∈κ′R

δ1(l, n)δ2(n,m)q[
1

2

(
(A1 + C2)n2 + 2(B1l +B2m)n

)
]

8.3 Now we need to evaluate the sum in the last expression, given fixed
values of l and m.

Given an integer l,

δ1(l, n) = 1 iff n ≡ 0 modκ′1 &
α′1n

κ′1
≡ lmod β1 (47)

This is immediate by definition once one recalls that |e| = |β|. The last
congruence is equivalent to e1|(g1n− l).

Given an integer m,

δ2(n,m) = 1 iff m ≡ 0 modκ′2 & n ≡ α′2m

κ′2
mod β2. (48)

Claim. Given l and m

δ1(l, n)δ2(n,m) = 1 iff m ≡ 0 modκ′2 & n ≡ 0 modκ′1

∃n0 n0 ≡ 0 modκ′1 &
α′1n0

κ′1
≡ lmod β1 & n0 ≡

α′2m

κ′2
mod β2 &

n ≡ n0 mod ρ where ρ = lcm(κ′1,
β1

(α′1, β1)
, β2)

Proof. The conditions on n0 follows directly from (47) and (48). This is
also the condition of solvability (with respect to n) of the system of the three
congruences of claims 1 and 2. The general solution of the congruences is
the last line.

Remark. By definition n0 depends on l and m. Assuming that l ≡ 0
mod β1 and m

κ′2
≡ 0 mod β2 one can choose n0 = 0.
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8.4 We will use the conclusion of the Claim in the form

n = n0 + pρ, p ∈ ∗Z.

By substitution we get

(A1 + C2)n2 + 2(B1l +B2m)n =

= ρ2(A1+C2)p2+2ρ(B1l+B2m+A1n0+C2n0)p+{(A1+C2)n2
0+2(B1l+B2m)n0}.

So the expression of L(l,m) from 8.2 can be rewritten as

L(l,m) = c1c2q[
1

2
(C1l

2 + A2m
2 + (A1 + C2)n2

0 + 2(B1l +B2m)n0)]·

·

N
ρ
−1∑

p=0

q[
1

2
ρ
(
(A1 + C2)ρ p2 + 2(B1l +B2m+ A1n0 + C2n0)p

)
] (49)

Note that C1l
2 +A2m

2 + (A1 +C2)n2
0 + 2(B1l+B2m)n0 is integral since

p = 0 is admissible for the given l,m.

8.5 Claim. B1l + A1n0, B2m+ C2n0, A1ρ and C2ρ are integers.

Proof. B1l = κ1
β1
l and A1n0 = −α′1κ1

β1κ′1
n0 and, according to Claim 1,

α′1
κ′1
n0 =

l + p1β1 for some p1 ∈ ∗Z. One sees that B1l + A1n0 = −p1κ1.

B2m = κ2
β2
m and, according to Claim 2, C2n0 = −α2

β2
n0 = −α2

β2
(
α′2m

κ′2
+p2β2)

for some integer p2. Using the assumption α2α
′
2 = β2β

′
2 + κ2κ

′
2 we get

α2

β2

α′2m

κ′2
=
β′2m

κ′2
+
κ2m

β2

,
β′2m

κ′2
∈ ∗Z

and

B2m+ C2n0 = −β
′
2m

κ′2
− α2p2 ∈ ∗Z.

For

A1ρ = −α
′
1κ1

β1κ′1

κ′1β1β2

(α′1, β1)σ
= − α′1κ1β2

(α′1, β1)σ

it is easy to see that (α′1, β1) divides α′1 and σ divides β2.
For

C2ρ = −α2

β2

κ′1β1β2

(α′1, β1)σ

one just needs to note that (α′1, β1) divides β1 and σ divides κ′1.
Claim proved.
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8.6 We need to evaluate the quadratic Gauss sum in (49), which we write
in the form

N
ρ
−1∑

p=0

q
ρ
2

(ap2+2bp),

where we define integers

a = (A1 + C2)ρ, b = B1l +B2m+N0

where N0 = (A1 + C2)n0. In particular, |N0| is bounded by a |(A1 + C2)ρ|.
So is µ-small.

Since qρ = exp 2πi ρ
N
, the Gauss formula gives us

N
ρ
−1∑

p=0

qρ
1
2

(ap2+2bp) =

{
e
πi
4

√
aN
ρ
q−ρ

b2

2a if b
a
∈ Z

0, otherwise
(50)

ρ
b2

2a
=
B2

1 l
2 +B2

2m
2 + 2B1B2lm+ 2B1lN0 + 2B2mN0 +N2

0

A1 + C2

By the above, substituting into (49) we get, for l,m such that a|b,

L(l,m) = c1c2e
πi
4

√
|aN
ρ
| q[1

2
(C1l

2 + A2m
2 − ρb2/a)] =

c1c2e
πi
4

√
N |A1 + C2| q[

1

2
(Am2 +Blm+ Cl2 +Dm+ El + F )] (51)

where

A = A2 −
B2

2

A1 + C2

= κ′1κ2
α′1α

′
2κ1 + β1β

′
2κ
′
1

κ′2(α′1κ1β2 + α2κ′1β1)
(52)

B =
B1B2

A1 + C2

=
κ1κ

′
1κ2

α′1κ1β2 + α2κ′1β1

(53)

C = C1 −
B2

1

A1 + C2

= −α1α2κ
′
1 + β2β

′
1κ1

α′1κ1β2 + α2κ′1β1

(54)

and
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D = − 2B2N0

A1 + C2

, E = − 2B1N0

A1 + C2

, F = − N2
0

A1 + C2

and soD,E, F are non-standard rationals with numerators and denominators
bounded in terms of α1, β1, κ1, α

′
1, β

′
1, κ
′
1 α2, β2, κ2, α

′
2, β

′
2, κ
′
2 and hence are µ-

small. In other words, L is a generalised quadratic transformation (see 7.18).

8.7 By restricting the domain of L1L2 so that m
κ′2
, l ∈ β1β2

∗Z we get a

choice n0 = 0 in 8.3 and so N0 = 0. It follows that D,E, F are all 0 for L1L2

with the smaller domain.
Hence L is strongly equivalent to the quadratic transformation of the form

7.9 with A,B,C determined above.

8.8 Also note that if we identify the multipliers

c1 = e−
πi
4

√
|β1|
N

, c2 = e−
πi
4

√
|β2|
N

then the multiplier in the product is

cL1L2 = c1c2e
πi
4

√
|A1 + C2|N = e−

πi
4

√
|β1β2(A1 + C2)|

N
= e−

πi
4

√
|α
′
1κ1β2 + α2κ′1β1

κ′1N
|

8.9 Now we assume, without loss of generality (see 7.19), that (α′2, β2) is
divisible by κ′1 and introduce, in accordance with (52)-(54), a regular linear
transformation with parameters

α :=
α1α2κ

′
1 + β2β

′
1κ1

κ′1
,

β :=
α′1κ1β2 + α2κ

′
1β1

κ′1

α′ :=
α′1α

′
2κ1 + β1β

′
2κ
′
1

κ′1

β′ :=
β′2α1κ

′
1 + α′2β

′
1κ1

κ′1

κ :=
κ1κ2

κ′1
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κ′ :=
κ1κ

′
2

κ′1

which corresponds to the A,B,C above in the form (39).
By our assumption all these are integers.
Note that these can be obtained as follows:(

α/κ β/κ
β′/κ′ α′/κ′

)
=

(
α2/κ2 β2/κ2

β′2/κ
′
2 α
′
2/κ

′
2

)(
α1/κ1 β1/κ1

β′1/κ
′
1 α
′
1/κ

′
1

)
(55)

Note that under the notations, 8.8 gives us

cL1L2 = e−
πi
4

√
|β|
N

(56)

as is the case for regular linear quadratic transformation with respective
parameters.

8.10 Definition. Set the product of two quadratic linear transforma-
tions L1, L2 to be L := L1L2, where L in the form (21) is determined by
α, β, κ, α′, β′, κ′ in 8.9. Equivalently, determined by A,B,C in the form (39)
as in (52)-(54).

8.11 Proposition. The product defined 8.10 is associative. Moreover,

8.12 Calculation in bra-ket notation. In this case, we have to adjust
8.2 to

L(l,m)Dir =
∑
κ′1|n

L1(l, n)Dir · L2(n,m)Dir ·∆n

Now we can continue using our calculation in (49) and (51) with adjusted
multipliers

= e
πi
4 cDir(L1)cDir(L2)

√
N |A1 + C2|∆n q[

1

2
(Am2+Blm+Cl2+Dm+El+F )]

Now we need to evaluate ∆n, which by definition is the step in the summation
over n. By looking at (50)5 we identify the step for n

∆n =
ρ

a

1

µ
=

1

|A1 + C2|
√
Nh

and ∆x = |A1 + C2|−1

√
2π~
N

5Define ∆n for canonical Gaussian integral properly.
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and so in coordinates compatible with x we have the multiplier

cDir(L1)cDir(L2)
√
N |A1 + C2|∆x = e−

πi
4

√
|B1|
2π~

e−
πi
4

√
|B2|
2π~

e
πi
4

√
2π~

|A1 + C2|
=

= e−
πi
4

√
|B|
2π~

the last equality by (53).

Thus we have proved

8.13 Theorem. The product L1 ◦ L2 of two regular linear quadratic trans-
formations in the form (39) is equivalent to a regular linear quadratic trans-
formations with parameters given in (52), (53), (54) and (56).

The rescaled multiplier

cDir(L1L2) = e−
πi
4

√
|B|
~

.

8.14 Example (Continuation of Example 7.17). Consider two real values
t1 and t2 with the same ω. We take L1 to correspond to the data with

sinωt1 = β1
κ′1

and cosωt1 =
α′1
κ′1

and L2 to correspond to sinωt2 = β2
κ′2

and

cosωt2 =
α′2
κ′2
.

Also by 7.17 κ1 = ω
2π
κ′1, α1 = ω

2π
α′1, and κ2 = ω

2π
κ′2, α2 = ω

2π
α′2.

Substituting this into the trigonometric data from 7.17 we get

cosωt1 · sinωt2 + cosωt2 · sinωt1 =
α′1β2κ1 + α2κ

′
1β1

κ′1κ1κ′2
=
β

κ′

or
β

κ′
= sinω(t1 + t2).

Similarly, we can calculate other parameters of L = L1◦L2 and eventually
see that L corresponds to quantum harmonic oscillator with frequency ω and
time t1 + t2.
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9 Compositions and path integration

We prove the path integral formula for the quantum harmonic oscillator.

9.1 Following conventional methods we model the operator

Kt = e−i
P2+V (Q)

2~ t

for “very small” value of t using its approximate evaluation

e−i
P2+V (Q)

2~ ∆t ≈ e−i
P2

2~ ∆t · e−i
V (Q)
2~ ∆t

In our model we set ∆t = 1
η
, for a η ∈ ∗Z, 1 << η << µ. We are

particularly interested in case V (Q) = Q2.

9.2 We constructed the operator corresponding to e−i
P2

2~η in section 7 (α =
η, β = −1, α′ = 1, β′ = 0, κ = η, κ′ = 1)

e−i
P2

2~η : u(qn) 7→ c(η)
N−1∑
m=0

qη
(n−m)2

2 u(qm)

if n ∈ η · ∗Z and

e−i
P2

2~η : u(qn+ρ) 7→ 0, for ρ = 1, . . . , η − 1

For e−i
ω2Q2

2~η we have a straightforward

e−i
ω2Q2

2~η : u(qn) 7→ q−
n2ω2

2η u(qn)

for n ∈ η∗Z which corresponds to α = 1, α′ = η, β = 0, β′ = ω2.

9.3 Combining the two into a product we have, according to (55), for

Kη := e−i
P2

2~η · e−i
ω2Q2

2~η

the (α, β)-matrix (55)(
η − 1
ηω2 η2 − ω2

)
, κ = η, κ′ = η2
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respectively,

A =
η2 − ω2

η
, B = −η, C = η

and in the form of subsection 7.9

Kη : u(n) 7→ cKη

N−1∑
l=0

q[
η2(l − n)2 − ω2n2

2η
]u(l) (57)

for n ∈ η2 ∗Z and

cKη = e−
πi
4

√
1

N

is defined as in (7.14). The Dirac-delta renormalised (density) coefficient is
respectively determined by (45) as

cDir(Kη) = e−
πi
4

√
η

2π~
.

9.4 Our plan is to calculate the limit value of the k-th power Kk
η of Kη for

k a µ-small non-standard integer such that

t =
k

η
= k∆t ∈ ∗Qfin, 0 < ωt ≤ T <

π

2

for some positive T ∈ R.
It is not difficult to see that Kk

η is a nonstandard approximation to the
integral operator which conventionally is being presented as Feynman’s path
integral

lim
k→∞

λ(k)

∫
R

∫
R
. . .

∫
R

exp ifV,~(x1, . . . , xk)dx1 . . . dxk

where fV,~(x1, . . . , xk) is a quadratic form whose construction depends on V,
k and the parameter ~, and λ(k) is a normalising coefficient.

We choose T small enough (but standard) so that it satisfies the extra
assumption:

for all 0 < x < y < T

cot y

cotx+ cot y
<
x

y
(58)
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csc y

cscx+ csc y
<
x

y
(59)

Such T ∈ R exists by (60) and (61) below.
We use induction on k which is legitimate since ∗Z is a model of arith-

metic.

9.5 By the composition theorem applied k times Kk
η can be represented in

the form 7.9 with A = Ak, B = Bk, C = Ck for some non-standard rationals
Ak, Bk, Ck with µ-small numerators and denominators (since k is µ-small)
and related αk, α

′
k, βk, β

′
k, κk, κ

′
k. We will also have the multipliers ck := cKk

η

and cDir(K
k
η ) which can be expressed in terms of the other parameters by

(7.14) and (45).
Note that α1, α

′
1, β1, β

′
1, κ1, κ

′
1 and A1, B1, C1 are given in 9.3.

9.6 Theorem. The transformation Kk
η is equivalent to the time evolution

operator for the quantum harmonic oscillator described in subsection 7.17,
that is

Kk
η ≈ Kt = exp{−iHω

~
t} for Hω =

P2 + ω2Q2

2
, t = st(

k

η
)

The rest of the section is devoted to the proof of the theorem.

9.7 Inductive hypothesis. We assume that

Ak = ω(cot
ωk

η
+ a(k)); Bk = −ω(csc

ωk

η
+ b(k)), Ck = ω(cot

ωk

η
+ c(k)),

where a(k), b(k) and c(k) are non-standard real numbers such that

|a(k)|, |b(k)|, |c(k)| < ω
ln k + L0

η
≤ ω

ln η

η

9.8 Note that by the Laurent series decomposition, for z near 0,

cot z =
1

z
− 1

3
z + o(z2) (60)
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csc z =
1

z
+

1

6
z + o(z2) (61)

Also we recall the trigonometric identities

cot(z1 + z2) =
cot z1 cot z2 − 1

cot z1 + cot z2

(62)

cot2 z − csc2 z = 1 (63)

csc(z1 + z2) =
csc z1 csc z2

cot z1 + cot z2

(64)

9.9 Case k = 1. We have by 9.3

A1 = η − ω2

η
= ω(cot

ω

η
+ a(1))

where

a(1) = −2ω

3η
+ o(

1

η2
),

B1 = −η = −ω(csc
ω

η
+ b1)

where

b(1) = − ω

6η
+ o(

1

η2
)

C1 = η = ω(cot
ω

η
+ c(1))

where

c(1) =
ω

3η
+O(

1

η3
)

Here and below O( 1
η3

) means a nonstandard number such that O( 1
η3

) : 1
η3

is a finite nonstandard real.
Clearly, the inductive hypothesis for k = 1 holds.
Also note that

|a(1) + c(1)− 2b(1)| = O(
ω

η3
). (65)
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9.10 Inductive step. Calculate by product formulas (52), (53) and (54)

Ak+1 =
A1C1 + C1Ck −B2

1

Ck + A1

=

= ω
(cot ω

η
+ a(1))(cot ω

η
+ c(1)) + (cot ω

η
+ c(1))(cot ωk

η
+ c(k))− (csc ω

η
+ b(1))2

cot ωk
η

+ cot ω
η

+ a(1) + c(k)
=

= ω
cot2 ω

η
+ cot ω

η
cot ωk

η
− csc2 ω

η

cot ωk
η

+ cot ω
η

+ a(1) + c(k)
+

+ω
(a(1) + c(1)) cot ω

η
+ c(k) cot ω

η
+ c(1) cot ωk

η
− 2b(1) csc ω

η
+O( 1

η2
)

cot ωk
η

+ cot ω
η

+ a(1) + c(k)

Now we use (63) and (62) to get

cot2 ω
η

+ cot ω
η

cot ωk
η
− csc2 ω

η

cot ωk
η

+ cot ω
η

= cot
ω(k + 1)

η

and

cot2 ω
η

+ cot ω
η

cot ωk
η
− csc2 ω

η

cot ωk
η

+ cot ω
η

+ a(1) + c(k)
= cot

ω(k + 1)

η
+ cot

ω(k + 1)

η
·O(

1

η2
))

since cot ωk
η

+ cot ω
η
≥ η

ω
. The estimate of the second summand is

|a′(k+1)| = |
(a(1) + c(1)) cot ω

η
+ c(k) cot ω

η
+ c(1) cot ωk

η
− 2b(1) csc ω

η
+ o( 1

η2
)

cot ωk
η

+ cot ω
η

+ a(1) + c(k)
| ≤

≤ |a(1) + c(1)− 2b(1) + c(k) +
c(1)

k
|+ o(

1

η2
) ≤ ω

3ηk
+ c(k) + o(

1

η2
)

Hence |a(k + 1)| = |a′(k + 1) + cot ω(k+1)
η
·O( 1

η2
))| < ω ln(k+1)+L0

η

(use (65), the above estimate of c(1) and (58) for the last inequality).
This proves the inductive hypothesis for Ak+1 and ak+1.

Case C

Ck+1 =
AkCk + A1Ak −B2

k

Ck + A1

=
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= ω
(cot ωk

η
+ a(k))(cot ωk

η
+ c(k)) + (cot ω

η
+ a(1))(cot ωk

η
+ a(k))− (csc ωk

η
+ b(k))2

cot ωk
η

+ cot ω
η

+ a(1) + c(k)
=

= ω
cot2 ωk

η
+ cot ω

η
cot ωk

η
− csc2 ωk

η

cot ωk
η

+ cot ω
η

+ a(1) + c(k)
+

+ω
(a(k) + a(1) + c(k)) cot ωk

η
+ a(k) cot ω

η
− 2b(k) csc ωk

η
+ o( 1

η
)

cot ωk
η

+ cot ω
η

+ a(1) + c(k)
=

= ω cot
ω(k + 1)

η
· (1 +O(

1

η2
)) + c′(k + 1)

where

|c′(k+1)| = |ω
(a(k) + a(1) + c(k)) cot ωk

η
+ a(k) cot ω

η
− 2b(k) csc ωk

η
+ o( 1

η
)

cot ωk
η

+ cot ω
η

+ a(1) + c(k)
| =

hence

c(k + 1) ≈ a(k) +
a(1) + a(k) + c(k)− 2b(k)

k

as required.

Case B can be proven similarly using (53), (59) and (61).

This completes the proof of the theorem. �

9.11 Remark. Compare this with existing proof of the same formula,
[9], 7.7.4, which leads to a non-convergent limit (page 552) that requires a
“special summation method” to get a correct answer.

The reason why the existing proof requires the “special method”, from
our point of view, is that the conventional calculation uses two limits: once
in calculating the integrals for a finite (N -multiple) product formula, and
then in calculating the limit for N →∞. The composition of the two limits
(which do not commute) is replaced in our calculation by the single limit
(k
η
→ t by applying the standard part map). This balances the two limits in

a correct way.
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